622
Views
17
CrossRef citations to date
0
Altmetric
Articles

Arsenic in edible macroalgae: an integrated approach

&

References

  • Almela, C., S. Algora, V. Benito, M. J. Clemente, V. Devesa, M. A. Súñer, D. Vélez, and R. Montoro. 2002. Heavy metals, total arsenic, and inorganic arsenic contents of algae food products. J. Agric. Food Chem. 50:918–23. doi:10.1021/jf0110250.
  • Almela, C., J. M. Clemente, D. Vélez, and R. Montoro. 2006. Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem. Toxicol. 44:1901–08. doi:10.1016/j.fct.2006.06.011.
  • Almela, C., J. M. Laparra, D. Vélez, R. Barberá, R. Farré, and R. Montoro. 2005. Arsenosugars in raw and cooked edible seaweed: Characterization and bioaccessibility. J. Agric. Food Chem. 53:7344–51. doi:10.1021/jf050503u.
  • Amin, M. H. A., C. Xiong, R. A. Glabonjat, K. A. Francesconi, T. Oguri, and J. Yoshinaga. 2018. Estimation of daily intake of arsenolipids in Japan based on a market basket survey. Food Chem. Toxicol. 118:245–51. doi:10.1016/j.fct.2018.05.019.
  • Argentine Food Code (AFC), 2017. Cap III. Of the food products. Cap XI. Plant foods. www.anmat.gov.ar
  • Arnold, L. L., M. Eldan, A. Nyska, M. van Gemert, and S. M. Cohen. 2006. Dimethylarsinic acid: Results of chronic toxicity/oncogenicity studies in F344 rats and in B6C3F1 mice. Toxicology 223:82–100. doi:10.1016/j.tox.2006.03.013.
  • Australia New Zealand Food Authority (ANFZA) Food Standards Code. 2013. Standard 1.4.1. Contaminants and natural toxicants. Issue 124.
  • Barbosa, F., Jr. 2017. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. J. Toxicol. Environ. Health Part A 80:137–1244. doi:10.1080/15287394.2016.1259475.
  • Bernstam, L., and J. Nriagu. 2000. Molecular aspects of arsenic stress. J. Toxicol. Environ. Health B. 3:293–322. doi:10.1080/109374000436355.
  • Bozack, A. K., R. Saxena, and M. V. Gamble. 2018. Nutritional influences on one-carbon metabolism: Effects on arsenic methylation and toxicity. Annu. Rev. Nutr. 38:401–29. doi:10.1146/annurev-nutr-082117-051757.
  • Brandon, E. F. A., P. J. C. M. Janssen, and L. de Wit-Bos. 2014. Arsenic: Biaccessibility from seaweed and rice, dietary exposure calculations and risk assessment. Food. Addit. Contam. A. 31:1993–2003. doi:10.1080/19440049.2014.974687.
  • Breuer, C., and T. Pichler. 2013. Arsenic in marine hydrothermal fluids. Chem. Geol. 348:2–14. doi:10.1016/j.chemgeo.2012.10.044.
  • Bundschuh, J., and M. I. Litter. 2010. Situación del arsénico en la región Ibérica e Iberoamericana: Posibles acciones articuladas e integradas para el abatimiento del As en zonas aisladas. Cap. 1: Situación de América Latina con relación al problema global del arsénico. CYTED (Eds.), pp. 37–54. doi:10.1016/j.ajem.2008.09.026.
  • Bundschuh, J., B. Nath, P. Bhattacharya, C. W. Liu, M. A. Armienta, M. V. Moreno López, D. L. Lopez, J. S. Jean, L. Cornejo, L. F. Macedo, et al. 2012. Arsenic in the human food chain: The Latin American perspective. Sci. Total Environ. 429:92–106. doi:10.1016/j.scitotenv.2011.09.069.
  • Centre d’Estude et de Valorisation des Algues. 2010. Régelementational gues alimentaires synthése, CEVA au 1/04/2010. France.
  • Chávez-Capilla, T., M. Beshai, W. Maher, T. Kelly, and S. Foster. 2016. Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract. Food Chem. 212:189–97. doi:10.1016/j.foodchem.2016.05.163.
  • Choi, H., S. Park, D. Kim, and M. Kim. 2011. Determination of 6 arsenic species present in seaweed by solvent extraction, clean-up, and LC-ICP/MS. Food Sci. Biotechnol. 20:39–44. doi:10.1007/s10068-011-0006-9.
  • Cholpraipimolrat, W., T. Suriyo, and N. Rangkadilok. 2017. Hijiki and sodium arsenite stimulate growth of human colorectal adenocarcinoma cells through ERK1/2 activation. Food Chem. Toxicol. 110:33–41. doi:10.1016/j.fct.2017.09.052.
  • Cubadda, F., B. P. Jackson, K. L. Cottingham, Y. O. Van Horne, and M. Kurzius-Spenser. 2017. Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci. Total Environ. 579:1228–39. doi:10.1016/j.scitotenv.2016.11.108.
  • da Silva, R. F., O. S. Borges, C. A. Lamas, V. H. A. Cagnon, and W. G. Kempinas. 2017. Arsenic trioxide exposure impairs testicular morphology in adult male mice and consequent fetal viability. J. Toxicol. Environ. Health Part A 80:1166–79. doi:10.1080/15287394.2017.1376405.
  • Delnomdedieu, M., M. M. Basti, M. Styblo, J. D. Otvos, and D. J. Thomas. 1994. Complexation of arsenic species in rabbit erythrocytes. Chem. Res. Toxicol. 7:621–27. doi:10.1021/tx00041a006.
  • Desideri, D., C. Cantaluppi, F. Ceccotto, M. A. Meli, C. Roselli, and L. Feduzi. 2017. Essential and toxic elements in seaweeds for human consumption. J. Toxicol. Environ. Health Part A 79:112–22. doi:10.1080/15287394.2015.1113598.
  • Desideri, D., C. Roselli, L. Feduzi, L. Ugolini, and M. A. Meli. 2018. Applicability of an in vitro gastrointestinal digestion method to evaluation of toxic elements bioaccessibility from algae for human consumption. J. Toxicol. Environ. Health Part A 79:212–17. doi:10.1080/15287394.2018.1436480.
  • Díaz, O., Y. Tapia, O. Muñoz, R. Montoro, D. Velez, and C. Almela. 2012. Total and inorganic arsenic concentrations in different species of economically important algae harvested from coastal zones of Chile. Food Chem. Toxicol. 50:744–49. doi:10.1016/j.fct.2011.11.024.
  • Dominguez-González, M. R., G. M. Chiocchetti, P. Herbello-Hermelo, D. Vélez, V. Devesa, and P. Bermejo-Barrera. 2017. Evaluation of iodine bioavailability in seaweed using in vitro methods. J. Agric. Food Chem. 65:8435–42. doi:10.1021/acs.jafc.7b02151.
  • Duncan, E. G., W. A. Maher, and S. D. Foster. 2015. The formation and fate of organo-arsenic species in marine ecosystems: Do existing experimental approaches appropriately simulate ecosystem complexity? Environ. Chem. 12:149–62. doi:10.1071/EN14124.
  • Ebert, F., S. Meyer, L. Leffers, G. Raber, K. A. Francesconi, and T. Schwerdtle. 2016. Toxicological characterisation of a thio-arsenosugar-glycerol in human cells. J. Trace Elem. Med. Biol. 38:150–56. doi:10.1016/j.jtemb.2016.04.013.
  • Entwisle, J., and R. Hearn. 2006. Development of an accurate procedure for the determination of arsenic in fish tissues of marine origin by inductively coupled plasma mass spectroscopy. Spectrochim Acta. B. 61:438–43. doi:10.1016/j.sab.2006.01.008.
  • Erickson, R. J., D. R. Mount, T. L. Highland, R. Hockett, D. J. Hoff, C. T. Jenson, and T. J. Lahren. 2019. The effects of arsenic speciation on accumulation and toxicity of dierborne arsenic exposures to rainbow trout. Aquat. Toxicol. 210:227–41. doi:10.1016/j.aquatox.2019.03.001.
  • Evans, F. D., and A. T. Critchley. 2014. Seaweeds for animal production use. J. Appl. Phycol. 26:891–99. doi:10.1007/s10811-013-0162-9.
  • Food and Drug Administration (FDA) 2001. Code of federal regulations (annual edition). Part 556 - Tolerances for residue of new animal drugs in food. 21 CFR 556.60 – Arsenic.
  • Foster, S., and M. A. Maher. 2016. Arsenobetaine and thio-arsenic species in marine macroalgae and herbivorous animals: Accumulated through trophic transfer or produced in situ? J. Environ. Sci. 49:131–39. doi:10.1016/j.jes.2016.06.003.
  • Foster, S., W. Maher, F. Krikowa, and S. A. Apte. 2007. Microwave-assisted sequential extraction of after and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 71:537–49. doi:10.1016/j.talanta.2006.04.027.
  • Francesconi, K. A. 2010. Arsenic species in seafood: Origin and human health implications. Pure Appl. Chem. 82:373–81. doi:10.1351/PAC-CON-09-07-01.
  • Francesconi, K. A., and M. Sperling. 2005. Speciation analysis with HPLC-mass spectrometry: Time to take stock. Analyst 130:998–1001. doi:10.1039/B504485P.
  • García-Salgado, S., M. A. Quijano-Nieto, and M. M. Bonilla-Simón. 2006. Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography–Hydride generation-inductively coupled plasma–Atomic emission spectrometry. J. Chromatogr. A. 1129:54–60. doi:10.1016/j.chroma.2006.06.083.
  • García-Salgado, S., M. A. Quijano-Nieto, and M. M. Bonilla-Simón. 2012. Arsenic speciation in edible alga simples by microwave-assisted extraction and high performance liquid chromatographic coupled to atomic fluorescence spectrometry. Anal. Chim. Acta. 714:38–46. doi:10.1016/j.aca.2011.12.001.
  • García-Sartal, C., M. C. Barciela-Alonso, and P. Bermejo-Barrera. 2012. Effect of the cooking procedure on the arsenic speciation in the bioavailable (dialyzable) fraction from seaweed. Microchem J. 105:65–71. doi:10.1016/j.microc.2012.08.001.
  • Glabonjat, R. A., G. Raber, K. B. Jensen, J. Ehgartner, and K. A. Francesconi. 2014. Quantification of arsenolipids in the certified reference material NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemical derivatization. Anal. Chem. 86:10282–87. https://pubs.acs.org/doi/10.1021/ac502488f.
  • Golub, M. S., M. S. Macintosh, and N. Baumrind. 1998. Developmental and reproductive toxicity of inorganic arsenic: Animal studies and human concerns. J. Toxicol. Environ. Health B. 1:199–241. doi:10.1080/10937409809524552.
  • Hsieh, Y., and S. Jiang. 2012. Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds. J. Agric. Food Chem. 60:2083–89. doi:10.1021/jf204595d.
  • Ichikawa, S., M. Kamoshida, K. Hanaoka, M. Hamano, T. Maitani, and T. Kaise. 2006. Decrease of arsenic in edible brown algae Hijikia fusiforme by the cooking process. Appl. Organomet. Chem. 20:585–90. doi:10.1002/aoc.1102.
  • International Agency for research on Cancer (IARC). 2009. A review of human carcinogens. Part C: Arsenic, Metals, Fibres, and Dusts/IARC. Lyon, France: Working Group on the Evaluation of Carcinogenic Risks to Humans.
  • Kalantzi, I., K. Mylona, K. K. Sofoulaki, M. Tsapakis, A. Spiros, and S. A. Pergantis. 2017. Arsenic speciation in fish from Greek coastal areas. J. Environ. Sci. 56:300–12. doi:10.1016/j.jes.2017.03.033.
  • Kaushal, P., P. Kumar, R. D. Mehra, and P. Dhar. 2018. Dentritic processes as targets for arsenic induced neurotoxicity: Protective role of curcumin. J. Anat. Soc. India 67:1–5. doi:10.1016/j.jasi.2018.05.001.
  • Kenyon, E. M., and M. F. Hughes. 2001. A concise review of the toxicity and carcinogenicity of dimethylarsinic acid. Toxicology 160:227–36. doi:10.1016/S0300-483X(00)00458-3.
  • Koch, I., J. Dee, K. House, J. Sui, J. Zhang, A. McKnight-Whitford, and K. J. Reimer. 2013. Bioaccessibility and speciation of arsenic in country foods from contaminated sites in Canada. Sci. Total Environ. 449:1–8. doi:10.1016/j.scitotenv.2013.01.047.
  • Koch, I., K. Mc Pherson, P. Smith, L. Easton, K. G. Doe, and K. J. Reimer. 2007. Arsenic bioaccessibility and speciation in clams and seaweed from a contaminated marine environment. Mar. Pollut. Bull. 54:586–94. doi:10.1016/j.marpolbul.2006.12.004.
  • Laparra, J. M., D. Vélez, R. Montoro, R. Barberá, and R. Farré. 2003. Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. J. Agric. Food Chem. 51:6080–85. doi:10.1021/jf034537i.
  • Leese, E., M. Clench, J. Morton, P. H. E. Gardiner, and V. A. Carolan. 2017. The investigation of unexpected arsenic compounds observed in routine biological monitoring urinary speciation analysis. Toxics 5:12–15. doi:10.3390/toxics5020012.
  • Llorente-Mirandes, T., M. J. Ruíz-Chancho, M. Barbero, R. Rubio, and J. F. López-Sánchez. 2010. Measurement of arsenic compounds in littoral zone algae from the Western Mediterranean Sea. Occurrence of arsenobetaine. Chemosphere 81:867–75. doi:10.1016/j.chemosphere.2010.08.007.
  • Lopes-Costa, E., M. Abreu, D. Gargiulo, E. Rocha, and A. A. Ramos. 2017. Anticancer effects of seweed compunds fucoxanthin and phloroglucinol, alone and in combination with 5-fluorouracil in colon cells. J. Toxicol. Environ. Health Part A 80:776–87. doi:10.1080/15287394.2017.1357297.
  • Ma, Z., L. Lin, M. Wu, H. Yu, T. Shang, T. Zhang, and M. Zhao. 2018. Total and inorganic arsenic contents in seaweeds: Absorption, accumulation, transformation and toxicity. Aquaculture 497:49–55. doi:10.1016/j.aquaculture.2018.07.040.
  • Mac Monagail, M., E. Cummins, R. Bermejo, E. Daly, D. Costello., and L. Morrison. 2018. Quantification and feed to food transfer of total and inorganic arsenic from a commercial seaweed feed. Environ. Int. 118:314–24. doi:10.1016/j.envint.2018.05.032.
  • Mac Monagail, M., and L. Morrison. 2019. Arsenic speciation in a variety of seaweeds and associated food products. Chapter nine. Compr. Anal. Chem. 85:267–310. doi:10.1016/bs.coac.2019.03.005.
  • Madsen, A. D., W. Goessler, S. N. Pedersen, and K. A. Francesconi. 2000. Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugars speciation studies. J. Anal. Atom Spectrom. 15:657–62. doi:10.1039/b001418o.
  • Maehre, H. K., M. K. Malde, K. E. Eilertsen, and E. O. Elvevoll. 2014. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 94:3281–90. doi:10.1002/jsfa.6681.
  • Maher, W., J. Waring, F. Krikowa, E. Duncan, and S. Foster. 2018. Ecological factors affecting the accumulation and speciation of arsenic in twelve Australian coastal bivalve molluscs. Environ. Chem. 15:46–57. doi:10.1071/EN17106.
  • Mamun, M. A. A., I. M. M. Rahman, R. R. Datta, C. Kosugi, A. S. Mashio, T. Maki, and H. Hasegawa. 2019. Arsenic speciation and biotransformation by the marine macroalga Undaria pinnatifida in seawater: A culture medium study. Chemosphere 222:705–13. doi:10.1016/j.chemosphere.2019.01.185.
  • Marschner, K., S. Musil, I. Miksik, and J. Dédina. 2018. Investigation of hydride generation from arsenosugars - It is feasible for speciation analysis? Anal. Chim. Acta. 1008:8–17. doi:10.1016/j.aca.2018.01.009.
  • Meyer, S., M. Matisek, S. M. Muller, M. S. Taleshi, F. Ebert, K. A. Francesconi, and T. Schwerdtle. 2014. In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics 6:1023–33. doi:10.1039/C4MT00061G.
  • Mise, N., M. Ohtsu, A. Ikegami, A. Mizuno, X. Cui, Y. Kobayashi, Y. Nakagi, K. Nohara, T. Yoshida, and F. Kayama. 2019. Hijiki seaweed consumption elevates levels of inorganic arsenic intake in Japanese children and pregnant women. Food. Addit. Contam. A. 36:84–95. doi:10.1080/19440049.2018.1562228.
  • Molin, M., S. M. Ulven, L. Dahl, V. H. Telle-Hansen, M. Holck, G. Skjegstad, O. Ledsaak, J. J. Sloth, W. Goessler, A. Oshaug, et al. 2012b. Humans seem to produce arsenobetaine and dimethylarsine after bolus dose of seafood. Environ. Res. 112:28–39. doi:10.1016/j.envres.2011.11.007.
  • Molin, M., S. M. Ulven, H. M. Meltzer, and J. Alexander. 2015. Arsenic in the human food chain, biotransformation and toxicology – review focusing on seafood arsenic. J. Trace Elem. Med. Biol. 31:249–59. doi:10.1016/j.jtemb.2015.01.010.
  • Molin, M., T. A. Ydersbond, S. M. Ulven, M. Holck, L. Dahl, J. J. Sloth, D. Fliegel, W. Goessler, J. Alexander, and H. M. Meltzer. 2012a. Major and minor arsenic compounds accounting for the total urinary excretion of arsenic following intake of blue mussels (Mytilus edulis): A controlled human study. Food Chem. Toxicol. 50:2462–72. doi:10.1016/j.fct.2012.04.026.
  • Morita, M., and Y. Shibata. 1988. Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame). Chemosphere 17:1147–52. doi:10.1016/0045-6535(88)90180-4.
  • Morrison, L., B. Chen, and W. T. Corns. 2014. Arsenic speciation in seaweeds using liquid chromatography hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS). In: One century of the discovery of arsenicosis in Latin America (1914–2014) As 2014: Proceedings of the 5th International Congress on Arsenic in the Environment, May 11-16, 2014, Buenos Aires, Argentina. Ed. M.I. Litter, H.B. Nicolli, M. Meichtry, N. Quici, J. Bundschuh, P. Bhattacharya, and R. Naidu, pp. 185–186. ISBN 978-1315778884
  • Orloff, K., K. Mistry, and S. Metcalf. 2009. Biomonitoring for environmental exposures to arsenic. J. Toxicol. Environ. Health B. 12:509–24. doi:10.1080/10937400903358934.
  • Pell, A., G. Kokkinis, M. Malea, S. A. Pergantis, R. Rubio, and J. F. López-Sánchez. 2013a. LC-ICP-MS analysis of arsenic compounds in dominant seaweeds from the thermaikos gulf (Northern Aegean Sea, Greece). Chemosphere 93:2187–94. doi:10.1016/j.chemosphere.2013.08.003.
  • Pell, A., A. Márquez, R. Rubio, and J. F. López-Sánchez. 2013b. Effects of simple processing on arsenic speciation in marine macroalgae. Anal. Meth. 5:2543–50. doi:10.1039/c3ay00024a.
  • Petrick, J. S., B. Jagadish, E. A. Mash, and H. V. Aposhian. 2001. Monothylarsonous acid (MMAIII) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem. Res. Toxicol. 4:651–56. doi:10.1021/tx000264z.
  • Pétursdóttir, A. H., and H. Gunnlaugsdóttir. 2019. Selective and fast screening method for inorganic arsenic in seaweed using hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS). Microchem J. 144:45–50. doi:10.1016/j.microc.2018.08.055.
  • Pétursdóttir, A. H., J. J. Sloth, and J. Feldmann. 2015. Introduction of regulations for arsenic in feed and food with emphasis on inorganic arsenic, and implications for analytical chemistry. Anal. Bioanal. Chem. 407:8385–96. doi:10.1007/s00216-015-9019-1.
  • Polya, D. A., P. R. Lythgoe, F. Abou-Shakra, G. Gault, J. R. Brydie, J. G. Webster, K. L. Brown, M. K. Nimfopoulos, and K. M. Michailidis. 2003. IC-ICP-MS and IC-ICP-HEX-MS determination of arsenic speciation in surface and ground waters: Preservation and analytical issues. Mineral Mag. 67:247–61. doi:10.1180/0026461036720098.
  • Popowich, A., Q. Zhang, and X. C. Le. 2016. Arsenobetaine: The ongoing mystery. Nat. Sci. Rev. 3:451–58. doi:10.1093/nsr/nww061.
  • Ramos Nacano, L., R. de Freitas, and F. Barbosa. 2014. Evaluation of seasonal dietary exposure to arsenic, cadmium and lead in schoolchildren through the analysis of meals served by public schools of Ribeirao Preto, Brazil. J. Toxicol. Environ. Health Part A 77:367–74. doi:10.1080/15287394.2013.874874.
  • Ratcliff, J. J., A. H. L. Wan, M. D. Edwards, A. Soler-Vila, M. P. Johnson, M. H. Abreu, and L. Morrison. 2016. Metal content of kelp (Laminaria digitata) co-cultivated with Atlantic salmon in an integrated multi-trophic aquaculture system. Aqualculture 450:234–43. doi:10.1016/j.aquaculture.2015.07.032.
  • Reis, V. A. T., and A. C. Duarte. 2018. Analytical methodologies for arsenic speciation in macroalgae: A critical review. Trends Anal. Chem. 102:170–84. doi:10.1016/j.trac.2018.02.003.
  • Ronan, J. M., D. B. Stengel, A. Raab, J. Feldmann, L. O`Hea, E. Bralatei, and E. McGovern. 2017. High proportions of inorganic arsenic in Laminaria digitata but not in ascophyllum nodosum samples from Ireland. Chemosphere 186:17–23. doi:10.1016/j.chemosphere.2017.07.076.
  • Ruiz-Chancho, M. J., J. F. Lopez-Sanchez, and R. Rubio. 2010. Occurrence of arsenic species in the seagrass Posidonia oceanica and in the marine algae lessonia nigrescens and Durvillaea antarctica . J.Appl. Phycol. 22:465–72. doi:10.1007/s10811-009-9480-3.
  • Salmataj, S. A., S. U. Kamath, V. R. Murty, and S. Pai. 2018. Experimentally induced arsenate toxicity attenuated by ixora coccinea flower extract in IEC-6 cells. Asian J Microbiol 20:628–34.
  • Salomone, V. N., M. Riera, L. Cerchietti, G. Custo, and C. Muniain. 2017. Seasonal determination of trace and ultra-trace content in Macrocystis pyrifera from San Jorge Gulf (Patagonia) by total reflextion X-ray fluorescence. Spectrochim Acta. B. 131:74–78. doi:10.1016/j.sab.2017.03.009.
  • Sayeed, M. S. B., M. Ratan, F. Hossen, F. Hassan, M. Faisal, and M. F. Kadir. 2013. Arsenosugar induced blood and brain oxidative stress, DNA damage and neurobehavioral impairments. Neurochem. Res. 38:405–12. doi:10.1007/s11064-012-0934-7.
  • Sele, V., J. J. Sloth, A. K. Lundebye, E. H. Larsen, M. H. G. Berntssen, and H. Amlund. 2012. Arsenolipìds in marine oils and fats: A review of occurrence, chemistry and future research needs. Food Chem. 133:618–30. doi:10.1016/j.foodchem.2012.02.004.
  • Styblo, M., L. M. Del Razo, L. Vega, D. R. Germolec, E. L. Le Clluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, and D. J. Thomas. 2000. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 74:289–99. doi:10.1007/s002040000134.
  • Szefer, P. 2013. Safety assessment of seafood with respect to chemical pollutants in European seas. Oceanol. Hydrobiol. Stud. 42:110–18. doi:10.2478/s13545-013-0063-1.
  • Taylor, V. F., B. Goodale, A. Raab, T. Schwerdtle, K. Reamer, S. Conklin, M. R. Karagas, and K. A. Francesconi. 2017. Human exposure to organic arsenic species from seafood. Sci. Total Environ. 580:266–82. doi:10.1016/j.scitotenv.2016.12.113.
  • Taylor, V. F., and B. P. Jackson. 2016. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere 163:6–13. doi:10.1016/j.chemosphere.2016.08.004.
  • Thomas, D. J., and K. Bradham. 2016. Role of complex organic arsenicals in food in aggregate exposure to arsenic. J. Environ. Sci. 49:86–96. doi:10.1016/j.jes.2016.06.005.
  • Tseng, C. 2009. A review on environmental factors regulating arsenic methylation in humans. Toxicol. Appl. Pharmacol. 235:338–50. doi:10.1016/j.taap.2008.12.016.
  • Wan, A. H. L., R. J. Wilkes, S. Heesch, R. Bermejo, M. P. Johnson, and L. Morrison. 2017. Assessment and characterisation of Ireland’s Green Tides (Ulva species). PLoS ONE 12:e0169049. doi:10.1371/journal.pone.0169049.
  • Wells, M. L., P. Potin, J. S. Craigie, J. A. Raven, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire, and S. H. Brawley. 2017. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 29:949–82. doi:10.1007/s10811-016-0974-5.
  • World Health Organization (WHO). 2010. Safety evaluation of certain food contaminants, 63. Geneva: Food Additives Series. http://www.who.int/ipcs/publications/jecfa/monographs/en/index.html.
  • Wuilloud, R. G., J. C. Altamirano, P. N. Smichowski, and D. T. Heitkemper. 2006. Investigation of arsenic speciation in algae of the antarctic region by HPLC-ICP-MS and HPLC-ESI-ion trap MS. J. Anal. Atom Spectrom. 21:1214–23. doi:10.1039/b607203h.
  • Yokoi, K., and A. Konomi. 2012. Toxicity of so-called edible hijiki seaweed (Sarfassum fusiforme) containing inorganic arsenic. Reg. Toxicol. Pharmacol. 63:291–97. doi:10.1016/j.yrtph.2012.04.006.
  • Yu, L. L., J. F. Browning, C. O. Burdette, G. C. Caceres, K. D. Chieh, W. C. Davis, B. L. Kassim, S. E. Long, K. E. Murphy, R. Oflaz, et al. 2018. Development of a kelp power (Thallus laminariae) standard reference material. Anal. Bioanal. Chem. 410:1265–78. doi:10.1007/s00216-017-0766-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.