274
Views
14
CrossRef citations to date
0
Altmetric
Reviews

The cationic (calcium and lead) and enzyme conundrum

&

References

  • Abramson, J. J., and G. Salama. 1989. Critical sulfhydryls regulate calcium release from sarcoplasmic reticulum. J. Bioenerg. Biomembr. 21:283–94.
  • Altman, A., and K.-F. Kong. 2016. Protein kinase C enzymes and the hematopoietic and immune systems. Annu. Rev. Immunol. 14:511–38. doi:10.1146/annurev-immunol-041015-055347.
  • Alzamore, R., and B. J. Harvey. 2008. Direct binding and activation of protein kinase C isoforms by steroid hormones. Steroids 73:885–88. doi:10.1016/j.steroids.2008.01.001.
  • Atkins, D. S., M. R. Basha, and N. H. Zawia. 2003. Intracellular signaling pathways involved in mediating the effects of lead on the transcription factor Sp1. Int. J. Dev. Neurosci. 21:235–44.
  • Belloni-Olivi, L., M. Annadata, G. W. Goldstein, and J. P. Bressler. 1996. Phosphorylation of membrane proteins in erythrocytes treated with lead. Biochem. J. 315:401–06.
  • Bressler, J. P., and G. W. Goldstein. 1991. Mechanisms of lead neurotoxicity. Biochem. Pharmacol. 41:479–84.
  • Bressler, J. P., S. Forman, and G. W. Goldstein. 1994. Phospholipid metabolism in neural microvascular endothelial cells after exposure to lead. Toxicol. Appl. Pharmacol. 126:352–60. doi:10.1006/taap.1994.1126.
  • Browning, M. D., and E. M. Dudek. 1992. Activators of protein kinase C increase the phosphorylation of the synapsins at sites phosphorylated by cAMP-dependent and Ca2+/calmodulin-dependent protein kinases in the rat hippocampal slice. Synapse 10:62–70. doi:10.1002/syn.890100109.
  • Callender, J.A., and A.C. Newton. 2017. Conventional protein kinase c in the brain: 40 years later. doi: 10.1042/NS20160005.
  • Chen, H. H., T. Ma, A. S. Hume, and I. K. Ho. 1998. Developmental lead exposure alters the distribution of protein kinase C activity in the rat hippocampus. Biomed. Environ. Sci. 11:61–69.
  • Consentino-Gomes, D., N. Rocco-Machado, and J.R. Meyer-Fernandes. 2012. Cell signaling through protein kinase c oxidation and activation. International Journal Of Molecular Sciences 13:10697–10721.
  • Cordova, F. M., A. L. S. Rodrigues, M. B. O. Giacomelli, C. S. Oliveira, T. Posser, P. R. Dunkley, and R. B. Leal. 2004. Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res. 998:65–72.
  • Cremin, J. D., and D. R. Smith. 2002. In vitro vs in vivo Pb effects on brain protein kinase C activity. Environ. Res. 90:191–99.
  • Deng, W., and R. D. Poretz. 2002. Protein kinase C activation is required for the lead-induced inhibition of proliferation and differentiation of cultured oligodendroglial progenitor cells. Brain Res. 929:87–95.
  • Flohe, S. B., J. Bruggermann, C. Herder, C. Goebel, and H. Kolb. 2002. Enhanced proinflammatory response to endotoxin after priming of macrophages with lead ions. J. Leukoc. Biol. 71:417–24.
  • Fracasso, M. E., L. Perbellini, S. Solda, G. Talamini, and P. Franceschetti. 2002. Lead induced DNA strand breaks in lymphocytes of exposed workers: Role of reactive oxygen species and protein kinase C. Mutat. Res. 515:159–69.
  • Freeley, M., D. Kelleher, and A. Long. 2011. Regulation of protein kinase C function by phosphorylation on conserved and non-conserved sites. Cell. Signal. 23:753–62. doi:10.1016/j.cellsig.2010.10.013.
  • Goering, P. L. 1993. Lead-protein interactions as a basis for lead toxicity. Neurotoxicology 14:45–60.
  • Goldstein, G. W. 1993. Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology 14:97–101.
  • Gorkhali, R., K. Huang, M. Kirberger, and J. J. Yang. 2016. Defining roles of Pb2+ in neurotoxicity from a calciomics approach. Metallomics 8:563–78. doi:10.1039/c6mt00038j.
  • Gray, J. P., K. A. Burns, T. L. Leas, G. H. Perdew, and J. P. Vanden Heuvel. 2005. Regulation of peroxisome proliferator-activated receptor α by protein kinase C. Biochemistry 44:10313–21. doi:10.1021/bi050721g.
  • Handlogten, M. E., N. Shiraishi, H. Awata, C. Huang, and R. T. Miller. 2000. Extracellular Ca(2+)-sensing receptor is a promiscuous divalent cation sensor that responds to lead. Am. J. Physiol. Renal Physiol. 279:F1083–F1091. doi:10.1152/ajprenal.2000.279.6.F1083.
  • Hayashi, K., and A. Altman. 2007. Protein kinase c theta (pkcq): a key player in t cell life and death. Pharmacological Research 55:537–544.
  • Hilliard, A., A. Ramash, and N. H. Zawia. 1999. Correlation between lead-induced changes in cerebral ornithine decarboxylase and protein kinase C activities during development and in cultured PC12 cells. Int. J. Dev. Neurosci. 17:777–85.
  • Hwang, K.-Y., B.-K. Lee, J. P. Bressler, K. I. Bolla, W. F. Stewart, and B. S. Schwartz. 2002. Protein kinase C activity and the relations between blood lead and neurobehavioral function in lead workers. Environ. Health Perspect. 110:133–38. doi:10.1289/ehp.02110133.
  • Igumenova, T. I. 2015. Dynamics and membrane interactions of protein kinase C. Biochemistry 54:4953–68. doi:10.1021/acs.biochem.5b00565.
  • Inoue, M., A. Kishimoto, Y. Takai, and Y. Nishizuka. 1977. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and Its Activation by Calcium-dependent Protease from Rat Brain. The Journal Of Biological Chemistry 252:7610–7616.
  • Jadhav, A. L., G. T. Ramesh, and P. G. Gunasekar. 2000. Contribution of protein kinase C and glutamate in Pb(2+)-induced cytotoxicity. Toxicol. Lett. 115:89–98.
  • Kasten-Jolly, J., and D. A. Lawrence. 2017. Sex-specific effects of developmental lead exposure on the immune-neuroendocrine network. Toxicol. Appl. Pharmacol. 234:142–57. doi:10.1016/j.taap.2017.09.009.
  • Kasten-Jolly, J., Y. Heo, and D. A. Lawrence. 2010. Impact of developmental lead exposure on splenic factors. Toxicol. Appl. Pharmacol. 247:105–15. doi:10.1016/j.taap.2010.06.003.
  • Kasten-Jolly, J., Y. Heo, and D. A. Lawrence. 2011. Central nervous system cytokine gene expression: Modulation by lead. J. Biochem. Mol. Toxicol. 25:41–54. doi:10.1002/jbt.20358.
  • Kim, K.-A., T. Chakraborti, G. W. Goldstein, and J. P. Bressler. 2000. Immediate early gene expression in P12 cells exposed to lead: Requirement for protein kinase C. J. Neurochem. 74:1140–46.
  • Kirberger, M., H. C. Wong, J. Jiang, and J. J. Yang. 2013. Metal toxicity and opportunistic binding of Pb2+ in proteins. J. Inorg. Biochem. 125:40–49. doi:10.1016/j.jinorgbio.2013.04.002.
  • Kostial, K., and V. B. Vouk. 1957. Lead ions and synaptic transmission in the superior cervical ganglion of the cat. Br. J. Pharmacol. 12:219–22.
  • Lawrence, D. A. 1981. In vivo and in vitro effects of lead on humoral and cell-mediated immunity. Infect. Immun. 31:136–43.
  • Leal, R. B., S. J. Ribeiro, T. Posser, F. M. Cordova, A. P. Rigon, E. Z. Filho, and A. C. D. Bainy. 2006. Modulation of ERK1/2 and p38MAPK by lead in the cerebellum of Brazilian catfish. Rhamdia Quelen. Aquat. Toxicol. 77:98–104. doi:10.1016/j.aquatox.2005.11.002.
  • Lim, P.S., C.R. Sutton, and S. Rao. 2015. Protein kinase c in the immune system: from signalling to chromatin regulation. Immunology 146:508-522.
  • Lipp, P., and G. Reither. 2011. Protein kinase C: The “masters” of calcium and lipid. Cold. Spring Harb. Perspect. Biol. 3:a004556. doi:10.1101/cshperspect.a004556.
  • Lu, H., M. Guizzetti, and L. Costa. 2002. Inorganic lead activates the mitogen-activated protein kinase kinase-mitogen-activated protein kinase-p90RSK signaling pathway in human astrocytoma cells via a protein kinase C-dependent mechanism. ‎J. Pharmacol. Exp. Ther. 300:818–23.
  • Marchetti, C. 2003. Molecular targets of lead in brain neurotoxicity. Neurotoxicol. Res. 5:221–36. doi:10.1007/BF03033142.
  • Markovac, J., and G. W. Goldstein. 1988. Picomolar concentrations of lead stimulate brain protein kinase C. Nature 334:71–73. doi:10.1038/334071a0.
  • McCormick, K., and G. S. Baillie. 2014. Compartmentalisation of second messenger signalling pathways. Curr. Opin. Genet. Dev. 27:20–25. doi:10.1016/j.gde.2014.02.001.
  • Morales, K. A., M. Lasagna, A. V. Gribenko, Y. Yoon, G. D. Reinhart, J. C. Lee, W. Cho, P. Li, and T. I. Igumenova. 2011. Pb2+ as modulator of protein-membrane interactions. J. Am. Chem. Soc. 133:10599–611. doi:10.1021/ja2032772.
  • Murakami, K., G. Feng, and S. G. Chen. 1993. Inhibition of brain protein kinase C subtypes by lead. ‎J. Pharmacol. Exp. Ther. 264:757–61.
  • Nihei, M. K., J. L. McGlothan, C. D. Toscano, and T. R. Guilarte. 2001. Low level Pb(2+) exposure affects hippocampal protein kinase C gamma gene and protein expression in rats. Neurosci. Lett. 298:212–16.
  • Nishikawa, K., A. Toker, F-J. Johannes, Z. Songyang, and L.C. Cantley. 1997. Determination of the specific substrate sequence motifs of protein kinase c isozymes. The Journal Of Biological Chemistry 272:952–960.
  • Racchi, M., E. Buose, M. Ronfani, M. M. Serafini, M. Galasso, C. Lanni, and E. Corsini. 2017. Role of hormones in the regulation of RACK1 expression as a signaling checkpoint in immunosenescence. Int J Mol Sci 18:1453–67. doi:10.3390/ijms18071453.
  • Rajanna, B., C. S. Chetty, S. Rajanna, E. Hall, S. Fail, and P. R. Yallapragada. 1995. Modulation of protein kinase C by heavy metals. Toxicol. Lett. 81:197–203.
  • Ramesh, G. T., and A. L. Jadhav. 2001. Levels of protein kinase C and nitric oxide synthase activity in rats exposed to sub chronic low-level lead. Mol. Cell. Biochem. 223:27–33. doi:10.1023/A:1017549003114.
  • Reinholz, M. M., P. J. Bertics, and V. Miletic. 1999. Chronic exposure to lead acetate affects the development of protein kinase C activity and the distribution of the PKCgamma isozyme in the rat hippocampus. Neurotoxicology 20:609–17.
  • Ruvolo, P. P., X. Deng, B. K. Capp, and W. S. May. 1998. A functional role for mitochondrial protein kinase Cα in Bcl2 phosphorylation and suppression of apoptosis. J. Biol. Chem. 273:25436–42.
  • Schneider, J. S., D. W. Anderson, K. Talsania, W. Mettil, and R. Vadigepalli. 2012. Effects of developmental lead exposure on the hippocampal transcriptome: Influences of sex, developmental period, and lead exposure level. Toxicol. Sci. 129:108–25. doi:10.1093/toxsci/kfs189.
  • Schneider, J. S., K. Talsania, W. Mettil, and D. W. Anderson. 2014. Genetic diversity influences the response of the brain to developmental lead exposure. Toxicol. Sci. 141:29–43. doi:10.1093/toxsci/kfu101.
  • Simons, T. J. B. 1985. Influence of lead ions on cation permeability in human red cell ghosts. J. Membr. Biol. 84:61–71.
  • Simons, T. J. B. 1993. Lead-calcium interactions in cellular lead toxicity. Neurotoxicology 14:77–86.
  • Soderling, T. R. 1999. The Ca2+-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24:232–36.
  • Steinberg, S. F. 2008. Structural basis of protein kinase C isoform function. Physiol. Rev. 88:1341–78. doi:10.1152/physrev.00034.2007.
  • Su, P., J. Zhang, S. Wang, M. Aschner, Z. Cao, F. Zhao, D. Wang, J. Chen, and W. Luo. 2016. Genistein alleviates lead-induced neurotoxicity in vitro and in vivo: Involvement of multiple signaling pathways. Neurotoxicology 53:153–64. doi:10.1016/j.neuro.2015.12.019.
  • Sun, X., X. Tian, J. L. Tomsig, and J. B. Suszkiw. 1999. Analysis of differential effects of Pb2+ on protein kinase C isozymes. Toxicol. Appl. Pharmacol. 156:40–45. doi:10.1006/taap.1999.8622.
  • Swulius, M. T., and M. N. Waxham. 2008. Ca2+/Calmodulin-dependent protein kinases. ‎Cell. Mol. Life Sci. 65:2637–57. doi:10.1007/s00018-008-8086-2.
  • Tabuchi, A., A. Yoshioka, T. Higashi, R. Shirakawa, H. Nishioka, T. Kita, and H. Horiuchi. 2003. Direct demonstration of involvement of protein kinase Cα in the Ca2+-induced platelet aggregation. J. Biol. Chem. 278:26374–79. doi:10.1074/jbc.M212407200.
  • Takai, Y., A. Kishimoto, Y. Iwasa, Y. Kawahara, T. Mori, and Y. Nishizuka. 1979. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. The Journal Of Biological Chemistry 254 (10):3692–3695.
  • Tian, X., X. Sun, and J. B. Suszkiw. 2000. Upregulation of tyrosine hydroxylase and downregulation of choline acetyltransferase in lead-exposed PC12 cells: The role of PKC activation. Toxicol. Appl. Pharmacol. 167:246–52. doi:10.1006/taap.2000.8996.
  • Vallee, B. L., and D. D. Ulmer. 1972. Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem. 41:91–128. doi:10.1146/annurev.bi.41.070172.000515.
  • Vazquez, A., and S. Pena de Ortiz. 2004. Lead Pb(+2) impairs long-term memory and blocks learning-induced increases in hippocampal protein kinase C activity. Toxicol. Appl. Pharmacol. 200:27–39. doi:10.1016/j.taap.2004.03.011.
  • Violin, J. D., and A. C. Newton. 2003. Pathway illuminated: Visualizing protein kinase C signaling. IUBMB Life 55:653–60. doi:10.1080/152165401310001642216.
  • Wang, C.-Y., Y.-T. Wang, D.-W. Tzeng, and J.-L. Yang. 2009. Lead acetate induces EGFR activation upstream of SPK and PKCα linkage to the Ras/Raf-1/ERK signaling. Toxicol. Appl. Pharmacol. 235:244–52. doi:10.1016/j.taap.2008.12.007.
  • Wang, Q., W. Luo, W. Zhang, Z. Dai, Y. Chen, and J. Chen. 2007. Iron supplementation protects against lead-induced apoptosis through MAPK pathway in weanling rat cortex. Neurotoxicology 28:850–59. doi:10.1016/j.neuro.2007.04.004.
  • Yamasaki, T., A. Takahashi, J. Pan, N. Yamaguchi, and K. K. Yokoyama. 2009. Phosphorylation of activation transcription factor-2 at serine 121 by protein kinase C controls c-Jun-mediated activation of transcription. J. Biol. Chem. 284:8567–81. doi:10.1074/jbc.M808719200.
  • Zhang, H.-C., C. K. Derian, D. F. McComsey, K. B. White, H. Ye, L. R. Hecker, J. Li, M. F. Addo, D. Croll, A. J. Echardt, et al. 2005. Novel indolylindazolylmaleimides as inhibitors of protein kinase C-β: Synthesis, biological activity, and cardiovascular safety. J. Med. Chem. 48:1725–28. doi:10.1021/jm049478u.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.