934
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

In vivo and in vitro methods for evaluating soil arsenic bioavailability: relevant to human health risk assessment

, , , , , , , ORCID Icon, , & show all

References

  • Adriano, D. C. 1986. Trace elements in the terrestrial environment. New York, NY: Springer-Verlag.
  • Agusa, T., H. Iwata, J. Fujihara, T. Kunito, H. Takeshita, T. B. Minh, P. T. Trang, P. H. Viet, and S. Tanabe. 2009. Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicology and Applied Pharmacology 236:131–41. doi:10.1016/j.taap.2009.01.015.
  • Agusa, T., T. Kunito, N. M. Tue, V. T. Lan, J. Fujihara, H. Takeshita, T. B. Minh, P. T. Trang, S. Takahashi, P. H. Viet, S. Tanabe, and H. Iwata. 2012. Individual variations in arsenic metabolism in Vietnamese: The association with arsenic exposure and GSTP1 genetic polymorphism. Metallomics 4:91–100. doi:10.1039/C1MT00133G.
  • Ahsan, H., Y. Chen, M. G. Kibriya, V. Slavkovich, F. Parvez, F. Jasmine, M. V. Gamble, and J. H. Graziano. 2007. Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiology, Biomarkers & Prevention 16:1270–78. doi:10.1158/1055-9965.EPI-06-0676.
  • Antonelli, R., K. Shao, D. J. Thomas, R. Sams, and J. Cowden. 2014. AS3MT, GSTO, and PNP polymorphisms: Impact on arsenic methylation and implications for disease susceptibility. Environmental Research 132:156–67. doi:10.1016/j.envres.2014.03.012.
  • Apostoli, P., D. Bartoli, L. Alessio, and J. P. Buchet. 1999. Biological monitoring of occupational exposure to inorganic arsenic. Occupational Environment Medica 56:825–32. doi:10.1136/oem.56.12.825.
  • Argos, M., F. Parvez, M. Rhaman, M. Rakibuz-Zaman, A. Ahmed, S. K. Hore, T. Islam, B. L. Pierce, V. Slavkovich, C. Olopade, M. Yunus, J. A. Baron, J. H. Graziano, and H. Ahsan. 2014. Arsenic and lung disease mortality in Bangledeshi adults. Epidemiology 24:636–545.
  • ATSDR (Agency for Toxic Substances and Disease Registry). 2007. Toxicological profile for arsenic. 559 p. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. Accessed. https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf.
  • ATSDR (Agency for Toxic Substances and Disease Registry). 2016. Addendum to the toxicological profile for arsenic. 189 p. Atlanta, GA: Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Sciences. Accessed. http://www.atsdr.cdc.gov/toxprofiles/Arsenic_addendum.pdf.
  • Bailey, K. A., and R. C. Fry. 2014. Arsenic-associated changes to the epigenome: What are the functional consequences? Current Environment Health Reports 1:22–34. doi:10.1007/s40572-013-0002-8.
  • Ballatori, N. 2002. Transport of toxic metals by molecular mimicry. Environmental Health Perspectives 110 (Suppl 5):689–94. doi:10.1289/ehp.02110s5689.
  • Basta, N. T., J. N. Foster, E. A. Dayton, R. R. Rodriguez, and S. W. Casteel. 2007. The effect of dosing vehicle on arsenic bioaccessibility in smelter-contaminated soil. Journal Environment Health Sciences Particle A 42:1275–81. doi:10.1080/10934520701434927.
  • Bauer, M., and C. Blodau. 2006. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. The Science of the Total Environment 354:179–90. doi:10.1016/j.scitotenv.2005.01.027.
  • Bergquist, E. R., R. J. Fischer, K. D. Sugden, and B. D. Martin. 2009. Inhibition by methylated organo-arsenicals of the respiratory 2-oxo-acid dehydrogenases. Journal Organomet Chemical 694:973–80. doi:10.1016/j.jorganchem.2008.12.028.
  • Bhattacharjee, P., M. Banerjee, and A. K. Giri. 2013. Role of genomic instability in arsenic-induced carcinogenicity. A review. Environment International 53:29–40. doi:10.1016/j.envint.2012.12.004.
  • Biber, J., N. Hernando, and I. Forster. 2013. Phosphate transporters and their function. Annual Review of Physiology 75:535–50. doi:10.1146/annurev-physiol-030212-183748.
  • Bissen, M., and F. H. Frimmel. 2000. Speciation of As(III), As(V), MMA and DMA in contaminated soil extracts by HPLC-ICP/MS. Fresen Journal Analysis Chemical 367:51–55. doi:10.1007/s002160051597.
  • Boyle, R. W., and I. R. Jonasson. 1973. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration 2:251–96. doi:10.1016/0375-6742(73)90003-4.
  • Bradham, K., G. Diamond, A. Juhasz, C. Nelson, and D. Thomas. 2017. Comparison of mouse and swine bioassays for determination of soil arsenic relative bioavailability. Applications Geochemistry. doi:10.1016/j.apgeochem.2017.05.016.
  • Bradham, K. D., G. L. Diamond, K. G. Scheckel, M. F. Hughes, S. W. Casteel, B. W. Miller, J. M. Klotzbach, W. C. Thayer, and D. J. Thomas. 2013. Mouse assay for determination of arsenic bioavailability in contaminated soils. Journal Toxicogical Environment Health A 76:815–26. doi:10.1080/15287394.2013.821395.
  • Bradham, K. D., C. Nelson, A. L. Juhasz, E. Smith, K. Scheckel, D. R. Obenour, B. W. Miller, and D. J. Thomas. 2015. Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils. Environmental Science & Technology 49:6313–18. doi:10.1021/acs.est.5b00905.
  • Bradham, K. D., K. G. Scheckel, C. M. Nelson, P. E. Seales, G. E. Lee, M. F. Hughes, B. W. Miller, A. Yeow, T. Gilmore, S. Harper, and D. J. Thomas. 2011. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environment Health Perspectives 119:1629–34. doi:10.1289/ehp.1003352.
  • Bradham, K. D., and R. Wentsel. 2010. Scientific issues in the U.S. EPA framework for metals risk assessment. Journal Toxicogical Environment Health A 73:108–13. doi:10.1080/15287390903337084.
  • Brattin, W., and S. Casteel. 2013. Measurement of arsenic relative bioavailability in swine. Journal Toxicogical Environment Health A 76:449–57. doi:10.1080/15287394.2013.771562.
  • Brattin, W., J. Drexler, Y. Lowney, S. Griffin, G. Diamond, and L. Woodbury. 2013. An in vitro method for estimation of arsenic relative bioavailability in soil. Journal Toxicogical Environment Health A 76:458–78. doi:10.1080/15287394.2013.771765.
  • Buchet, J. P., R. Lauwerys, and H. Roels. 1981a. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. International Archives Occupational Environment Health 48:71–79. doi:10.1007/BF00405933.
  • Buchet, J. P., R. Lauwerys, and H. Roels. 1981b. Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers. International Archives Occupational Environment Health 48:111–18. doi:10.1007/BF00378431.
  • Budinsky, R. A., J. C. Rowlands, S. Casteel, G. Fent, C. A. Cushing, J. Newsted, J. P. Giesy, M. V. Ruby, and L. L. Aylward. 2008. A pilot study of oral bioavailability of dioxins and furans from contaminated soils: Impact of differential hepatic enzyme activity and species differences. Chemosphere 70:1774–86. doi:10.1016/j.chemosphere.2007.08.035.
  • Bustaffa, E., A. Stoccoro, F. Bianchi, and L. Migliore. 2014. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Archives Toxicogical 88:1043–67. doi:10.1007/s00204-014-1233-7.
  • Calatayud, M., J. A. Barrios, D. Velez, and V. Devesa. 2012a. In vitro study of transporters involved in intestinal absorption of inorganic arsenic. Chemical Research in Toxicology 25:446–53. doi:10.1021/tx200491f.
  • Calatayud, M., V. Devesa, R. Montoro, and D. Velez. 2011. In vitro study of intestinal transport of arsenite, monomethylarsonous acid, and dimethylarsinous acid by Caco-2 cell line. Toxicology Letters 204:127–33. doi:10.1016/j.toxlet.2011.04.023.
  • Calatayud, M., J. Gimeno, D. Velez, V. Devesa, and R. Montoro. 2010. Characterization of the intestinal absorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid using the Caco-2 cell line. Chemical Research in Toxicology 23:547–56. doi:10.1021/tx900279e.
  • Calatayud, M., M. Vazquez, V. Devesa, and D. Velez. 2012b. In vitro study of intestinal transport of inorganic and methylated arsenic species by Caco-2/HT29-MTX cocultures. Chemical Research in Toxicology 25:2654–62. doi:10.1021/tx300295n.
  • Carbrey, J. M., L. Song, Y. Zhou, M. Yoshinaga, A. Rojek, Y. Wang, Y. Liu, H. L. Lujan, S. E. DiCarlo, S. Nielsen, B. P. Rosen, P. Agre, and R. Mukhopadhyay. 2009. Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proceedings National Academic Sciences U S A 106:15956–60. doi:10.1073/pnas.0908108106.
  • Casteel, S. W., R. Cowart, C. P. Weis, G. M. Henningsen, E. Hoffman, W. J. Brattin, R. J. Guzamn, M. F. Starost, J. T. Payne, S. L. Stockham, S. V. Becker, J. W. Drexler, and J. R. Turk. 1997. Bioavailability of lead to juvenile swine dosed with soil from the Smuggler Mountain NPL site, Colorado. Fundamentals Applications Toxicogical 36:177–87. doi:10.1006/faat.1997.2296.
  • Casteel, S. W., C. P. Weis, G. M. Henningsen, and W. J. Brattin. 2006. Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environmental Health Perspectives 114:1162–71. doi:10.1289/ehp.8852.
  • Charbonneau, S. M., K. Spencer, F. Bryce, and E. Sandi. 1978. Arsenic excretion by monkeys dosed with arsenic-containing fish or with inorganic arsenic. Bulletin Environment Contamination Toxicogical 20:470–77. doi:10.1007/BF01683551.
  • Chilvers, D. C., and P. J. Peterson. 1987. Global cycling of arsenic. In Lead, mercury, cadmium, and arsenic in the environment, eds T. C. Hutchinson, and K. M. Meema, 279–301. New York: Wiley & Sons.
  • Chiou, W. L., and P. W. Buehler. 2002. Comparison of oral absorption and bioavailability of drugs between monkeys and human. Pharmaceutical Research 19:868–974. doi:10.1023/A:1016169202830.
  • Chung, C. J., Y. L. Huang, Y. K. Huang, M. M. Wu, S. Y. Chen, Y. M. Hsueh, and C. J. Chen. 2013. Urinary arsenic profiles and the risks of cancer mortality: A population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan. Environmental Research 122:25–30. doi:10.1016/j.envres.2012.11.007.
  • Chung, C. J., Y. S. Pu, C. T. Su, H. W. Chen, Y. K. Huang, H. S. Shiue, and Y. M. Hsueh. 2010. Polymorphisms in one-carbon metabolism pathway genes, urinary arsenic profile, and urothelial carcinoma. Cancer Causes Control 21:1605–13. doi:10.1007/s10552-010-9589-3.
  • Concha, G., G. Vogler, B. Nermell, and M. Vahter. 1998. Low-level arsenic excretion in breast milk of native Andean women exposed to high levels of arsenic in the drinking water. International Archives Occupational Environment Health 71:42–46. doi:10.1007/s004200050248.
  • Corkhill, C. L., and D. J. Vaughan. 2009. Arsenopyrite oxidation – A review. Applications Geochemistry 24:2342–61. doi:10.1016/j.apgeochem.2009.09.008.
  • Crecelius, E. A. 1977. Changes in the chemical speciation of arsenic following ingestion by man. Environmental Health Perspectives 19:147–50. doi:10.1289/ehp.7719147.
  • Csanaky, I., and Z. Gregus. 2002. Species variations in the biliary and urinary excretion of arsenate, arsenite and their metabolites. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP 131:355–65. doi:10.1016/S1532-0456(02)00018-2.
  • D’Amore, J. M., S. R. Al-Abed, K. G. Scheckel, and J. A. Ryan. 2005. Methods for speciation of metals in soils: A review. Journal of Environmental Quality 34:1707–45. doi:10.2134/jeq2004.0014.
  • Danisi, G., and R. W. Straub. 1980. Unidirectional influx of phosphate across the mucosal membrane of rabbit small intestine. Pflugers Archiv 385:117–22. doi:10.1007/BF00588690.
  • Denys, S., J. Caboche, K. Tack, G. Rychen, J. Wragg, M. Cave, C. Jondreville, and C. Feidt. 2012. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science & Technology 46:6252–60. doi:10.1021/es3006942.
  • Desesso, J. M., C. F. Jacobcon, and A. Lavin. 2012. Anatomical and physiological paramters that influence gastorintestinal absorption. In Encyclopedia of drug metabolism and interactions, ed. A. Lyubimov, Vol. 2, 43–79. New York: John Wiley and Sons.
  • DeSesso, J. M., and A. L. Willimas. 2008. Chapter 21 – contrasting the gasrointestinal tracts of mammals: Factors that influence absorption. In Annual reports in medicinal chemistry, ed J. E. Macor, Vol. 43, 353–71. Academic Press.
  • Diamond, G. L., K. D. Bradham, W. J. Brattin, M. Burgess, S. Griffin, C. A. Hawkins, A. L. Juhasz, J. M. Klotzbach, C. Nelson, Y. W. Lowney, K. G. Scheckel, and D. J. Thomas. 2016. Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility. Journal Toxicogical Environment Health A 79:165–73. doi:10.1080/15287394.2015.1134038.
  • DIN. 2000. Soil quality–absorption availability of organic and inorganic pollutants from contaminated soil material; Standard DIN E19738. Berlin: Deutsches Institut fur Normung e.V.
  • Drobna, Z., H. Naranmandura, K. M. Kubachka, B. C. Edwards, K. Herbin-Davis, M. Styblo, X. C. Le, J. T. Creed, N. Maeda, M. F. Hughes, and D. J. Thomas. 2009. Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chemical Research in Toxicology 22:1713–20. doi:10.1021/tx900179r.
  • Egdal, R. K., G. Raber, A. D. Bond, M. Hussain, M. P. Espino, K. A. Francesconi, and C. J. McKenzie. 2009. Selective recognition and binding of arsenate over phosphate. Dalton Transactions 44:9718–21. doi:10.1039/b918143c.
  • Engstrom, K., B. Nermell, G. Concha, U. Stromberg, M. Vahter, and K. Broberg. 2009. Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutation Research 667:4–14. doi:10.1016/j.mrfmmm.2008.07.003.
  • Engstrom, K., M. Vahter, S. J. Mlakar, G. Concha, B. Nermell, R. Raqib, A. Cardozo, and K. Broberg. 2011. Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism. Environmental Health Perspectives 119:182–88. doi:10.1289/ehp.1002471.
  • Ferreccio, C., A. H. Smith, V. Duran, T. Barlaro, H. Benitez, R. Valdes, J. J. Aquirre, L. E. Moore, J. Acevedo, M. I. Vasquez, L. Perez, Y. Yuan, J. Liaw, K. P. Cantor, and C. Steinmaus. 2013. Case-control study of arsenic in drinking water and kidney cancer in uniquely exposed Northern Chile. American Journal of Epidemiology 178:813–18. doi:10.1093/aje/kwt059.
  • Finney, D. J. 1978. Statistical methods in biological assay, 3rd ed. London, UK: Charles Griffin and Co.
  • Fowler, B. A., C. H. Selene, R. J. Chou, D. L. Jones, W. Sullivan Jr, and C. J. Chen. 2015. Chapter 28 – Arsenic. In Handbook on the toxicology of metals, 4th, 581–624. San Diego: Academic Press. http://www.sciencedirect.com/science/article/pii/B9780444594532000287.
  • Freeman, G. B., J. D. Johnson, J. M. Killinger, S. C. Liao, A. O. Davis, M. V. Ruby, R. L. Chaney, S. C. Lovre, and P. D. Bergstrom. 1993. Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits. Fundamentals Applications Toxicogical 21:83–88. doi:10.1006/faat.1993.1075.
  • Freeman, G. B., R. A. Schoof, M. V. Ruby, A. O. Davis, J. A. Dill, S. C. Liao, C. A. Lapin, and P. D. Bergstrom. 1995. Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys. Fundamentals Applications Toxicogical 28:215–22. doi:10.1006/faat.1995.1162.
  • Fuller, C. C., J. A. Davis, and G. A. Waychunas. 1993. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochimica Et Cosmochimica Acta 57:2271–82. doi:10.1016/0016-7037(93)90568-H.
  • Fullmer, C. S., and R. H. Wasserman. 1985. Intestinal absorption of arsenate in the chick. Environmental Research 36:206–17. doi:10.1016/0013-9351(85)90018-0.
  • Girouard, E., and G. J. Zagury. 2009. Arsenic bioaccessibility in CCA-contaminated soil: Influence of soil properties, arsenic fractionation and particle size fraction. The Science of the Total Environment 407:2576–85. doi:10.1016/j.scitotenv.2008.12.019.
  • Gonzalez, M. J., M. V. Aguilar, and M. C. Martinez. 1997. Mechanisms of absorption of As2O5 from rat small intestine: The effect of different parameters. Journal Trace Elements Medica Biologic 11:239–47. doi:10.1016/S0946-672X(97)80019-3.
  • Gonzalez, M. J., M. V. Aguilar, and M. C. Martinez Para. 1995. Gastrointestinal absorption of inorganic arsenic (V): The effect of concentration and interactions with phosphate and dichromate. Veterinary and Human Toxicology 37:131–36.
  • Grandjean, P., P. Weihe, L. L. Needham, V. W. Burse, D. G. Patterson Jr., E. J. Sampson, P. J. Jorgensen, and M. Vahter. 1995. Relation of a seafood diet to mercury, selenium, arsenic, and polychlorinated biphenyl and other organochlorine concentrations in human milk. Environmental Research 71:29–38. doi:10.1006/enrs.1995.1064.
  • Hamel, S. C., B. Buckley, and P. J. Lioy. 1998. Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid. Environmental Science & Technology 32:358–62. doi:10.1021/es9701422.
  • Harari, F., K. Engstrom, G. Concha, G. Colque, M. Vahter, and K. Broberg. 2013. N-6-adenine-specific DNA methyltransferase 1 (N6AMT1) polymorphisms and arsenic methylation in Andean women. Environmental Health Perspectives 121:797–803. doi:10.1289/ehp.1206003.
  • Hayakawa, T., Y. Kobayashi, X. Cui, and S. Hirano. 2005. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Archives of Toxicology 79:183–91. doi:10.1007/s00204-004-0620-x.
  • Hollins, J. G., S. M. Charbonneau, F. Bryce, J. M. Ridgeway, G. K. H. Tam, and R. F. Willes. 1979. Whole body retention and excretion of [74As] arsenic acid in the adult beagle dog. Toxicology Letters 4:7–13. doi:10.1016/0378-4274(79)90023-7.
  • IARC (International Agency for Research on Cancer). 2012. A review of human carcinogens. In Arsenic and arsenic compounds. Monographs 100c (mono100C-6). Lyon, FR: International Agency for Research on Cancer.
  • Juhasz, A. L., P. Herde, C. Herde, J. Boland, and E. Smith. 2015. Predicting arsenic relative bioavailability using multiple in vitro assays: Validation of in vivo-in vitro correlations. Environmental Science & Technology 49:11167–75. doi:10.1021/acs.est.5b02508.
  • Juhasz, A. L., E. Smith, C. Nelson, D. Thomas, and K. Bradham. 2014. Variability associated with as in vivo-in vitro correlations when using different bioaccessibility methodologies. Environmental Science & Technology 48:11646–53. doi:10.1021/es502751z.
  • Juhasz, A. L., E. Smith, J. Weber, R. Naidu, M. Rees, A. Rofe, T. Kuchel, and L. Sansom. 2008. Effect of ageing on in vivo arsenic bioavailability in two dissimilar soils. Chemosphere 71:2180–86. doi:10.1016/j.chemosphere.2007.12.022.
  • Juhasz, A. L., E. Smith, J. Weber, R. Naidu, M. Rees, A. Rofe, T. Kuchel, and L. Sansom. 2009. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo arsenic relative bioavailability in contaminated soils. Environmental Science & Technology 43:9887–94. doi:10.1021/es902427y.
  • Juhasz, A. L., E. Smith, J. Weber, R. Naidu, M. Rees, A. Rofe, T. Kuchel, L. Sansom, and R. Naidu. 2007a. In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere 69:69–78. doi:10.1016/j.chemosphere.2007.04.046.
  • Juhasz, A. L., E. Smith, J. Weber, R. Naidu, M. Rees, A. Rofe, T. Kuchel, L. Sansom, and R. Naidu. 2007b. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere 69:961–66. doi:10.1016/j.chemosphere.2007.05.018.
  • Juhasz, A. L., E. Smith, J. Weber, M. Rees, A. Rofe, T. Kuchel, L. Sansom, and R. Nadu. 2006. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environment Health Perspectives 114:1826–31
  • Juhasz, A. L., J. Weber, and E. Smith. 2011. Influence of saliva, gastric and intestinal phases on the prediction of as relative bioavailability using the unified bioaccessibility research group of Europe method. Journal of Hazardous Materials 197:161–68. doi:10.1016/j.jhazmat.2011.09.068.
  • Kabata-Pendias, A. 1984. Trace elements in soils and plants. Boca Raton, FL: CRC Press, Inc.
  • Kala, S. V., G. Kala, C. I. Prater, A. C. Sortorelli, and M. W. Lieberman. 2004. Formaiton and urinary excretion of arsenic triglutathione and methyarsenic glutathione. Chemical Research in Toxicology 17:243–49. doi:10.1021/tx0342060.
  • Kala, S. V., M. W. Neely, G. Kala, C. I. Prater, D. W. Atwood, J. S. Rice, and M. W. Lieberman. 2000. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. The Journal of Biological Chemistry 275:33404–08. doi:10.1074/jbc.M007030200.
  • Kelley, M. E., S. E. Brauning, R. A. Schoof, and M. V. Ruby. 2002. Assessing oral bioavailability of metals in soil. Columbus, OH: Battelle Press.
  • Koch, I., K. J. Reimer, M. I. Bakker, N. T. Basta, M. R. Cave, S. Denys, M. Dodd, B. A. Hale, R. Irwin, Y. W. Lowney, M. M. Moore, V. Paquin, P. E. Rasmussen, T. Repaso-Subang, G. L. Stephenson, S. D. Siciliano, J. Wragg, and G. L. Zagury. 2013. Variability of bioaccessibility results using seventeen different methods on a standard reference material, NIST 2710. Journal Environment Sciences Health Particle A 48:641–55. doi:10.1080/10934529.2013.731817.
  • Koyama, Y., T. Yamamoto, T. Tani, K. Nihei, D. Kondo, H. Funaki, E. Yaoita, K. Kawasaki, N. Sato, K. Hatakeyama, and I. Kihara. 1999. Expression and localization of aquaporins in rat gastrointestinal tract. The American Journal of Physiology 276:C621–C627. doi:10.1152/ajpcell.1999.276.3.C621.
  • Kubachka, K. M., M. C. Kohan, K. Herbin-Davis, J. T. Creed, and D. J. Thomas. 2009. Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS. Toxicology and Applied Pharmacology 239:137–43. doi:10.1016/j.taap.2008.12.008.
  • Laird, B. D., D. Peak, and S. Siciliano. 2011. Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant. Environmental Science & Technology 45:4139–44. doi:10.1021/es103710a.
  • Laird, B. D., B. Weiseth, S. R. Packull-McCormick, D. Peak, M. Dodd, and S. D. Siciliano. 2015. Solid-liquid separation method governs the in vitro bioaccessibility of metals in contaminated soil-like materials. Chemosphere 134:544–49. doi:10.1016/j.chemosphere.2014.12.019.
  • Lanphear, B. P., T. D. Matte, J. Rogers, R. P. Clickner, B. Dietz, R. L. Bornschein, P. Succop, K. R. Mahaffey, S. Dixon, W. Galke, M. Rabinowitz, M. Farfel, C. Rohde, J. Schwartz, P. Ashley, and D. E. Jacobs. 1998. The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels. A pooled analysis of 12 epidemiologic studies. Environmental Research 79:51–68. doi:10.1006/enrs.1998.3859.
  • Lansche, A. M. 1965. Bureau of mines, bulletin 630, 75. Washington, DC: U.S. Department of the Interior.
  • Lee, C., Y. M. Lee, and R. H. Rice. 2005a. Human epidermal cell protein responses to arsenite treatment in culture. Chemico-Biological Interactions 155:43–54. doi:10.1016/j.cbi.2005.04.004.
  • Lee, P. C., I. C. Ho, and T. C. Lee. 2005b. Oxidative stress mediates sodium arsenite-induced expression of heme oxygenase-1, monocyte chemoattractant protein-1, and interleukin-6 in vascular smooth muscle cells. Toxicological Sciences 85:541–50. doi:10.1093/toxsci/kfi101.
  • Li, H.-B., J. Li, A. L. Juhasz, and L. Q. Ma. 2014. Correlation of in vitro bioaccessibility to in vivo relative bioavailability for arsenic in household dust and its implication for human exposure assessment. Environmental Science & Technology 48:13652–13569. doi:10.1021/es5037354.
  • Li, H.-B., J. Li, A. L. Juhasz, and L. Q. Ma. 2015a. Comparison of arsenic bioaccessibility in housedust and contaminated soil based on four assays. The Science of the Total Environment 532:803–11. doi:10.1016/j.scitotenv.2015.06.060.
  • Li, J., C. Li, H.-J. Sun, A. L. Juhasz, J. Luo, H.-B. Li, and L. Q. Ma. 2016. Arsenic relative bioavailability in contaminated soils: Comparison of animal models, dosing schemes, and biological endpoints. Environmental Science & Technology 50:453–61. doi:10.1021/acs.est.5b04552.
  • Li, J., K. Li, X.-Y. Cui, N. T. Basta, L.-P. Li, H.-B. Li, and L. Q. Ma. 2015c. In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils: Method comparison and method development. The Science of the Total Environment 532:812–20. doi:10.1016/j.scitotenv.2015.05.113.
  • Li, S.-W., J. Li, H.-B. Li, R. Naidu, and L. Q. Ma. 2015b. Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO3 extraction. Journal of Hazardous Materials 295:145–52. doi:10.1016/j.jhazmat.2015.04.011.
  • Lin, Z., and R. W. Puls. 2000. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environment Geological 39:753–59. doi:10.1007/s002540050490.
  • Lindsay, W. L. 1979. Chemical equilibria in soils. New York, New York: John Wiley & Sons.
  • Liu, Z. 2010. Roles of vertebrate aquaglyceroporins in arsenic transport and detoxification. Advances in Experimental Medicine and Biology 679:71–81.
  • Ljung, K., O. Selinus, E. Otabbong, and M. Berglund. 2006. Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applications Geochemistry 21:1613–24. doi:10.1016/j.apgeochem.2006.05.005.
  • Lombi, E., G. M. Hettiarachchi, and K. G. Scheckel. 2011. Advanced in situ spectroscopic techniques and their applications in environmental biogeochemistry: Introduction to the special section. Journal of Environment Quality 40:659–66. doi:10.2134/jeq2010.0542.
  • Lombi, E., W. W. Wenzel, and R. S. Sletten. 1999. Arsenic adsorption by soils and iron-oxide-coated sand: Kinetics and reversibility. Journal Plant Nutritional Soil Sci-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 162:451–56. doi:10.1002/(SICI)1522-2624(199908)162:4<451::AID-JPLN451>3.0.CO;2-B.
  • Lu, Y., W. Yin, L. Huang, G. Zhang, and Y. Zhao. 2011. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soil of Guangzhou City, China. Environmental Geochemistry and Health 33:93–102. doi:10.1007/s10653-010-9324-8.
  • Madden, E. F., M. Akkerman, and B. A. Fowler. 2002. A comparison of 60, 70, and 90 kDa stress protein expression in normal rat NRK-52 and human HK-2 kidney cell lines following in vitro exposure to arsenite and cadmium alone or in combination. Journal of Biochemical and Molecular Toxicology 16:24–32. doi:10.1002/(ISSN)1099-0461.
  • Malagelada, J. R., G. G. Lonstreth, W. H. J. Summerskill, and V. L. W. Go. 1976. Measurement of gastric functions during digestion of ordinary solid meals in man. Gastroenterology 70:203–10.
  • Mandal, B. K., and K. T. Suzuki. 2002. Arsenic round the world: A review. Talanta 58:201–35. doi:10.1016/S0039-9140(02)00268-0.
  • Marcos, R., V. Martinez, A. Hernandez, A. Creus, C. Sekaran, H. Tokunaga, and D. Quinteros. 2006. Metabolic profile in workers occupationally exposed to arsenic: Role of GST polymorphisms. Journal of Occupational and Environmental Medicine 48:334–41. doi:10.1097/01.jom.0000194149.17574.3c.
  • Mello, J., W. Roy, J. Talbott, and J. Stucki. 2006. Mineralogy and arsenic mobility in arsenic-rich Brazilian soils and sediments. Journal Soils Sediments 6:9–19. doi:10.1065/jss2005.09.144.
  • Mercer, K. L., and J. E. Tobiason. 2008. Removal of arsenic from high ionic strength solutions: Effects of ionic strength, pH and preformed versus in situ formed HFO. Environmental Science & Technology 42:3797–802. doi:10.1021/es702946s.
  • Meunier, L., I. Koch, and K. J. Reimer. 2011. Effects of dissoluiton kinetcs on bioaccessible arsenic from tailings and soil. Chemosphere 84:1378–85. doi:10.1016/j.chemosphere.2011.05.019.
  • Meunier, L., J. Wragg, I. Koch, and K. J. Reimer. 2010. Method variables affecting the bioaccessibility of arsenic in soil. Journal Environment Sciences Health A Toxic Hazardous Substances Environment Engineering 45:517–26. doi:10.1080/10934521003594863.
  • Mikutta, C., P. N. Mandaliev, N. Mahler, T. Kotsev, and R. Kretzschmar. 2014. Bioaccessibility of arsenic in mining-impacted circumneutral river floodplain soils. Environmental Science & Technology 48:13468–77. doi:10.1021/es502635t.
  • Montperrus, M., Y. Bohari, M. Bueno, A. Astruc, and M. Astruc. 2002. Comparison of extraction procedures for arsenic speciation in environmental solid reference materials by high performance liquid chromatography-hydride generation-atomic fluorescence spectroscopy. Applications Organomet Chemical 16:347–54. doi:10.1002/aoc.311.
  • Moreno-Jiménez, E., E. Esteban, and J. Peñalosa. 2012. The fate of arsenic in soil-plant systems. In Reviews of environmental contamination and toxicology, ed. D. M. Whitacre, Vol. 215, 1–37. New York: Springer.
  • Mukhopadhyay, R., H. Bhattacharjee, and B. P. Rosen. 2014. Aquaglyceroporins: Generalized metalloid channels. Biochimica Et Biophysica Acta 1840:1583–91. doi:10.1016/j.bbagen.2013.11.021.
  • Naujokas, M. F., B. Anderson, H. Ahsan, H. V. Aposhian, J. H. Graziano, C. Thompson, and W. A. Suk. 2013. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environmental Health Perspectives 121:295–302. doi:10.1289/ehp.1205875.
  • Nelson, C. M., K. Li, D. R. Obenour, J. Miller, J. C. Misenheimer, K. Schekel, A. Betts, A. Juhasz, D. J. Thomas, and K. D. Bradham. 2018. Relating soil geochemical properties to arsenic bioaccessibility through hierarchial modelling. Journal of Toxicology and Environmental Health. Part A 81:160–72. doi:10.1080/15287394.2018.1423798.
  • NRC (National Research Council). 2003. Bioavailability of contaminants in soils and sediments. Processes, tools and applications. Washington DC: The National Academies Press.
  • Nriagu, J. O., and J. M. Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–39. doi:10.1038/333134a0.
  • Oomen, A. G., C. J. M. Rompelberg, M. A. Bruil, C. J. G. Dobbe, D. P. K. H. Pereboon, and A. J. A. M. Sips. 2003. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology 44:281–87. doi:10.1007/s00244-002-1278-0.
  • Peryea, F. J. 1999. Gardening on lead- and arsenic-contaminated soils. EB 1884. Cooperative extension, Washington State University. Accessed January 20, 2017. http://www.ecy.wa.gov/programs/tcp/area_wide/AW/AppK_gardening_guide.pdf.
  • Pinyayev, T. S., M. J. Kohan, K. Herbin-Davis, J. T. Creed, and D. J. Thomas. 2011. Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. Chemical Research in Toxicology 24:475–77. doi:10.1021/tx200040w.
  • Pomroy, C., S. M. Charbonneau, R. S. McCullough, and G. K. Tam. 1980. Human retention studies with 74As. Toxicology and Applied Pharmacology 53:550–56. doi:10.1016/0041-008X(80)90368-3.
  • Porter, K. E., A. Basu, A. E. Hubbard, M. N. Bates, D. Kalman, O. Rey, A. Smith, M. T. Smith, C. Steinmaus, and C. F. Skibola. 2010. Association of genetic variation in cystathionine-β-synthase and arsenic metabolism. . Environmental Research 110:580–87. doi:10.1016/j.envres.2010.05.001.
  • Porter, S. K., K. G. Scheckel, C. A. Impellitteri, and J. A. Ryan. 2004. Toxic metals in the environment: Thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Critical Reviews in Environmental Science and Technology 34:495–604. doi:10.1080/10643380490492412.
  • Rees, M., L. Sansom, A. Rofe, A. L. Juhasz, E. Smith, J. Weber, R. Naidu, and T. Kuchel. 2009. Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices. Environmental Geochemistry and Health 31:167–77. doi:10.1007/s10653-008-9237-y.
  • Roberts, S. M., J. W. Munson, Y. W. Lowney, and M. V. Ruby. 2007. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey. Toxicological Sciences 95:281–88. doi:10.1093/toxsci/kfl117.
  • Roberts, S. M., W. R. Weimar, J. R. Vinson, J. W. Munson, and R. J. Bergeron. 2002. Measurement of arsenic bioavailability in soil using a primate model. Toxicological Sciences 67:303–10. doi:10.1093/toxsci/67.2.303.
  • Rodrigues, E. G., M. Kile, E. Hoffman, Q. Quamruzzaman, M. Rahman, G. Mahiuddin, Y. Hsueh, and D. C. Christiani. 2012. GSTO and AS3MT genetic polymorphisms and differences in urinary arsenic concentrations among residents in Bangladesh. Biomarkers 17:240–47. doi:10.3109/1354750X.2012.658863.
  • Rodriguez, R. R., N. T. Basta, S. W. Casteel, F. P. Armstrong, and D. C. Ward. 2003. Chemical extraction methods to assess bioavailable As in contaminated soil and solid media. Journal of Environment Quality 32:876–84. doi:10.2134/jeq2003.8760.
  • Rodriguez, R. R., N. T. Basta, S. W. Casteel, and L. W. Pace. 1999. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science & Technology 33:642–49. doi:10.1021/es980631h.
  • Rosen, B. P., and Z. Liu. 2009. Transport pathways for arsenic and selenium: A minireview. Environment International 35:512–15. doi:10.1016/j.envint.2008.07.023.
  • Rossi, M. R., S. Somji, S. H. Garrett, M. A. Sens, J. Nath, and D. A. Sens. 2002. Expression of hsp 27, hsp 60, hsc 70, and hsp 70 stress response genes in cultured human urothelial cells (UROtsa) exposed to lethal and sublethal concentrations of sodium arsenite. Environmental Health Perspectives 110:1225–32. doi:10.1289/ehp.021101225.
  • Rossman, T. G. 2003. Mechanism of arsenic carcinogenesis: An integrated approach. Mutation Research 533:37–65. doi:10.1016/j.mrfmmm.2003.07.009.
  • Ruby, M. V., A. Davis, R. Schoof, S. Eberle, and C. M. Sellstone. 1996. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology 30:422–30. doi:10.1021/es950057z.
  • Sabbagh, Y., H. Giral, Y. Caldas, M. Levi, and S. C. Schiavi. 2011. Intestinal phosphate transport. Advances in Chronic Kidney Disease 18:85–90. doi:10.1053/j.ackd.2010.11.004.
  • Sadiq, M. 1997. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–36. doi:10.1007/BF02404751.
  • Saint-Jacques, N., L. Parker, P. Brown, and T. J. Dummer. 2014. Arsenic in drinking water and urinary tract cancers: A systematic review of 30 years of epidemiological evidence. Environment Health 2:13–44.
  • Salnikow, K., and A. Zhitkovich. 2008. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chemical Research in Toxicology 21:28–44. doi:10.1021/tx700198a.
  • Scheckel, K. G., R. L. Chaney, N. T. Basta, and J. A. Ryan. 2009. Advances in assessing bioavailability of metal(loid)s in contaminated soils. Advances in Agronomy, Academic Press. 104:1–52.
  • Scheckel, K. G., G. L. Diamond, M. F. Burgess, J. M. Klotzbach, M. Maddaloni, B. W. Miller, C. R. Partridge, and S. M. Serda. 2013. Amending soils with phosphate as means to mitigate soil lead hazard: A critical review of the state of the science. Journal Toxicogical Environment Health B 16:337–80. doi:10.1080/10937404.2013.825216.
  • Schroder, B., and G. Breves. 1996. Mechanisms of phosphate uptake into brush-border membrane vesicles from goat jejunum. Journal Comparative Physiological B 166:230–40. doi:10.1007/BF00263987.
  • Sen, B., A. Wang, S. D. Hester, J. L. Robertson, and D. C. Wolf. 2005. Gene expression profiling of responses to dimethylarsinic acid in female F344 rat urothelium. Toxicology 215:214–26. doi:10.1016/j.tox.2005.07.008.
  • Shen, S., X. Li, W. R. Cullen, M. Weinfeld, and X. C. Le. 2013. Arsenic binding to proteins. Chemical Reviews 113:7769–92. doi:10.1021/cr300015c.
  • Sherwood, C. L., R. C. Lantz, J. L. Burgess, and S. Boitano. 2011. Arsenic alters ATP-dependent Ca(2)+ signaling in human airway epithelial cell wound response. Toxicological Sciences 121:191–206. doi:10.1093/toxsci/kfr044.
  • Shinkai, Y., D. Sumi, T. Toyama, T. Kaji, and Y. Kumagai. 2009. Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes. Toxicology and Applied Pharmacology 237:232–36. doi:10.1016/j.taap.2009.03.014.
  • Smedley, P. L., and D. G. Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17:517–68. doi:10.1016/S0883-2927(02)00018-5.
  • Smedley, P. L., and D. G. Kinniburgh. 2005. Arsenic in groundwater and the environment. In Essentials of medical geology, ed. O. Selinus, 263–99. Amsterdam: Elsevier.
  • Smith, E., R. Naidu, A. M. Alston, and L. S. Donald. 1998. Arsenic in the soil environment: A review. Advances in Agronomy, Academic Press. 64:149–95.
  • Smith, E., J. Weber, and A. L. Juhasz. 2009. Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils. Environmental Geochemistry and Health 31 (Suppl 1):85–92. doi:10.1007/s10653-009-9249-2.
  • Somogyi, A., and H. Beck. 1993. Nurturing and breast-feeding: Exposure to chemicals in breast milk. Environmental Health Perspectives 101 (Suppl 2):45–52. doi:10.1289/ehp.93101s245.
  • Stanek, E. J., E. J. Calabrese, R. M. Barnes, J. M. C. Danku, Y. Zhou, P. T. Kostecki, and E. Zillioux. 2010. Bioavailability of arsenic in soil: Pilot study results and design considerations. Human & Experimental Toxicology 29:945–60. doi:10.1177/0960327110363860.
  • States, J. C. 2016. Arsenic: Exposure sources, health risks, and mechanisms of toxicity. Hoboken, New Jersey: Wiley.
  • Strategic Environmental Research and Development Program (SERDP) 2016 ER-1742. Mechanisms and permanence of sequestered Pb and As in soils: Impact on human bioavailability. https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Risk-Assessment/ER-1742
  • Succop, P., R. Bornschein, K. Brown, and C. Y. Tseng. 1998. An empirical comparison of lead exposure pathway models. Environmental Health Perspectives 106 (Suppl 6):1577–83. doi:10.1289/ehp.98106s61577.
  • Tam, G. K., S. M. Charbonneau, F. Bryce, C. Pomroy, and E. Sandi. 1979. Metabolism of inorganic arsenic (74As) in humans following oral ingestion. Toxicology and Applied Pharmacology 50:319–22. doi:10.1016/0041-008X(79)90157-1.
  • Tam, K. H., S. M. Charbonneau, F. A. Bryce, and G. Lacroix. 1978. Separation of arsenic metabolites in dog plasma and urine following intravenous injection of 74As. Analytical Biochemistry 86:505–11. doi:10.1016/0003-2697(78)90775-3.
  • Tellez-Plaza, M., M. O. Gribble, V. S. Voruganti, K. A. Francesconi, W. Goessler, J. G. Umans, E. K. Silbergeld, E. Guallar, N. Franceschini, K. E. North, W. H. Kao, J. W. MacCluer, S. A. Cole, and A. Navas-Acien. 2013. Heritability and preliminary genome-wide linkage analysis of arsenic metabolites in urine. Environmental Health Perspectives 121:345–51. doi:10.1289/ehp.1205305.
  • Thomas, D. J. 2009. Unraveling arsenic – glutathioe connections. Toxicological Sciences 107:309–11. doi:10.1093/toxsci/kfn257.
  • Thomas, D. J. 2015. The chemistry and metabolism of arsenic. In Arsenic: Exposure sources, health risks and mechanisms of toxicity, ed J. C. States, 149–201. Hoboken, NJ: Wileys.
  • Thomas, D. J., J. Li, S. B. Waters, W. Xing, B. M. Adair, Z. Drobna, V. Devesa, and M. Styblo. 2007. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Experimental Biology and Medicine (Maywood) 232:3–13.
  • Thompson, W. T. 1973. Agricultural chemicals book 1, insecticides. Washington, DC: Thompson Publication.
  • Tsou, T. C., F. Y. Tsai, Y. W. Hsieh, L. A. Li, S. C. Yeh, and L. W. Chang. 2005. Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicology and Applied Pharmacology 208:277–84. doi:10.1016/j.taap.2005.03.001.
  • U.S. Department of Agriculture. 1970. The pesticides review, 46. Washington, DC: U.S. Department of Agriculture.
  • U.S. Department of Agriculture. 1974. Wood preservatives. The pesticide review. Washington, DC: 21.
  • U.S. Environmental Protection Agency. 2007a. Framework for metals risk assessment. U.S. Environmental Protection Agency, Office of the Science Advisor: Washington, DC. EPA 120/R-07/001. Accessed. http://www.epa.gov/raf/metalsframework/pdfs/metals-risk-assessment-final.pdf.
  • U.S. Environmental Protection Agency. 2007b. Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. OSWER 9285. 7-80. Accessed. http://www.epa.gov/superfund/health/contaminants/bioavailability/bio_guidance.pdf.
  • U.S. Environmental Protection Agency. 2010. Relative bioavailability of arsenic in soils at 11 hazardous waste sites using in vivo juvenile swine. OSWER 9200. 0-76. June 2010. Accessed January 26, 2016. http://semspub.epa.gov/src/document/HQ/175341 and http://semspub.epa.gov/src/document/HQ/175340 (Appendix A).
  • U.S. Environmental Protection Agency. 2012. Compilation and review of data on relative bioavailability of arsenic in soil, 1–113. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. OSWER 9200. http://www.epa.gov/superfund/health/contaminants/bioavailability/guidance.htm.
  • U.S. Environmental Protection Agency. 2016. Arsenic, inorganic (CASRN 7440-38-2). Integrated Risk Information System (IRIS). Accessed July 15, 2016. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0278_summary.pdf#nameddest=rfd.
  • Vahter, M. 1981. Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environmental Research 25:286–93. doi:10.1016/0013-9351(81)90030-X.
  • Vahter, M., and E. Marafante. 1985. Reduction and binding of arsenate in marmoset monkeys. Archives of Toxicology 57:119–24. doi:10.1007/BF00343121.
  • Vahter, M., E. Marafante, and L. Dencker. 1984. Tissue distribution and retention of 74As-dimethylarsinic acid in mice and rats. Archives of Environmental Contamination and Toxicology 13:259–64. doi:10.1007/BF01055275.
  • Van De Wiele, T. R., A. G. Oomen, J. Wragg, M. Cave, M. Minekus, A. Hack, C. Cornelis, C. J. M. Rompelberg, L. L. de Zwart, B. Klinck, J. van Wijen, W. Verstraete, and A. J. A. M. Sips. 2007. Comparison of five in vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract. Journal of Environmental Science and Health, Part A 42:1203–11. doi:10.1080/10934520701434919.
  • Villa-Bellosta, R., and V. Sorribas. 2008. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicology and Applied Pharmacology 232:125–34. doi:10.1016/j.taap.2008.05.026.
  • Villa-Bellosta, R., and V. Sorribas. 2010. Arsenate transport by sodium/phosphate cotransporter type IIb. Toxicology and Applied Pharmacology 247:36–40. doi:10.1016/j.taap.2010.05.012.
  • Wai, K.-M., S. Wu, X. Li, D. A. Jaffe, and K. D. Perry. 2016. Perry global atmospheric transport and source-receptor relationships for arsenic. Environmental Science & Technology 50:3714–20. doi:10.1021/acs.est.5b05549.
  • Wang, Q. Q., D. J. Thomas, and H. Naranmandura. 2015. Importance of being thiomethylated: Formation, fate, and effects of methylated thioarsenicals. Chemical Research in Toxicology 28:281–89. doi:10.1021/tx500464t.
  • Wasserman, R. H., and A. N. Taylor. 1973. Intestinal absorption of phosphate in the chick: Effect of vitamin D and other parameters. The Journal of Nutrition 103:586–99. doi:10.1093/jn/103.4.586.
  • Waychunas, G. A., B. A. Rea, C. C. Fuller, and J. A. Davis. 1993. Surface chemistry of ferrihydrite: Part 1. EXAFs studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica Et Cosmochimica Acta 57:2251–69. doi:10.1016/0016-7037(93)90567-G.
  • Weng, L., W. H. Van Riemsdijk, and T. Hiemstra. 2009. Effects of fulvic and humic acids on arsenate adsorption to goethite: Experiments and modeling. Environmental Science & Technology 43:7198–204. doi:10.1021/es9000196.
  • Wenzel, W. W., N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi, and D. C. Adriano. 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta 436:309–23. doi:10.1016/S0003-2670(01)00924-2.
  • Whitacre, S., N. Basta, B. Stevens, V. Hanley, R. Anderson, and K. Scheckel. 2017. Modification of an existing in vitro method to predict relative bioavailability. Chemosphere 180:545–52. doi:10.1016/j.chemosphere.2017.03.134.
  • Whitacre, S. D., N. T. Basta, and E. A. Dayton. 2013. Bioaccessible and non-bioaccessible fractions of soil arsenic. Journal of Environmental Science and Health, Part A 48:620–28. doi:10.1080/10934529.2013.731804.
  • WHO (World Health Organization). 2012. Arsenic in drinking water. Background document for development of WHO guidelines for drinking-water quality. Geneva, CH: World Health Organization. WHO/SDE/WSH03.04/75.rev1.
  • Wittsiepe, J., B. Erlenkamper, P. Welge, A. Hack, and M. Wilhelm. 2007. Bioavailability of PCDD/F from contaminated soil in young Goettingen mini-pigs. Chemosphere 67:S355–S364. doi:10.1016/j.chemosphere.2006.05.129.
  • Woolson, E. A. 1975. Bioaccumulation of arsenicals. In Arsenical pesticides, ed. E. A. Woolson. Washington, D.C.: American Chemical Society.
  • Wragg, J., M. Cave, N. Basta, E. Brandon, S. Casteel, and S. Denys. 2011. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. The Science of the Total Environment 409:4016–30.
  • Wu, W., L. M. Graves, I. Jaspers, R. B. Devlin, W. Reed, and J. M. Samet. 1999. Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. The American Journal of Physiology 277:L924–L931.
  • Wu, W., I. Jaspers, W. Zhang, L. M. Graves, and J. M. Samet. 2002. Role of Ras in metal-induced EGF receptor signaling and NF-kappaB activation in human airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology 282:L1040–L1048. doi:10.1152/ajplung.00390.2001.
  • Yang, H. C., H. L. Fu, Y. F. Lin, and B. P. Rosen. 2012. Pathways of arsenic uptake and efflux. Current Topics Membrane 69:325–58.
  • Yang, J. K., M. O. Barnett, P. M. Jardine, N. T. Basta, and S. W. Casteel. 2002. Adsorption, sequestration, and bioaccessibility of As(V) in soil. Environmental Science & Technology 36:4562–69. doi:10.1021/es011507s.
  • Yang, J. K., M. O. Barnett, J. Zhuang, S. E. Fendorf, and P. M. Jardine. 2005. Adsorption, oxidation, and bioaccessibility of As(III) in soil. Environmental Science & Technology 39:7102–10. doi:10.1021/es0481474.
  • Zhang, H., H. M. Selim, and L. S. Donald. 2008. Reaction and transport of arsenic in soils: Equilibrium and kinetic modeling. Advances in Agronomy, Academic Press. 98:45–115.
  • Zhou, X., X. Sun, K. L. Cooper, F. Wang, K. J. Liu, and L. G. Hudson. 2011. Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. The Journal of Biological Chemistry 286:22855–63. doi:10.1074/jbc.M111.232926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.