1,275
Views
41
CrossRef citations to date
0
Altmetric
Articles

An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies

, , & ORCID Icon

References

  • Aanensen, D. M., D. M. Huntley, E. J. Feil, F. al-Own, and B. G. Spratt. 2009. EpiCollect: Linking smartphones to web applications for epidemiology, ecology and community data collection. PLoS ONE 4:e6968. doi:10.1371/journal.pone.0006968.
  • Acharjee, A., Z. Ament, J. A. West, E. Stanley, and J. L. Griffin. 2016. Integration of etabolomics, ipidomics and linical ata sing a achine earning ethod. BMC Bioinformatic 17:37–49. doi:10.1186/s12859-016-1292-2.
  • Al Bakheet, S. A., I. M. Attafi, Z. H. Maayah, A. R. Abd-Allah, Y. A. Asiri, and H. M. Korashy. 2013. Effect of long-term human exposure to environmental heavy metals on the expression of detoxification and DNA repair genes. Environ. Pollut. 181:226–32. doi:10.1016/j.envpol.2013.06.014.
  • Alden, N., S. Krishnan, V. Porokhin, R. Raju, K. McElearney, A. Gilbert, and K. Lee. 2017. Biologically consistent annotation of metabolomics data. Anal. Chem. 89:13097–104. doi:10.1021/acs.analchem.7b02162.
  • Almeida, G. R. C., M. C. P. Saraiva, F. Barbosa, F. J. Krug, J. A. Cury, M. L. R. de Sousa, M. A. R. Buzalaf, and R. F. Gerlach. 2007. Lead contents in the surface enamel of deciduous teeth sampled in vivo from children in uncontaminated and in lead-contaminated areas. Environ. Res. 104:337–45. doi:10.1016/j.envres.2007.03.007.
  • Alves, A. C., M. S. Monteiro, A. L. Machado, M. Oliveira, A. Bóia, A. Correia, N. Oliveira, A. M. V. M. Soares, and S. Loureiro. 2017. Mercury levels in parturient and newborns from Aveiro region, Portugal. J. Toxicol. Environ. Health A 80:697–709. doi:10.1080/15287394.2017.1286926.
  • Andra, S. S., C. Austin, D. Patel, G. Dolios, M. Awawda, and M. Arora. 2017. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. Environ. Int. 100:32–61. doi:10.1016/j.envint.2016.11.026.
  • Andra, S. S., C. Austin, and M. Arora. 2015a. Tooth matrix analysis for biomonitoring of organic chemical exposure: Current status, challenges, and opportunities. Environ. Res. 142:387–406. doi:10.1016/j.envres.2015.06.032.
  • Andra, S. S., C. Austin, and M. Arora. 2016. The tooth exposome in childrenʼs health research. Curr. Opin. Pediatr. 28:221–27. doi:10.1097/mop.0000000000000327.
  • Andra, S. S., C. Austin, R. O. Wright, and M. Arora. 2015b. Reconstructing pre-natal and early childhood exposure to multi-class organic chemicals using teeth: Towards a retrospective temporal exposome. Environ. Int. 83:137–45. doi:10.1016/j.envint.2015.05.010.
  • Angerer, J., U. Ewers, and M. Wilhelm. 2007. Human biomonitoring: State of the art. Int. J. Hyg. Environ. Health 210:201–28. doi:10.1016/j.ijheh.2007.01.024.
  • Arora, M., and C. Austin. 2013. Teeth as a biomarker of past chemical exposure. Curr. Opin. Pediatr. 25:261–67. doi:10.1097/mop.0b013e32835e9084.
  • Arora, M., C. Austin, B. Sarrafpour, M. Hernández-Ávila, H. Hu, R. O. Wright, and M. M. Tellez-Rojo. 2014. Determining prenatal, early childhood and cumulative long-term lead exposure using micro-spatial deciduous dentine levels. PLoS ONE 9:e97805. doi:10.1371/journal.pone.0097805.
  • Arrebola, J. P., M. Fernández-Rodríguez, F. Artacho-Cordón, C. Garde, F. Perez-Carrascosa, I. Linares, I. Tovar, B. González-Alzaga, J. Expósito, P. Torne, et al. 2016. Associations of persistent organic pollutants in serum and adipose tissue with breast cancer prognostic markers. Sci. Total Environ. 566–567:41–49. doi:10.1016/j.scitotenv.2016.04.188.
  • Arumugam, M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D. R. Mende, G. R. Fernandes, J. Tap, T. Bruls, J.-M. Batto, et al. 2011. Enterotypes of the human gut microbiome. Nature 473:174–80. doi:10.1038/nature09944.
  • Azuaje, F., Y. Devaux, and D. Wagner. 2009. Computational biology for cardiovascular biomarker discovery. Brief. Bioinform. 10:367–77. doi:10.1093/bib/bbp008.
  • Badimon, L., G. Vilahur, and T. Padro. 2016. Systems biology approaches to understand the effects of nutrition and promote health. Br. J. Clin. Pharmacol. 83:38–45. doi:10.1111/bcp.12965.
  • Barbosa, F. 2017. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. J. Toxicol. Environ. Health A 80:137–44. doi:10.1080/15287394.2016.1259475.
  • Barbosa, F., J. E. Tanus-Santos, R. F. Gerlach, and P. J. Parsons. 2005. A critical review of biomarkers used for monitoring human exposure to lead: Advantages, limitations, and future teeds. Environ. Health Perspect. 113:1669–74. doi:10.1289/ehp.7917.
  • Barbosa, F., M. Fillion, M. Lemire, C. J. S. Passos, J. L. Rodrigues, A. Philibert, J.-R. Guimarães, and D. Mergler. 2009. Elevated blood lead levels in a riverside population in the brazilian Amazon. Environ. Res. 109:594–99. doi:10.1016/j.envres.2009.03.005.
  • Barcelos, G. R. M., D. Grotto, K. C. de Marco, J. Valentini, A. H. Lengert, A. A. S. de Oliveira, S. C. Garcia, G. Ú. Braga, K. Schläwicke Engströn, I. M. Cólus, et al. 2013. Polymorphisms in glutathione-related genes modify mercury concentrations and antioxidant status in subjects environmentally exposed to methylmercury. Sci. Total Environ. 463–464:319–25. doi:10.1016/j.scitotenv.2013.06.029.
  • Barcelos, G. R. M., K. C. de Marco, V. B. de Rezende, G. U. L. Braga, L. M. G. Antunes, J. E. Tanus-Santos, and F. Barbosa. 2015a. Genetic Effects of ENOS polymorphisms on biomarkers related to cardiovascular status in a population coexposed to methylmercury and lead. Arch. Environ. Contam. Toxicol. 69:173–80. doi:10.1007/s00244-015-0137-8.
  • Barcelos, G. R. M., M. F. de Souza, A. A. S. de Oliveira, A. H. Lengert, M. T. de Oliveira, R. B. O. G. Camargo, D. Grotto, J. Valentini, S. C. Garcia, G. Ú. Braga, et al. 2015b. Effects of genetic polymorphisms on antioxidant status and concentrations of the metals in the blood of riverside Amazonian communities co-exposed to Hg and Pb. Environ. Res. 138:224–32. doi:10.1016/j.envres.2015.02.017.
  • Barry, V., A. Winquist, and K. Steenland. 2013. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ. Health Perspect. 121:1313–18. doi:10.1289/ehp.1306615.
  • Batista, B. L., J. L. Rodrigues, L. Tormen, A. J. Curtius, and F. Barbosa Jr. 2009. Reference concentrations for trace elements in urine for the brazilian population based on Q-ICP-MS with a simple dilute-and-shoot procedure. J. Braz. Chem. Soc. 20:1406–13. doi:10.1590/s0103-50532009000800004.
  • Bauer, J. A., B. C. Henn, C. Austin, S. Zoni, C. Fedrighi, G. Cagna, D. Placidi, R. F. White, Q. Yang, B. A. Coull, et al. 2017. Manganese in teeth and neurobehavior: Sex-specific windows of susceptibility. Environ. Int. 108:299–308. doi:10.1016/j.envint.2017.08.013.
  • Becker, C. H., and M. Bern. 2011. Recent developments in quantitative proteomics. Mutat. Res. Toxicol. Environ. Mutagen. 722:171–82. doi:10.1016/j.mrgentox.2010.06.016.
  • Belizario, J. E., and M. Napolitano. 2016. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front. Microbiol. 6:1–16. doi:10.3389/fmicb.2015.01050.
  • Berghuis, S. A., A. F. Bos, P. J. J. Sauer, and E. Roze. 2015. Developmental neurotoxicity of persistent organic pollutants: An update on childhood outcome. Arch. Toxicol. 89:687–709. doi:10.1007/s00204-015-1463-3.
  • Berman, T., R. Goldsmith, H. Levine, and I. Grotto. 2017. Human biomonitoring in Israel: Recent results and lessons learned. Int. J. Hyg. Environ. Health 220:6–12. doi:10.1016/j.ijheh.2016.09.008.
  • Bishop, C. M., and N. M. Nasrabadi. 2010. Pattern recognition and machine learning. J. Electr. Imag. 16:140–55. doi:10.1117/1.2819119.
  • Bonefeld-Jørgensen, E. C., M. Long, S. O. Fredslund, R. Bossi, and J. Olsen. 2014. Breast cancer risk after exposure to perfluorinated compounds in Danish women: A case-control study nested in the Danish national birth cohort. Cancer Causes Control 25:1439–48. doi:10.1007/s10552-014-0446-7.
  • Botler, J., L. A. B. Camacho, and M. M. Da Cruz. 2012. Phenylketonuria, congenital hypothyroidism and haemoglobinopathies: Public health issues for a Brazilian newborn screening program. Cad. Saude Publica. 28:1623–31. doi:10.1590/s0102-311x2012000900002.
  • Boulos, M. N. K., A. Anastasiou, E. Bekiaris, and M. Panou. 2011. Geo-enabled technologies for independent living: Examples from four European projects. Technol. Disabil. 23:7–17. doi:10.3233/TAD-2011-0300.
  • Branco, V., S. Caito, M. Farina, J. T. Da Rocha, M. Aschner, and C. Carvalho. 2017. Biomarkers of mercury toxicity: Past, present, and future trends. J. Toxicol. Environ. Health B 20:119–54. doi:10.1080/10937404.2017.1289834.
  • Buck Louis, G. M., E. Yeung, R. Sundaram, S. K. Laughon, and C. Zhang. 2013. The Exposome - Exciting opportunities for discoveries in reproductive and perinatal epidemiology. Paediatr. Perinat. Epidemiol. 27:229–36. doi:10.1111/ppe.12040.
  • Buck Louis, G. M., and R. Sundaram. 2012. Exposome: Time for transformative research. Stat. Med. 31:2569–75. doi:10.1002/sim.5496.
  • Burton, C., Y. Dan, A. Donovan, K. Liu, H. Shi, Y. Ma, and C. P. Bosnak. 2016. Urinary metallomics as a novel biomarker discovery platform: Breast cancer as a case study. Clin. Chim. Acta 452:142–48. doi:10.1016/j.cca.2015.11.014.
  • Caberlotto, L., and M. Lauria. 2014. Systems biology meets - Omic technologies: Novel approaches to biomarker discovery and companion diagnostic development. Expert Rev. Mol. Diagn. 15:255–65. doi:10.1586/14737159.2015.975214.
  • Cai, Y., B. Zhang, W. Ke, B. Feng, H. Lin, J. Xiao, W. Zeng, X. Li, J. Tao, Z. Yang, et al. 2016. Associations of short-term and long-term exposure to ambient air pollutants with hypertension novelty and significance. Hypertension 68:62–70. doi:10.1161/hypertensionaha.116.07218.
  • Carlsson, H., and M. Törnqvist. 2017. An adductomic approach to identify electrophiles in vivo. Basic Clin. Pharmacol. Toxicol. 121:44–54. doi:10.1111/bcpt.12715.
  • Carlsson, H., S. Rappaport, and M. Törnqvist. 2019. Protein adductomics: Methodologies for untargeted screening of adducts to serum albumin and hemoglobin in human blood samples. High Throughput 8:1–18. doi:10.3390/ht8010006.
  • Carneiro, M. F. H., D. Grotto, and F. Barbosa. 2014. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption. J. Toxicol. Environ. Health A 77:69–79. doi:10.1080/15287394.2014.865584.
  • Carrola, J., C. M. Rocha, A. S. Barros, A. M. Gil, B. J. Goodfellow, I. M. Carreira, J. Bernardo, A. Gomes, V. Sousa, L. Carvalho, et al. 2011. Metabolic signatures of lung cancer in biofluids: NMR-Based metabonomics of urine. J. Proteome Res. 10:221–30. doi:10.1021/pr100899x.
  • Carwile, J. L., and K. B. Michels. 2011. Urinary bisphenol A and obesity: NHANES 2003-2006. Environ. Res. 111:825–30. doi:10.1016/j.envres.2011.05.014.
  • CAS. 2019. CAS Registry-The gold standard for chemical substance information. Columbus, OH, USA: Chemical Abstracts Service. American Chemical Society. Acessed May 2019. Available: https//www.cas.org/content/chemical-substances
  • Center for Disease Control and Prevention (CDC). 2017. National report on human exposure to environmental chemicals - NER. Acessed May, 2019. https://www.cdc.gov/exposurereport/index.html.
  • Černá, M., V. Puklová, L. Hanzlíková, L. Sochorová, and R. Kubínová. 2017. 25 Years of HBM in the Czech Republic. Int. J. Hyg. Environ. Health 220:3–5. doi:10.1016/j.ijheh.2016.08.004.
  • Cervinkova, B., L. K. Krcmova, S. Klabackova, D. Solichova, and P. Solich. 2017. Rapid determination of lipophilic vitamins in human serum by ultra-high performance liquid chromatography using a fluorinated column and high-throughput miniaturized liquid-liquid extraction. J. Separat. Sci. 40:3375–82. doi:10.1002/jssc.201700492.
  • Chang, C.-H., C.-S. Liu, H.-J. Liu, C.-P. Huang, C.-Y. Huang, H.-T. Hsu, S.-H. Liou, and C.-J. Chung. 2015. Association between levels of urinary heavy metals and increased risk of urothelial carcinoma. Int. J. Urol. 23:233–39. doi:10.1111/iju.13024.
  • Chang, Y. J., M. S. Cooke, C. W. Hu, and M. R. Chao. 2018. Novel approach to integrated DNA adductomics for the assessment of in vitro and in vivo environmental exposures. Arch. Toxicol. 92:2665–80. doi:10.1007/s00204-018-2252-6.
  • Chen, C.-Y., H.-J. Hung, K.-H. Chang, C. Y. Hsu, C.-H. Muo, C.-H. Tsai, and T.-N. Wu. 2017. Long-term exposure to air pollution and the incidence of parkinson’s disease: A nested case-control study. PLoS ONE 12:e0182834. doi:10.1371/journal.pone.0182834.
  • Chiu, Y.-H., B. C. Mathilda, -H.-H. L. Henn, M. P. Hsu, B. A. Pendo, C. C. Austin, G. Cagna, C. Fedrighi, D. Placidi, D. R. Smith, et al. 2017. Sex differences in sensitivity to prenatal and early childhood manganese exposure on neuromotor function in adolescents. Environ. Res. 159:458–65. doi:10.1016/j.envres.2017.08.035.
  • Cho, I., and M. J. Blaser. 2012. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 13:260–70. doi:10.1038/nrg3182.
  • Choi, W., S. Kim, Y.-W. Baek, K. Choi, K. Lee, S. Kim, S. D. Yu, and K. Choi. 2017. Exposure to environmental chemicals among Korean adults-updates from the second Korean national environmental health survey (2012–2014). Int. J. Hyg. Environ. Health 220:29–35. doi:10.1016/J.IJHEH.2016.10.002.
  • Ciborowski, M., J. Teul, J. L. Martin-Ventura, J. Egido, and C. Barbas. 2012. Metabolomics with LC-QTOF-MS permits the prediction of disease stage in aortic abdominal aneurysm based on plasma metabolic fingerprint. PLoS ONE 7:e31982. doi:10.1371/journal.pone.0031982.
  • Clemente, J. C., E. C. Pehrsson, M. J. Blaser, K. Sandhu, Z. Gao, B. Wang, M. Magris, G. Hidalgo, M. Contreras, Ó. Noya-Alarcón, et al. 2015. The microbiome of uncontacted amerindians. Sci. Adv. 1:e1500183–e1500183. doi:10.1126/sciadv.1500183.
  • Cohen-Hubal, E. A. 2009. ExpoCast: Exposure science for prioritization and toxicity testing. Int. Soc. Expo. Sci. Annu. Meet Minneapolis, MN.
  • Cooke, M. S., C. W. Hu, Y. J. Chang, and M. R. Chao. 2018. Urinary DNA adductomics – A novel approach for exposomics. Environ. Int. 121:1033–38. doi:10.1016/j.envint.2018.10.041.
  • Crovella, S., R. R. Moura, S. Cappellani, F. Celsi, E. Trevisan, M. Schneider, A. Brollo, E. M. Nicastro, F. Vita, L. Finotto, et al. 2018. A genetic variant of NLRP1 gene is associated with asbestos body burden in patients with malignant pleural mesothelioma. J. Toxicol. Environ. Healtht A 81:98–105. doi:10.1080/15287394.2017.1416911.
  • Da Costa, N. L., I. A. Castro, and R. Barbosa. 2016. Classification of Cabernet Sauvignon from two different countries in South America by chemical compounds and support vector machines. Appl. Artif. Intell. 30:679–89. doi:10.1080/08839514.2016.1214416.
  • Da Silva, A. L. C., M. R. Urbano, A. C. B. A. Lopes, M. F. H. Carvalho, M. L. Buzzo, T. S. Peixe, M. Aschner, A. E. Mesas, and M. M. B. Paoliello. 2017. Blood manganese levels and associated factors in a population-based study in southern Brazil. J. Toxicol. Environ. Health A 80:1064–77. doi:10.1080/15287394.2017.1357354.
  • De Benedetti, S., G. Lucchini, C. Del Bò, V. Deon, A. Marocchi, S. Penco, C. Lunetta, E. Gianazza, F. Bonomi, and S. Iametti. 2017. Blood trace metals in a sporadic amyotrophic lateral sclerosis geographical cluster. Biometals 30:355–65. doi:10.1007/s10534-017-0011-4.
  • De Marco, K. C., L. M. G. Antunes, J. E. Tanus-Santos, and F. Barbosa. 2012. Intron 4 polymorphism of the endothelial nitric oxide synthase (ENOS) gene is associated with decreased NO production in a mercury-exposed population. Sci. Total Environ. 414:708–12. doi:10.1016/j.scitotenv.2011.11.010.
  • De Souza, S. S., A. D. Campiglia, and F. Barbosa. 2013. A simple method for methylmercury, inorganic mercury and ethylmercury determination in plasma samples by high performance liquid chromatography–Cold-vapor-inductively coupled plasma mass spectrometry. Anal. Chim. Acta. 761:11–17. doi:10.1016/j.aca.2012.11.038.
  • De Souza, S. S., J. L. Rodrigues, V. C. O. Souza, and F. Barbosa. 2010. A fast sample preparation procedure for mercury speciation in hair samples by high-performance liquid chromatography coupled to ICP-MS. J. Anal. Atom. Spectrom. 25:79–83. doi:10.1039/b911696f.
  • DeBord, D. G., T. Carreón, T. J. Lentz, P. J. Middendorf, M. D. Hoover, and P. A. Schulte. 2016. Use of the “Exposome” in the practice of epidemiology: A primer on -omic technologies. Am. J. Epidemiol. 184:302–14. doi:10.1093/aje/kwv325.
  • Demirev, P. A. 2013. Dried blood spots: Analysis and applications. Anal. Chem. 85:779–89. doi:10.1021/ac303205m.
  • Denniff, P., and N. Spooner. 2014. Volumetric absorptive microsampling: A dried sample collection technique for quantitative bioanalysis. Anal. Chem. 86:8489–95. doi:10.1021/ac5022562.
  • Dennis, K. K., E. Marder, D. M. Balshaw, Y. Cui, M. A. Lynes, G. J. Patti, S. M. Rappaport, D. T. Shaughnessy, M. Vrijheid and D. B. Barr. 2017. Biomonitoring in the Era of the exposome. Environ. Health Perspect. 125:502–10. doi:10.1289/EHP474.
  • Do, M. T., V. C. Chang, M. A. Mendez, and M. de Groh. 2017. Urinary bisphenol A and obesity in adults: Results from the Canadian health measures survey. Health Promot. Chronic Dis. Prev. Canada 37:403–12. doi:10.24095/hpcdp.37.12.02.
  • Dopazo, J. 2014. Genomics and transcriptomics in drug discovery. Drug Discov. Today 19:126–32. doi:10.1016/j.drudis.2013.06.003.
  • European Commission. 2017. The human exposome project: A toolbox for assessing and addressing the impact of environment on health. Eur. Comm. Acessed on May 20 2019. http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sc1-bhc-28-2019.html.
  • Falony, G., M. Joossens, S. Vieira-Silva, J. Wang, Y. Darzi, K. Faust, A. Kurilshikov, M. J. Bonder, M. Valles-Colomer, D. Vandeputte, et al. 2016. Population-level analysis of gut microbiome variation. Science 352:560–64. doi:10.1126/science.aad3503.
  • Farmer, P. B. 2004. DNA and protein adducts as markers of genotoxicity. Toxicol. Lett. 149:3–9. doi:10.1016/j.toxlet.2003.12.015.
  • Fayyad, U., and P. Stolorz. 1997. Data mining and KDD: Promise and challenges. Future Gener. Comput. Syst. 13:99–115. doi:10.1016/s0167-739x(97)00015-0.
  • Fernandes, K. C. M., A. C. Martins, A. A. S. de Oliveira, L. M. G. Antunes, I. M. S. Cólus, F. Barbosa, and G. R. M. Barcelos. 2015. Polymorphism of metallothionein 2A modifies lead body burden in workers chronically exposed to the metal. Public Health Genom. 19:47–52. doi:10.1159/000441713.
  • Frank, D. N., and N. R. Pace. 2008. Gastrointestinal microbiology enters the metagenomics era. Curr. Opin. Gastroenterol. 24:4–10. doi:10.1097/mog.0b013e3282f2b0e8.
  • Freire, C., R. J. Koifman, D. Fujimoto, V. C. O. Souza, F. Barbosa, and S. Koifman. 2014. Reference values of lead in blood and related factors among blood donors in the Western Amazon, Brazil. J. Toxicol. Environ. Health A 77:426–40. doi:10.1080/15287394.2013.874303.
  • Freire, C., R. J. Koifman, D. Fujimoto, V. C. O. Souza, F. Barbosa, and S. Koifman. 2015. Reference values of cadmium, arsenic and manganese in blood and factors associated with exposure levels among adult population of Rio Branco, Acre, Brazil. Chemosphere 128:70–78. doi:10.1016/j.chemosphere.2014.12.083.
  • Geyer, P. E., M. H. Lesca, D. Teupser, and M. Mann. 2017. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 13:942. doi:10.15252/msb.20156297.
  • Go, Y.-M., D. I. Walker, Y. Liang, K. Uppal, Q. A. Soltow, V. Tran, F. Strobel, A. A. Quyyumi, T. R. Ziegler, K. D. Pennell, et al. 2015. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicol. Sci. 148:531–43. doi:10.1093/toxsci/kfv198.
  • Gomez, A., K. J. Petrzelkova, M. B. Burns, C. J. Yeoman, K. R. Amato, K. Vlckova, D. Modry, A. Todd, C. Jost Robinson, M. Remis, et al. 2016. Gut microbiome of coexisting baAka pygmies and bantu reflects gradients of traditional subsistence patterns. Cell Rep. 14:2142–53. doi:10.1016/j.celrep.2016.02.013.
  • Gouveia, N., R. Kuno, C. F. Asmus, P. R. G. Barrocas, V. R. R. Lemes, A. T. Tambellini, A. Meyer, V. D. M. Câmara, J. C. Moreira, A. G. D. Oliveira, et al. 2014. Projeto-piloto do primeiro inquérito nacional de populações expostas a substâncias químicas, 2008-2009. Epidemiol. Serv. Saúde 23:553–58. doi:10.5123/s1679-49742014000300019.
  • Grasso, G. 2017. Metals are main actors in the biological world. Metals 7:422. doi:10.3390/met7100422.
  • Hall, R. 2002. Plant metabolomics: The missing link in functional genomics strategies. Plant Cell Online 14:1437–40. doi:10.1105/tpc.140720.
  • Haraguchi, H. 2004. Metallomics as integrated biometal science. J. Anal. Atom. Spectrom. 19:5–14. doi:10.1039/b308213j.
  • Haraguchi, H. 2017. Metallomics: The history over the last decade and a future outlook. Metallomics 9:1001–13. doi:10.1039/c7mt00023e.
  • Harmon, M. E., J. Lewis, C. Miller, J. Hoover, A. M. S. Ali, C. Shuey, M. Cajero, S. Lucas, B. Pacheco, E. Erdei, et al. 2018. Arsenic association with circulating oxidized low-density lipoprotein in a native American community. J. Toxicol. Environ. Health A 81:535–48. doi:10.1080/15287394.2018.1443860.
  • Hebels, D. G. A. J., D. G. J. Jennen, M. H. M. Herwijnen, E. J. C. Moonen, M. Pedersen, L. E. Knudsen, J. C. S. Kleinjans, and T. M. C. M. de Kok. 2011. Whole-Genome gene expression modifications associated with nitrosamine exposure and micronucleus frequency in human blood cells. Mutagenesis 26:753–61. doi:10.1093/mutage/ger043.
  • Heinonen, M., H. Shen, N. Zamboni, and J. Rousu. 2012. Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics 28:2333–41. doi:10.1093/bioinformatics/bts437.
  • Hinchliffe, E., J. Rudge, and P. Reed. 2016. A novel high-throughput method for supported liquid extraction of retinol and alpha-tocopherol from human serum and simultaneous quantitation by liquid chromatography tandem mass spectrometry. Ann. Clin. Biochem. 53:434–45. doi:10.1177/0004563215596024.
  • Hooper, L. V. 2001. Commensal host-bacterial relationships in the gut. Science 292:1115–18. doi:10.1126/science.1058709.
  • Hou, W., X. Meng, A. Zhao, W. Zhao, J. Pan, J. Tang, Y. Huang, H. Li, W. Jia, F. Liu, et al. 2017. Development of multimarker diagnostic models from metabolomics analysis for gestational diabetes mellitus. Mol. Cell. Proteom. 17:431–44. doi:10.1074/mcp.ra117.000121.
  • Howard, P. H., and D. C. G. Muir. 2011. Identifying new persistent and bioaccumulative organics among chemicals in commerce II: Pharmaceuticals. Environ. Sci. Technol. 45:6938–46. doi:10.1021/es201196x.
  • Humphery-Smith, I. 2015. The 20th anniversary of proteomics and some of its origins. Proteomics 15:1773–76. doi:10.1002/pmic.201400582.
  • Hyun Kim, D., S. M. Choi, D. S. Lim, T. Roh, S. J. Kwack, S. Yoon, M. K. Kim, K. S. Yoon, H. S. Kim, D. W. Kim, et al. 2018. Risk assessment of endocrine disrupting phthalates and hormonal alterations in children and adolescents. J. Toxicol. Environ. Health A 81:1150–64. doi:10.1080/15287394.2018.1543231.
  • Ito, H., M. P. Gonthier, C. Manach, C. Morand, L. Mennen, C. Rémésy, and A. Scalbert. 2005. Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br. J. Nutr. 94:500–09. doi:10.1079/bjn20051458.
  • Jaacks, L. M., D. B. Barr, R. Sundaram, J. M. Maisog, C. Zhang, and G. M. Buck Louis. 2016. Pre-pregnancy maternal exposure to polybrominated and polychlorinated biphenyls and gestational diabetes: A prospective cohort study. Environ. Heath 15:1–11. doi:10.1186/s12940-016-0092-5.
  • Jansen, A., J. L. Lyche, A. Polder, J. Aaseth, and M. A. Skaug. 2017. Increased blood levels of persistent organic pollutants (POP) in obese individuals after weight loss—A Review. J. Toxicol. Environ. Health B 20:22–37. doi:10.1080/10937404.2016.1246391.
  • Jardine, J., J. Fisher, and B. Carrick. 2015. Apple’s research kit: Smart data collection for the smartphone Era? J. Roy. Soc. Med. 108:294–96. doi:10.1177/0141076815600673.
  • Jeong, E. S., G. Kim, D. Yim, K. S. Moon, S. J. Lee, J. G. Shin, and D. H. Kim. 2018. Identification and characterization of amiodarone metabolites in rats using UPLC–ESI-QTOFMS-Based untargeted metabolomics approach. J. Toxicol. Environ. Health A 81:481–92. doi:10.1080/15287394.2018.1460783.
  • Jia, Z., A. Patra, V. K. Kutty, and T. Venkatesan. 2019. Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer. Metabolites 9:52–69. doi:10.3390/metabo9030052.
  • Joas, R., L. Casteleyn, P. Biot, M. Kolossa-Gehring, A. Castano, J. Angerer, G. Schoeters, O. Sepai, L. E. Knudsen, A. Joas, et al. 2012. Harmonised human biomonitoring in Europe: Activities towards an EU HBM framework. Int. J. Hyg. Environ. Health 215:172–75. doi:10.1016/j.ijheh.2011.08.010.
  • Johnson, C. H., T. J. Athersuch, G. W. Collman, S. Dhungana, D. F. Grant, D. P. Jones, C. J. Patel, and V. Vasiliou. 2017. Yale school of public health symposium on lifetime exposures and human health: The exposome: Summary and future reflections. Human. Genom. 11:32–40. doi:10.1186/s40246-017-0128-0.
  • Jones, D. P. 2016. Sequencing the exposome: A call to action. Toxicol. Rep. 3:29–45. doi:10.1016/j.toxrep.2015.11.009.
  • Kamburov, A., R. Cavill, T. M. D. Ebbels, R. Herwig, and H. C. Keun. 2011. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27:2917–18. doi:10.1093/bioinformatics/btr499.
  • Karppi, J., T. Nurmi, B. Olmedilla-Alonso, F. Granado-Lorencio, and K. Nyyssönen. 2008. Simultaneous measurement of retinol, α-tocopherol and six carotenoids in human plasma by using an isocratic reversed-phase HPLC method. J. Chromatogr. B 867:226–32. doi:10.1016/j.jchromb.2008.04.007.
  • Karube, Z.-I., A. Tanaka, A. Takeuchi, Y. Takazawa, M. Takagi, A. Kinoshita, H. Seyama, and Y. Shibata. 2014. Three decades of environmental specimen banking at the national institute for environmental studies, Japan. Environ. Sci. Pollut. Res. 22:1587–96. doi:10.1007/s11356-014-3039-9.
  • Kennedy, S. 2002. The role of proteomics in toxicology: Identification of biomarkers of toxicity by protein expression analysis. Biomarkers 7:269–90. doi:10.1080/13547500210127318.
  • Kenny, L. C., W. B. Dunn, D. I. Ellis, J. Myers, P. N. Baker, and D. B. Kell. 2005. Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning. Metabolomics 1:227–34. doi:10.1007/s11306-005-0003-1.
  • Kim, K. H., S. A. Jahan, and E. Kabir. 2012. A review of breath analysis for diagnosis of human health. Trends Anal. Chem. 33:1–8. doi:10.1016/j.trac.2011.09.013.
  • Kim, U. J., and K. Kannan. 2018. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: Implications for human exposure. Environ. Sci. Technol. 52:5625–33. doi:10.1021/acs.est.8b00727.
  • Kind, T., M. Scholz, and O. Fiehn. 2009. How large is the metabolome? A critical analysis of aata exchange practices in chemistry. PLoS ONE 4:e5440. doi:10.1371/journal.pone.0005440.
  • Klaene, J. J., V. K. Sharma, J. Glick, and P. Vouros. 2013. The analysis of DNA adducts: The transition from 32P-postlabeling to mass spectrometry. Cancer Lett. 334:10–19. doi:10.1016/j.canlet.2012.08.007.
  • Ko, A., M.-S. Hwang, J.-H. Park, H.-S. Kang, H.-S. Lee, and J.-H. Hong. 2014. Association between urinary bisphenol A and waist circumference in Korean adults. Toxicol. Res. 30:39–44. doi:10.5487/tr.2014.30.1.039.
  • Kolocouri, F., Y. Dotsikas, and Y. L. Loukas. 2010. Dried plasma spots as an alternative sample collection technique for the quantitative LC-MS/MS determination of gabapentin. Anal. Bioanal. Chem. 398:1339–47. doi:10.1007/s00216-010-4048-2.
  • LaKind, J. S., L. G. Anthony, and M. Goodman. 2017. Review of reviews on exposures to synthetic organic chemicals and children’s neurodevelopment: Methodological and interpretation challenges. J. Toxicol. Environ. Health B 20:390–422. doi:10.1080/10937404.2017.1370847.
  • Lawal, O., W. M. Ahmed, T. M. E. Nijsen, R. Goodacre, and S. J. Fowler. 2017. Exhaled breath analysis: A review of “breath-taking” methods for off-Line analysis. Metabollomics 13:110–26. doi:10.1007/s11306-017-1241-8.
  • Lee, C.-L., -H.-H. Hsiao, C.-W. Lin, S.-P. Wu, S.-Y. Huang, C.-Y. Wu, A. H.-J. Wang, and K.-H. Khoo. 2003. Strategic shotgun proteomics approach for efficient construction of an expression map of targeted protein families in hepatoma cell lines. Proteomics 3:2472–86. doi:10.1002/pmic.200300586.
  • Levy, L. S., K. Jones, J. Cocker, F. L. Assem, and A. C. Capleton. 2007. Background levels of key biomarkers of chemical exposure within the UK general population – Pilot study. Int. J. Hyg. Environ. Health 210:387–91. doi:10.1016/j.ijheh.2007.01.032.
  • Lewis, R. M., H. Demmelmair, R. Gaillard, K. M. Godfrey, S. Hauguel-de Mouzon, B. Huppertz, E. Larque, R. Saffery, M. E. Symonds, and G. Desoye. 2013. The placental exposome: Placental determinants of fetal adiposity and postnatal body composition. Ann. Nutr. Metab. 63:208–15. doi:10.1159/000355222.
  • Li, W., and F. L. Tse. 2010. Dried blood spot sampling in combination with LC-MS/MS for quantitative analysis of small molecules. Biomed. Chromatogr. 24:49–65. doi:10.1002/bmc.1367.
  • Li, X., S.-K. Ng, and J. T. L. Wang. 2013. Biological data mining and its applications in healthcare. World scientific. First Edition. T. Jason, and L. Wang. Series Editor, Vol. 8 doi:10.1142/8898.
  • Liebler, D. C. 2002. Proteomics and the new biology. Introduction to proteomics. Chapter 1:3–13. doi:10.1007/978-1-59259-130-5_1.
  • Lioy, P. J., and S. M. Rappaport. 2011. Exposure science and the exposome: An opportunity for coherence in the environmental health sciences. Environ. Health Perspect. 119:a466–a467. doi:10.1289/ehp.1104387.
  • Loh, M., D. Sarigiannis, A. Gotti, S. Karakitsios, A. Pronk, E. Kuijpers, I. Annesi-Maesano, N. Baiz, J. Madureira, E. Oliveira Fernandes, et al. 2017. How sensors might help define the external exposome. Int. J. Environ. Res. Public Health 14:434–48. doi:10.3390/ijerph14040434.
  • Maione, C. 2016. Mineração de dados para o reconhecimento da origem e do tipo de alimentos e outras substâncias com base em sua composição química. PhD Thesis, Universidade Federal de Goiás.
  • Marie, I., J.-F. Gehanno, M. Bubenheim, A.-B. Duval-Modeste, P. Joly, S. Dominique, P. Bravard, D. Noël, A.-F. Cailleux, J. Benichou, et al. 2017. Systemic sclerosis and exposure to heavy metals: A case control study of 100 patients and 300 controls. Autoimmun. Rev. 16:223–30. doi:10.1016/j.autrev.2017.01.004.
  • Martins, A. C., M. F. H. Carneiro, D. Grotto, J. A. Adeyemi, and F. Barbosa. 2018. Arsenic, cadmium, and mercury-induced hypertension: Mechanisms and epidemiological findings. J. Toxicol. Environ. Health B 21:61–82. doi:10.1080/10937404.2018.1432025.
  • Matsuda, T., H. Tao, M. Goto, H. Yamada, M. Suzuki, Y. Wu, N. Xiao, Q. He, W. Guo, Z. Cai, et al. 2013. Lipid peroxidation-induced DNA adducts in human gastric mucosa. Carcinogenesis 34:121–27. doi:10.1093/carcin/bgs327.
  • McHale, C. M., L. Zhang, R. Thomas, and M. T. Smith. 2013. Analysis of the transcriptome in molecular epidemiology studies. Environ. Mol. Mutagen. 54:500–17. doi:10.1002/em.21798.
  • Merlo, E., I. V. Silva, R. C. Cardoso, and J. B. Graceli. 2018. The obesogen tributyltin induces features of polycystic ovary syndrome (PCOS): A Review. J. Toxicol. Environ. Health B 21:181–206. doi:10.1080/10937404.2018.1496214.
  • Miller, G. W., and D. P. Jones. 2013. The nature of nurture: Refining the definition of the exposome. Toxicol. Sci. 137:1–2. doi:10.1093/toxsci/kft251.
  • Minot, S., R. Sinha, J. Chen, H. Li, S. A. Keilbaugh, G. D. Wu, J. D. Lewis, and F. D. Bushman. 2011. The human gut virome: Inter-individual variation and dynamic response to diet. Genome Res. 21:1616–25. doi:10.1101/gr.122705.111.
  • Monnin, C., P. Ramrup, C. Daigle-Young, and D. Vuckovic. 2018. Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobile-phase additive. Rapid Commun. Mass Spectrom. 32:201–11. doi:10.1002/rcm.8024.
  • Morishita, H., and M. Arora. 2017. Tooth-matrix biomarkers to reconstruct critical periods of brain plasticity. Trends Neurosci. 40:1–3. doi:10.1016/j.tins.2016.11.003.
  • Needham, L. L., A. M. Calafat, and D. B. Barr. 2007. Uses and issues of biomonitoring. Int. J. Hyg. Environ. Health 210:229–38. doi:10.1016/j.ijheh.2006.11.002.
  • Newton, S. R., R. L. McMahen, J. R. Sobus, K. Mansouri, A. J. Williams, A. D. McEachran, and M. J. Strynar. 2018. Suspect screening and non-targeted analysis of drinking water using point-of-use filters. Environ. Pollut. 234:297–306. doi:10.1016/j.envpol.2017.11.033.
  • Nordfalk, F., and C. T. Ekstrøm. 2019. Newborn dried blood spot samples in denmark: The hidden figures of secondary use and research participation. Eur. J. Human Genet. 27:203–10. doi:10.1038/s41431-018-0276-2.
  • Nunes, J. A., B. L. Batista, J. L. Rodrigues, N. M. Caldas, J. A. G. Neto, and F. Barbosa. 2010. A simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, copper, manganese, nickel, lead, and selenium in blood of the Brazilian population. J. Toxicol. Environ. Health A 73:878–87. doi:10.1080/15287391003744807.
  • Nys, G., M. G. M. Kok, A. C. Servais, and M. Fillet. 2017. Beyond dried blood spot: Current microsampling techniques in the context of biomedical applications. Trends Anal. Chem. 97:326–32. doi:10.1016/j.trac.2017.10.002.
  • Obregon-Tito, A. J., R. Y. Tito, J. Metcalf, K. Sankaranarayanan, J. C. Clemente, L. K. Ursell, Z. Z. Xu, W. Van Treuren, R. Knight, P. M. Gaffney, et al. 2015. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6:1–9. doi:10.1038/ncomms7505.
  • Ogra, Y., and T. Hirata. 2017. Metallomics: Recent analytical techniques and applications. Met. Recent Anal. Tech. Appl. Springer Japan. First Edition. doi:10.1007/978-4-431-56463-8.
  • Ouyang, X., Y. Dai, J. L. Wen, and L. X. Wang. 2011. 1H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus. Lupus 20:1411–20. doi:10.1177/0961203311418707.
  • Parsons, P. J., and F. Barbosa. 2007. Atomic spectrometry and trends in clinical laboratory medicine. Spectrochim. Acta B 62:992–1003. doi:10.1016/J.SAB.2007.03.007.
  • Patel, C. J. 2017. Analytic complexity and challenges in identifying mixtures of exposures associated with phenotypes in the exposome Era. Curr. Epidemiol. Rep. 4:22–30. doi:10.1007/s40471-017-0100-5.
  • Patel, C. J., J. Bhattacharya, and A. J. Butte. 2010. An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS ONE 5:e10746. doi:10.1371/journal.pone.0010746.
  • Pathak, K. V., T. L. Chiu, E. A. Amin, and R. J. Turesky. 2016. Methemoglobin formation and characterization of hemoglobin adducts of carcinogenic aromatic amines and heterocyclic aromatic amines. Chem. Res. Toxicol. 29:255–69. doi:10.1021/acs.chemrestox.5b00418.
  • Pereira, J., P. Porto-Figueira, C. Cavaco, K. Taunk, S. Rapole, R. Dhakne, H. Nagarajaram, and J. Câmara. 2015. Breath analysis as a potential and non-invasive frontier in disease diagnosis: An overview. Metabolites 5:3–55. doi:10.3390/metabo5010003.
  • Phillips, K. A., A. Yau, K. A. Favela, K. K. Isaacs, A. McEachran, C. Grulke, A. M. Richard, A. J. Williams, J. R. Sobus, R. S. Thomas, et al. 2018. Suspect screening analysis of chemicals in consumer products. Environ. Sci. Technol. 52:3125–35. doi:10.1021/acs.est.7b04781.
  • Phinney, K. W., G. Ballihaut, M. Bedner, B. S. Benford, J. E. Camara, S. J. Christopher, W. C. Davis, N. G. Dodder, G. Eppe, B. E. Lang, et al. 2013. Development of a standard reference material for metabolomics research. Anal. Chem. 85:11732–38. doi:10.1021/ac402689t.
  • Pino, A., F. Chiarotti, G. Calamandrei, A. Gotti, S. Karakitsios, E. Handakas, B. Bocca, D. Sarigiannis, and A. Alimonti. 2017. Human biomonitoring data analysis for metals in an italian adolescents cohort: An exposome approach. Environ. Res. 159:344–54. doi:10.1016/j.envres.2017.08.012.
  • Pizzino, G., A. Bitto, M. Interdonato, F. Galfo, N. Irrera, A. Mecchio, G. Pallio, V. Ramistella, F. D. Luca, L. Minutoli, et al. 2014. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle Del Mela area (Sicily, Italy). Redox. Biol. 2:686–93. doi:10.1016/j.redox.2014.05.003.
  • Pleil, J. D. 2016. Breath biomarkers in toxicology. Arch. Toxicol. 90:2669–82. doi:10.1007/s00204-016-1817-5.
  • Pleil, J. D., and J. R. Sobus. 2016. Estimating central tendency from a single spot measure: A closed-form solution for lognormally distributed biomarker data for risk assessment at the individual level. J. Toxicol. Environ. Health A 79:837–47. doi:10.1080/15287394.2016.1193108.
  • Pleil, J. D., M. A. G. Wallace, M. A. Stiegel, and W. E. Funk. 2018. Human biomarker interpretation: The importance of intra-class correlation coefficients (ICC) and their calculations based on mixed models, ANOVA, and variance estimates. J. Toxicol. Environ. Health B 21:161–80. doi:10.1080/10937404.2018.1490128.
  • Potera, C. 2014. The HELIX project: Tracking the exposome in real time. Environ. Health Perspect. 122:A169. doi:10.1289/ehp.122-a169.
  • Preston, G. W., and D. H. Phillips. 2019. Protein adductomics: Analytical developments and applications in human biomonitoring. Toxics 7:29–46. doi:10.3390/toxics7020029.
  • Preston, G. W., M. Plusquin, O. Sozeri, K. Van Veldhoven, L. Bastian, T. S. Nawrot, M. Chadeau-Hyam, and D. H. Phillips. 2017. Refinement of a methodology for untargeted detection of serum albumin adducts in human populations. Chem. Res. Toxicol. 30:2120–29. doi:10.1021/acs.chemrestox.7b00186.
  • Pubmed. 2019. Acessed on February, 2019. www.pubmed.com.
  • Quifer-Rada, P., G. Chiva-Blanch, O. Jáuregui, R. Estruch, and R. M. Lamuela-Raventós. 2017. A discovery-driven approach to elucidate urinary metabolome changes after a regular and moderate consumption of beer and nonalcoholic beer in subjects at high cardiovascular risk. Mol. Nutr. Food Res. 61:1–11. doi:10.1002/mnfr.201600980.
  • Rappaport, S. M. 2010. Implications of the exposome for exposure science. J. Expo. Sci. Environ. Epidemiol. 21:5–9. doi:10.1038/jes.2010.50.
  • Rappaport, S. M., D. K. Barupal, D. Wishart, P. Vineis, and A. Scalbert. 2014. The blood exposome and its role in discovering causes of disease. Environ. Health Perspect. 122:769–74. doi:10.1289/ehp.1308015.
  • Rappaport, S. M., H. Li, H. Grigoryan, W. E. Funk, and E. R. Williams. 2012. Adductomics: Characterizing exposures to reactive electrophiles. Toxicol. Lett. 213:83–90. doi:10.1016/j.toxlet.2011.04.002.
  • Richardson, J. B., B. C. R. Dancy, C. L. Horton, Y. S. Lee, M. S. Madejczyk, Z. Z. Xu, G. Ackermann, G. Humphrey, G. Palacios, R. Knight, et al. 2018. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci. Rep. 8:6578–90. doi:10.1038/s41598-018-24931-w.
  • Rimbaud, D., M. Restrepo, A. Louison, R. Boukhari, V. Ardillon, G. Carles, V. Lambert, and A. Jolivet. 2017. Blood lead levels and risk factors for lead exposure among pregnant women in western French Guiana: The role of manioc consumption. J. Toxicol. Environ. Health A 80:382–93. doi:10.1080/15287394.2017.1331490.
  • Robert, H., D. Payros, P. Pinton, V. Théodorou, M. Mercier-Bonin, and I. P. Oswald. 2017. Impact of mycotoxins on the intestine: Are mucus and microbiota new targets? J. Toxicol. Environ. Health B 20:249–75. doi:10.1080/10937404.2017.1326071.
  • Robertson, M. 2017. HERCULES exposome research center receives $7.5 million grant renewal from NIH | Emory University | Atlanta, GA. Acessed on June 26, 2019. http://news.emory.edu/stories/2017/05/HERCULES_grant_renewal_NIH/.
  • Robinson, O., and M. Vrijheid. 2015. The pregnancy exposome. Curr. Environ. Health Rep. 2:204–13. doi:10.1007/s40572-015-0043-2.
  • Rocha, B. A., A. G. Asimakopoulos, F. Barbosa, and K. Kannan. 2017. Urinary concentrations of 25 phthalate metabolites in brazilian children and their association with oxidative DNA damage. Sci. Total Environ. 586:152–62. doi:10.1016/j.scitotenv.2017.01.193.
  • Rocha, B. A., B. R. B. Da Costa, N. C. P. de Albuquerque, A., . R. M. de Oliveira, J. M. O. Souza, M. Al-Tameemi, A. D. Campiglia, and F. Barbosa Jr. 2016. A fast method for bisphenol A and six analogues (S, F, Z, P, AF, AP) determination in urine samples based on dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. Talanta 154:511–19. doi:10.1016/j.talanta.2016.03.098.
  • Rocha, C. M., J. Carrola, A. S. Barros, A., . M. Gil, B. J. Goodfellow, I. M. Carreira, J. Bernardo, A. Gomes, V. Sousa, L. Carvalho, et al. 2011. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. J. Proteome Res. 10:4314–24. doi:10.1021/pr200550p.
  • Rodrigues, J. L., B. L. Batista, J. A. Nunes, C. J. S. Passos, and F. Barbosa. 2008. Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements. Sci. Total Environ. 405:370–76. doi:10.1016/j.scitotenv.2008.06.002.
  • Rodrigues, J. L., B. L. Batista, M. Fillion, C. J. S. Passos, D. Mergler, and F. Barbosa. 2009. Trace element levels in whole blood of riparian villagers of the Brazilian Amazon. Sci. Total Environ. 407:4168–73. doi:10.1016/j.scitotenv.2009.02.041.
  • Rogler, G., and S. Vavricka. 2015. Exposome in IBD. Inflamm. Bowel Dis. 21:400–08. doi:10.1097/mib.0000000000000229.
  • Roh, J. Y., J. Lee, and J. Choi. 2006. Assessment of stress-related gene expression in the heavy metal-exposed nematode caenorhabditis elegans: A potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ. Toxicol. Chem. 25:2946–56. doi:10.1897/05-676R.1.
  • Roig, B., M. Rodríguez-Balada, S. Samino, E. W.-F. Lam, S. Guaita-Esteruelas, A. R. Gomes, X. Correig, J. Borràs, O. Yanes, and J. Gumà. 2017. Metabolomics reveals novel blood plasma biomarkers associated to the BRCA1-mutated phenotype of human breast cancer. Sci. Rep. 7:17831–50. doi:10.1038/s41598-017-17897-8.
  • Roverso, M., C. Berté, V. Di Marco, A. Lapolla, D. Badocco, P. Pastore, S. Visentin, and E. Cosmi. 2015. The metallome of the human placenta in gestational diabetes mellitus. Metallomics 7:1146–54. doi:10.1039/c5mt00050e.
  • Sakumura, Y., Y. Koyama, H. Tokutake, T. Hida, K. Sato, T. Itoh, T. Akamatsu, and W. Shim. 2017. Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors 17:287–99. doi:10.3390/s17020287.
  • Sauer, J. M., T. Hartung, M. Leist, T. B. Knudsen, J. Hoeng, and A. W. Hayes. 2015. Systems toxicology. Int. J. Toxicol. 34:346–48. doi:10.1177/1091581815576551.
  • Schadt, E. E., S. H. Friend, and D. A. Shaywitz. 2009. A network view of disease and compound screening. Nat. Rev. Drug Discov. 8:286–95. doi:10.1038/nrd2826.
  • Schnorr, S. L., M. Candela, S. Rampelli, S. Turroni, A. G. Henry, and A. N. Crittenden. 2018. Comment on “seasonal cycling in the gut microbiome of the Hadza Hunter-Gatherers of Tanzania”. BioRix. 1:1–23. doi:10.1101/284513.
  • Serrazina, D. C., V. L. De Andrade, M. Cota, M. L. Mateus, M. Aschner, and A. P. M. Dos Santos. 2018. Biomarkers of exposure and effect in a working population exposed to lead, manganese and arsenic. J. Toxicol. Environ. Health A 81:983–97. doi:10.1080/15287394.2018.1509408.
  • Shaffer, R. M., M. N. Smith, and E. M. Faustman. 2017. Developing the regulatory utility of the exposome: Mapping exposures for risk assessment through lifestage exposome snapshots (LEnS). Environ. Health Perspect. 125:085003–01. doi:10.1289/EHP1250.
  • Shapiro, G. D., L. Dodds, T. E. Arbuckle, J. Ashley-Martin, A. S. Ettinger, M. Fisher, S. Taback, S. Taback, M. F. Bouchard, P. Monnier, et al. 2016. Exposure to organophosphorus and organochlorine pesticides, perfluoroalkyl substances, and polychlorinated biphenyls in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: The MIREC study. Environ. Res. 147:71–81. doi:10.1016/j.envres.2016.01.040.
  • Shapiro, G. D., L. Dodds, T. E. Arbuckle, J. Ashley-Martin, W. Fraser, M. Fisher, S. Taback, E. Keely, M. F. Bouchard, P. Monnier, et al. 2015. Exposure to phthalates, bisphenol A and metals in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: The MIREC Study. Environ. Int. 83:63–71. doi:10.1016/j.envint.2015.05.016.
  • Shaw, S. D. 2017. Human responses to complex environmental exposures: Linking causes and effects. Rev. Environ. Health 32:301–02. doi:10.1515/reveh-2017-0043.
  • Shepherd, T. J., W. Dirks, C. Manmee, S. Hodgson, D. A. Banks, P. Averley, and T. Pless-Mulloli. 2012. Reconstructing the life-time lead exposure in children using dentine in deciduous teeth. Sci. Total Environ. 425:214–22. doi:10.1016/j.scitotenv.2012.03.022.
  • Shi, W., and M. R. Chance. 2008. Metallomics and metalloproteomics. Cell. Mol. Life Sci. 65:3040–48. doi:10.1007/s00018-008-8189-9.
  • Shim, Y. K., M. D. Lewin, P. Ruiz, J. E. Eichner, and M. M. Mumtaz. 2017. Prevalence and associated demographic characteristics of exposure to multiple metals and their species in human populations: The United States NHANES, 2007–2012. J. Toxicol. Environ. Health A 80:502–12. doi:10.1080/15287394.2017.1330581.
  • Shiue, I., and K. Hristova. 2014. Higher urinary heavy metal, phthalate and arsenic concentrations accounted for 3–19% of the population attributable risk for high blood pressure: US NHANES, 2009–2012. Hypertens. Res. 37:1075–81. doi:10.1038/hr.2014.121.
  • Simón-Manso, Y., M. S. Lowenthal, L. E. Kilpatrick, M. L. Sampson, K. H. Telu, P. A. Rudnick, W. G. Mallard, D. W. Bearden, T. B. Schock, and D. Tchekhovskoi, et al. 2013. Metabolite profiling of a nist standard reference material for human plasma (srm 1950): GC-MS, LC-MS, NMR and clinical laboratory analyses, libraries, and web-based resources. Anal. Chem. 85:11725–31. doi: 10.1021/ac402503m.
  • Siroux, V., L. Agier, and R. Slama. 2016. The exposome concept: A challenge and a potential driver for environmental health research. Eur. Respir. Rev. 25:124–29. doi:10.1183/16000617.0034-2016.
  • Siskos, A. P., P. Jain, W. Römisch-Margl, M. Bennett, D. Achaintre, Y. Asad, L. Marney, L. Richardson, A. Koulman, J. L. Griffin, et al. 2017. Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma. Anal. Chem. 89:656–65. doi:10.1021/acs.analchem.6b02930.
  • Slezakova, K., M. Oliveira, J. Madureira, E. O. Fernandes, C. Delerue-Matos, S. Morais, and M. C. Pereira. 2017. Polycyclic aromatic hydrocarbons (PAH) in Portuguese educational settings: A comparison between preschools and elementary schools. J. Toxicol. Environ. Health A 80:630–40. doi:10.1080/15287394.2017.1286931.
  • Steckling, N., A. Gotti, S. Bose-O’Reilly, D. Chapizanis, D. Costopoulou, F. De Vocht, M. Garí, J. O. Grimalt, E. Heath, R. Hiscock, et al. 2018. Biomarkers of exposure in environment-wide association studies – Opportunities to decode the exposome using human biomonitoring data. Environ. Res. 164:597–624. doi:10.1016/j.envres.2018.02.041.
  • Stiegel, M. A., J. D. Pleil, J. R. Sobus, T. Stevens, and M. C. Madden. 2017. Linking physiological parameters to perturbations in the human exposome: Environmental exposures modify blood pressure and lung function via inflammatory cytokine pathway. J. Toxicol. Environ. Health A 80:485–501. doi:10.1080/15287394.2017.1330578.
  • Stricker, S. H., A. Köferle, and S. Beck. 2017. From profiles to function in epigenomics. Nat. Rev. Genet. 18:51–66. doi:10.1038/nrg.2016.138.
  • Sturla, S. J., A. R. Boobis, R. E. FitzGerald, J. Hoeng, R. J. Kavlock, K. Schirmer, M. Whelan, M. F. Wilks, and M. C. Peitsch. 2014. Systems toxicology: From basic research to risk assessment. Chem. Res. Toxicol. 27:314–29. doi:10.1021/tx400410s.
  • Sughis, M., T. S. Nawrot, V. Haufroid, and B. Nemery. 2012. Adverse health effects of child labor: High exposure to chromium and oxidative DNA damage in children manufacturing surgical instruments. Environ. Health Perspect. 120:1469–74. doi:10.1289/ehp.1104678.
  • Sun, L.-M., B.-J. Zhu, H.-T. Cao, X.-Y. Zhang, Q.-C. Zhang, G.-Z. Xin, L.-M. Pan, L.-F. Liu, and H.-X. Zhu. 2018. Explore the effects of Huang-Lian-Jie-Du-Tang on Alzheimer’s disease by UPLC-QTOF/MS-based plasma metabolomics study. J. Pharm. Biomed. Anal. 151:75–83. doi:10.1016/j.jpba.2017.12.053.
  • Sussulini, A. 2017. Metabolomics: From fundamentals to clinical applications. Adv. Exp. Med. Biol. 965. Springer International Publishing. First Edition. doi:10.1007/978-3-319-47656-8.
  • Swan, A. L., A. Mobasheri, D. Allaway, S. Liddell, and J. Bacardit. 2013. Application of machine learning to proteomics data: Classification and biomarker identification in postgenomics biology. J. Integr. Biol. 17:595–610. doi:10.1089/omi.2013.0017.
  • Szpunar, J. 2004. Metallomics: A new frontier in analytical chemistry. Anal. Bioanal. Chem. 378:54–56. doi:10.1007/s00216-003-2333-z.
  • Takeda, S. H. K., R. Kuno, F. Barbosa, and N. Gouveia. 2017. Trace element levels in blood and associated factors in adults living in the metropolitan area of São Paulo, Brazil. J. Trace Elem. Med. Biol. 44:307–14. doi:10.1016/j.jtemb.2017.09.005.
  • Tan, P.-N., M. Steinbach, and V. Kumar. 2005. Introduction to data mining, First ed. ( ISBN:0321321367) Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
  • Tang, R., H. Yang, J. R. Choi, Y. Gong, M. L. You, T. Wen, A. Li, X. Li, B. Xu, S. Zhang, et al. 2017. Capillary blood for point-of-care testing. Crit. Rev. Clin. Lab. Sci. 54:294–308. doi:10.1080/10408363.2017.1343796.
  • Tinkov, A. A., V. A. Gritsenko, M. G. Skalnaya, S. V. Cherkasov, J. Aaseth, and A. V. Skalny. 2018. Gut as a target for cadmium toxicity. Environ. Pollut. 235:429–34. doi:10.1016/j.envpol.2017.12.114.
  • Tohon, H., A. Nong, M. Moreau, M. Valcke, and S. Haddad. 2018. Reverse dosimetry modeling of toluene exposure concentrations based on biomonitoring levels from the Canadian health measures survey. J. Toxicol. Environ. Health A 81:1066–82. doi:10.1080/15287394.2018.1534174.
  • Ursell, L. K., J. L. Metcalf, L. W. Parfrey, and R. Knight. 2012. Defining the human microbiome. Nutr. Rev. 70:S38–S44. doi:10.1111/j.1753-4887.2012.00493.x.
  • Valdiglesias, V., M. Sánchez-Flores, A. Maseda, L. Lorenzo-López, D. Marcos-Pérez, A. López-Cortón, B. Strasser, D. Fuchs, B. Laffon, J. C. Millán-Calenti, et al. 2017. Immune biomarkers in older adults: Role of physical activity. J. Toxicol. Environ. Health A 80:605–20. doi:10.1080/15287394.2017.1286898.
  • Van Breda, S. G. J., L. C. Wilms, S. Gaj, D. G. J. Jennen, J. J. Briedé, J. C. S. Kleinjans, and T. M. C. M. de Kok. 2015. The exposome concept in a human nutrigenomics study: Evaluating the impact of exposure to a complex mixture of phytochemicals using transcriptomics signatures. Mutagenesis 30:723–31. doi:10.1093/mutage/gev008.
  • Van Ommen, B., T. V. D. Broek, I. Hoogh, M. Van Erk, E. Van Someren, T. Rouhani-Rankouhi, J. C. Anthony, K. Hogenelst, W. Pasman, A. Boorsma, et al. 2017. Systems biology of personalized nutrition. Nutr. Rev. 75:579–99. doi:10.1093/nutrit/nux029.
  • Vineis, P. 2015. Exposomics: Mathematics meets biology. Mutagenesis 30:719–22. doi:10.1093/mutage/gev068.
  • Vrijheid, M. 2014. The exposome: A new paradigm to study the impact of environment on health. Thorax 69:876–78. doi:10.1136/thoraxjnl-2013-204949.
  • Vrijheid, M., R. Slama, O. Robinson, L. Chatzi, M. Coen, P. Van Den Hazel, C. Thomsen, J. Wright, T. J. Athersuch, N. Avellana, et al. 2014. The human early-life exposome (HELIX): Project rationale and design. Environ. Health Perspect. 122:535–44. doi:10.1289/ehp.1307204.
  • Wahlberg, K., M. Arora, A. Curtin, P. Curtin, R. O. Wright, D. R. Smith, R. G. Lucchini, K. Broberg, and C. Austin. 2017. Polymorphisms in manganese transporters show developmental stage and sex specific associations with manganese concentrations in primary teeth. Neurotoxicology 64:103–09. doi:10.1016/j.neuro.2017.09.003.
  • Wallace, M. A. G., and J. D. Pleil. 2018. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal. Chim. Acta 1024:18–38. doi:10.1016/j.aca.2018.01.069.
  • Wallace, M. A. G., J. D. Pleil, K. D. Oliver, D. A. Whitaker, S. Mentese, K. W. Fent, and G. P. Horn. 2019. Non-targeted GC/MS analysis of exhaled breath samples: Exploring human biomarkers of exogenous exposure and endogenous response from professional firefighting activity. J. Toxicol. Environ. Health Part A 82:244–60. doi:10.1080/15287394.2019.1587901.
  • Wallace, M. A. G., T. M. Kormos, and J. D. Pleil. 2016. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. J. Toxicol. Environ. Health B 19:380–409. doi:10.1080/10937404.2016.1215772.
  • Wang, S., S. Chanock, D. Tang, Z. Li, S. Edwards, W. Jedrychowski, and F. P. Perera. 2010. Effect of gene-environment interactions on mental development in African, American, Dominican, and Caucasian mothers and newborns. Ann. Human Genet. 74:46–56. doi:10.1111/j.1469-1809.2009.00550.x.
  • Wasinger, V. C., S. J. Cordwell, A. Cerpa-Poljak, J. X. Yan, A. A. Gooley, M. R. Wilkins, M. W. Duncan, R. Harris, K. L. Williams, and I. Humphery-Smith. 1995. Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–94. doi:10.1002/elps.11501601185.
  • Wild, C. P. 2005. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14:1847–50. doi:10.1158/1055-9965.epi-05-0456.
  • Wild, C. P. 2008. Environmental exposure measurement in cancer epidemiology. Mutagenesis 24:117–25. doi:10.1093/mutage/gen061.
  • Wild, C. P. 2011. Future research perspectives on environment and health: The requirement for a more expansive concept of translational cancer research. Environ. Health 10:S15–S19. doi:10.1186/1476-069x-10-s1-s15.
  • Wild, C. P. 2012. The exposome: From concept to utility. Int. J. Epidemiol. 41:24–32. doi:10.1093/ije/dyr236.
  • Williams, R. J. P. 2001. Chemical selection of elements by cells. Coord. Chem. Rev. 216–217:583–95. doi:10.1016/S0010-8545(00)00398-2.
  • Wishart, D. S., D. Tzur, C. Knox, R. Eisner, A. C. Guo, N. Young, D. Cheng, K. Jewell, D. Arndt, S. Sawhney, et al. 2007. HMDB: The human metabolome database. Nucl. Acids Res. 35:D521–D526. doi:10.1093/nar/gkl923.
  • Wu, G. D., J. Chen, C. Hoffmann, K. Bittinger, -Y.-Y. Chen, S. A. Keilbaugh, M. Bewtra, D. Knights, W. A. Walters, R. Knight, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–08. doi:10.1126/science.1208344.
  • Wu, -L.-L., W. Gong, S.-P. Shen, Z.-H. Wang, J.-X. Yao, J. Wang, J. Yu, R. Gao, and G. Wu. 2017. Multiple metal exposures and their correlation with monoamine neurotransmitter metabolism in Chinese electroplating workers. Chemosphere 182:745–52. doi:10.1016/j.chemosphere.2017.04.112.
  • Xia, J., L. Lu, C. Jin, S. Wang, J. Zhou, Y. Ni, Z. Fu, and Y. Jin. 2018. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp. Biochem. Physiol. C 209:1–8. doi:10.1016/j.cbpc.2018.03.007.
  • Yu, W., T. Liu, R. Valdez, M. Gwinn, and M. J. Khoury. 2010. Application of support vector machine modeling for prediction of common diseases: The case of diabetes and pre-diabetes. BMC Med. Inform. Decis. Makers 10:16–23. doi:10.1186/1472-6947-10-16.
  • Zawia, N. H., R. Sharan, M. Brydie, T. Oyama, and T. Crumpton. 1998. Sp1 as a target site for metal-induced perturbations of transcriptional regulation of developmental brain gene expression. Dev. Brain Res. 107:291–98. doi:10.1016/s0165-3806(98)00023-6.
  • Zhou, A., J. Ni, Z. Xu, Y. Wang, S. Lu, W. Sha, P. C. Karakousis, and Y.-F. Yao. 2013. Application of 1H NMR spectroscopy-based metabolomics to sera of tuberculosis patients. J. Proteome Res. 12:4642–49. doi:10.1021/pr4007359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.