753
Views
18
CrossRef citations to date
0
Altmetric
Articles

The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Arrieta, M. C., L. Bistritz, and J. B. Meddings. 2006. Alterations in intestinal permeability. Gut 55:1512–20. doi:10.1136/gut.2005.085373.
  • Ault, A. P., D. I. Stark, J. L. Axson, J. N. Keeney, A. D. Maynard, I. L. Bergin, and M. A. Philbert. 2016. Protein corona-induced modification of silver nanoparticle aggregation in simulated gastric fluid. Environ. Sci. 3:1510–20. doi:10.1039/c6en00278a.
  • Axson, J. L., D. I. Stark, A. L. Bondy, S. S. Capracotta, A. D. Maynard, M. A. Philbert, I. L. Bergin, and A. P. Ault. 2015. Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J. Phys. Chem. C 119:20632–41. doi:10.1021/acs.jpcc.5b03634.
  • Bäckhed, F., R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon. 2005. Host-bacterial mutualism in the human intestine. Science 307:1915–20. doi:10.1126/science.1104816.
  • Batstone, D. J., J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Siegrist, and V. A. Vavilin. 2002. The IWA anaerobic digestion model No 1 (ADM1). Water Sci. Technol. 45:65–73. doi:10.2166/wst.2002.0292.
  • Bi, Y., E. I. Westerband, A. Alum, F. C. Brown, M. Abbaszadegan, K. D. Hristovski, A. L. Hicks, and P. K. Westerhoff. 2018. Antimicrobial efficacy and life cycle impact of silver-containing food containers. ACS Sustain. Chem. Eng. 6:13086–95. doi:10.1021/acssuschemeng.8b02639.
  • Böhmert, L., M. Girod, U. Hansen, R. Maul, P. Knappe, B. Niemann, S. M. Weidner, A. F. Thünemann, and A. Lampen. 2014. Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells. Nanotoxicology 8:631–42. doi:10.3109/17435390.2013.815284.
  • Carbonero, F., A. C. Benefiel, A. H. Alizadeh-Ghamsari, and H. R. Gaskins. 2012. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 3:448–448. doi:10.3389/fphys.2012.00448.
  • Carneiro, M. F. H., and F. Barbosa Jr. 2016. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. J. Toxicol. Environ. Health B 19:129–48. doi:10.1080/10937404.2016.1168762.
  • Cascio, C., O. Geiss, F. Franchini, I. Ojea-Jimenez, F. Rossi, D. Gilliland, and L. Calzolai. 2015. Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products. J. Anal. At. Spectrom. 30:1255–65. doi:10.1039/c4ja00410h.
  • Cattò, C., E. Garuglieri, L. Borruso, D. Erba, M. C. Casiraghi, F. Cappitelli, F. Villa, S. Zecchin, and R. Zanchi. 2019. Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model. Environ. Pollut. 245:754–63. doi:10.1016/j.envpol.2018.11.019.
  • Chen, H., R. Zhao, B. Wang, C. Cai, L. Zheng, H. Wang, M. Wang, H. Ouyang, X. Zhou, Z. Chai, et al. 2017. The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact 8:80–88. doi:10.1016/j.impact.2017.07.005.
  • Chen, T., X. Liu, L. Ma, W. He, W. Li, Y. Cao, and Z. Liu. 2014. Food allergens affect the intestinal tight junction permeability in inducing intestinal food allergy in rats. Asian Pac. J. Allergy Immunol. 32:45–353. doi:10.12932/ap0443.32.4.2014.
  • Claus, S. P., H. Guillou, and S. Ellero-Simatos. 2016. The gut microbiota: A major player in the toxicity of environmental pollutants? Biofilms Microbiomes 2:16003. doi:10.1038/npjbiofilms.2016.3.
  • Crater, J. S., and R. L. Carrier. 2010. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol. Biosci. 10:1473–83. doi:10.1002/mabi.201000137.
  • Cremer, J., M. Arnoldini, and T. Hwa. 2017. Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc. Natl. Acad. Sci. 114:6438–43. doi:10.1073/pnas.1619598114.
  • Croix, J. A., F. Carbonero, G. M. Nava, M. Russell, E. Greenberg, and H. R. Gaskins. 2011. On the relationship between sialomucin and sulfomucin expression and hydrogenotrophic microbes in the human colonic mucosa. PLoS One 6:e24447. doi:10.1371/journal.pone.0024447.
  • Cueva, C., I. Gil-Sánchez, A. Tamargo, B. Miralles, J. Crespo, B. Bartolomé, and M. V. Moreno-Arribas. 2019. Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi®). Impact on human gut microbiota. Food Chem. Toxicol. 132:110657. doi:10.1016/j.fct.2019.110657.
  • Da Silva, S., C. Robbe-Masselot, A. Ait Belgnaoui, A. Mancuso, M. Mercade-Loubière, C. Cartier, M. Gillet, L. Ferrier, P. Loubière, E. Dague, et al. 2014. Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: Prevention by a probiotic treatment. Am. J. Physiol. Gastrointest. Liver Physiol. 307:G420–G429. doi:10.1152/ajpgi.00290.2013.
  • Dahiya, D. K., and R. A. K. Puniya. 2018. Impact of nanosilver on gut microbiota: A vulnerable link. Future Microbiol. 13:483–92. doi:10.2217/fmb-2017-0103.
  • Dai, X., and B. Wang. 2015. Role of gut barrier function in the pathogenesis of nonalcoholic fatty liver disease. Gastroenterol. Res. Pract. 2015:6. doi:10.1155/2015/287348.
  • Das, P., J. A. Mcdonald, E. O. Petrof, E. Allen-Vercoe, and V. K. Walker. 2014. Nanosilver-mediated change in human intestinal microbiota. J. Nanomed Nanotechnol. 5:235. doi:10.4172/2157-7439.1000235.
  • de Kort, S., D. Keszthelyi, and A. A. M. Masclee. 2011. Leaky gut and diabetes mellitus: What is the link? Obes. Rev. 12:449–58. doi:10.1111/j.1467-789X.2010.00845.x.
  • Deo, R. P., W. Songkasiri, B. E. Rittmann, and D. T. Reed. 2010. Surface complexation of neptunium(V) onto whole cells and cell components of Shewanella alga: Modeling and experimental study. Environ. Sci. Technol. 44:4930–35. doi:10.1021/es9035336.
  • Desai, M. S., A. M. Seekatz, N. M. Koropatkin, N. Kamada, C. A. Hickey, M. Wolter, N. A. Pudlo, S. Kitamoto, N. Terrapon, A. Muller, et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–1353.e21. doi:10.1016/j.cell.2016.10.043.
  • Dukan, S., Y. Levi, P. Piriou, F. Guyon, and P. Villon. 1996. Dynamic modelling of bacterial growth in drinking water networks. Water Res. 30:1991–2002. doi:10.1016/0043-1354(96)00021-8.
  • EFSA ANS Panel. 2016. Scientific opinion on the re-evaluation of silver (E 174) as food additive. Efsa J. 14:4364. doi: 10.2903/j.efsa.2016.4364.
  • El Kaoutari, A., F. Armougom, J. I. Gordon, D. Raoult, and B. Henrissat. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11:497. doi:10.1038/nrmicro3050.
  • Elderman, M., B. Sovran, F. Hugenholtz, K. Graversen, M. Huijskes, E. Houtsma, C. Belzer, M. Boekschoten, P. de Vos, J. Dekker, et al. 2017. The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLoS One 12:e0184274. doi:10.1371/journal.pone.0184274.
  • Etienne-Mesmin, L., B. Chassaing, M. Desvaux, K. De Paepe, R. Gresse, T. Sauvaitre, E. Forano, T. V. de Wiele, S. Schüller, N. Juge, et al. 2019. Experimental models to study intestinal microbes–Mucus interactions in health and disease. FEMS Microbiol. Rev. 43:457–89. doi:10.1093/femsre/fuz013.
  • Ferrua, M. J., and R. P. Singh. 2011. Understanding the fluid dynamics of gastric digestion using computational modeling. Procedia Food Sci. 1:1465–72. doi:10.1016/j.profoo.2011.09.217.
  • Fourie, N. H., D. Wang, S. K. Abey, A. L. Creekmore, S. Hong, C. G. Martin, J. W. Wiley, and W. A. Henderson. 2017. Structural and functional alterations in the colonic microbiome of the rat in a model of stress induced irritable bowel syndrome. Gut Microbes 8:33–45. doi:10.1080/19490976.2016.1273999.
  • Fröhlich, E. E., and E. Fröhlich. 2016. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int. J. Mol. Sci. 17:509–509. doi:10.3390/ijms17040509.
  • Georgantzopoulou, A., T. Serchi, S. Cambier, C. C. Leclercq, J. Renaut, J. Shao, M. Kruszewski, E. Lentzen, P. Grysan, S. Eswara, et al. 2016. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part. Fibre Toxicol. 13:9. doi:10.1186/s12989-016-0117-9.
  • Gillois, K., M. Lévêque, V. Théodorou, H. Robert, and M. Mercier-Bonin. 2018. Mucus: An underestimated gut target for environmental pollutants and food additives. Microorganisms 6:53. doi:10.3390/microorganisms6020053.
  • Gliga, A. R., S. Skoglund, I. Odnevall Wallinder, B. Fadeel, and H. L. Karlsson. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 11:11. doi:10.1186/1743-8977-11-11.
  • Gokulan, K., A. Z. Bekele, K. L. Drake, and S. Khare. 2018. Responses of intestinal virome to silver nanoparticles: Safety assessment by classical virology, whole-genome sequencing and bioinformatics approaches. Int. J. Nanomedicine 13:2857–67. doi:10.2147/ijn.s161379.
  • Hadrup, N., K. Loeschner, A. Bergström, A. Wilcks, X. Gao, U. Vogel, H. L. Frandsen, E. H. Larsen, H. R. Lam, and A. Mortensen. 2012. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch. Toxicol. 86:543–51. doi:10.1007/s00204-011-0759-1.
  • Hagendorfer, H., R. Kaegi, M. Parlinska, B. Sinnet, C. Ludwig, and A. Ulrich. 2012. Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach – A comparison to transmission electron microscopy and batch dynamic light scattering. Anal. Chem. 8:2678–85. doi:10.1021/ac202641d.
  • Ishii, S. I., T. Kosaka, Y. Hotta, and K. Watanabe. 2006. Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia. Appl. Environ. Microbiol. 72:5093–96. doi:10.1128/aem.00333-06.
  • Ivask, A., M. Visnapuu, P. Vallotton, E. R. Marzouk, E. Lombi, and N. H. Voelcker. 2016. Quantitative multimodal analyses of silver nanoparticle-cell interactions: Implications for cytotoxicity. NanoImpact 1:29–38. doi:10.1016/j.impact.2016.02.003.
  • Izak-Nau, E., A. Huk, B. Reidy, H. Uggerud, M. Vadset, S. Eiden, M. Voetz, M. Himly, A. Duschl, M. Dusinska, et al. 2015. Impact of storage conditions and storage time on silver nanoparticles’ physicochemical properties and implications for their biological effects. RSC Adv. 5:84172–85. doi:10.1039/c5ra10187e.
  • Jakobsson, H. E., A. M. Rodríguez-Piñeiro, A. Schütte, A. Ermund, P. Boysen, M. Bemark, F. Sommer, F. Bäckhed, G. C. Hansson, and M. E. Johansson. 2015. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16:164–77. doi:10.15252/embr.201439263.
  • Javurek, A. B., D. Suresh, W. G. Spollen, M. L. Hart, S. A. Hansen, M. R. Ellersieck, N. J. Bivens, S. A. Givan, A. Upendran, R. Kannan, et al. 2017. Gut dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Sci. Rep. 7:2822. doi:10.1038/s41598-017-02880-0.
  • Jeong, G. N., U. B. Jo, H. Y. Ryu, Y. S. Kim, K. S. Song, and I. J. Yu. 2009. Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague–Dawley rats. Arch. Toxicol. 84:63. doi:10.1007/s00204-009-0469-0.
  • Jin, Y., S. Wu, Z. Zeng, and Z. Fu. 2017. Effects of environmental pollutants on gut microbiota. Environ. Pollut. 222:1–9. doi:10.1016/j.envpol.2016.11.045.
  • Juge, N. 2012. Microbial adhesins to gastrointestinal mucus. Trends in Microbiology 20 (1):30–39. doi:10.1016/j.tim.2011.10.001.
  • Kästner, C., D. Lichtenstein, A. Lampen, and A. F. Thünemann. 2017. Monitoring the fate of small silver nanoparticles during artificial digestion. Colloids Surf. A 526:76–81. doi:10.1016/j.colsurfa.2016.08.013.
  • Kaweeteerawat, C., P. N. Ubol, S. Sangmuang, S. Aueviryavit, and R. Maniratanachote. 2017. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Environ. Health A 80:1276–89. doi:10.1080/15287394.2017.1376727.
  • Kerckhoffs, A. P. M., L. M. A. Akkermans, M. B. M. de Smet, M. G. H. Besse, F. Hietbrink, H. I. Barte, W. B. Busschers, M. Samsom, and W. Renooij. 2010. Intestinal permeability in irritable bowel syndrome patients: Effects of NSAIDs. Dig. Dis. Sci. 55:716–23. doi:10.1007/s10620-009-0765-9.
  • Kermanizadeh, A., I. L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobson, A.-G. Lenz, T. Fernandes, R. P. F. Roels, F. R. Cassee, H. Wallin, et al. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health-ENPRA project-The highlights,limitations and current and furure challenges. J. Toxicol. Environ. Health B 19:1–28. doi:10.1080/10937404.2015.1126210.
  • Khan, S. S., P. Srivatsan, N. Vaishnavi, A. Mukherjee, and N. Chandrasekaran. 2011. Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics. J. Hazard. Mater. 192:299–306. doi:10.1016/j.jhazmat.2011.05.024.
  • Kittler, S., C. Greulich, J. Diendorf, M. Köller, and M. Epple. 2010. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 22:4548–54. doi:10.1021/cm100023p.
  • Lehto, S., M. Buchweitz, A. Klimm, R. Straßburger, C. Bechtold, and F. Ulberth. 2017. Comparison of food colour regulations in the EU and the US: A review of current provisions. Food Addit. Contam. Part A 34:335–55. doi:10.1080/19440049.2016.1274431.
  • Lerner, A., and T. Matthias. 2015. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun. Rev. 14:479–89. doi:10.1016/j.autrev.2015.01.009.
  • Levard, C., E. M. Hotze, G. V. Lowry, and G. E. Brown. 2012. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 46:6900–14. doi:10.1021/es2037405.
  • Li, J., M. Tang, and Y. Xue. 2019. Review of the effects of silver nanoparticle exposure on gut bacteria. J. Appl. Toxicol. 39:27–37. doi:10.1002/jat.3729.
  • Li, X., and M. A. Atkinson. 2015. The role for gut permeability in the pathogenesis of type 1 diabetes – A solid or leaky concept? Pediatr. Diabetes 16:485–92. doi:10.1111/pedi.12305.
  • Liang, Z., A. Das, and Z. Hu. 2010. Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res. 44:5432–38. doi:10.1016/j.watres.2010.06.060.
  • Lichtenstein, D., J. Ebmeyer, P. Knappe, S. Juling, L. Böhmert, S. Selve, B. Niemann, A. Braeuning, F. Thünemann Andreas, and A. Lampen. 2015. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells. Biol. Chem. 396:1255–64. doi:10.1515/hsz-2015-0145.
  • Liu, J., and R. H. Hurt. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44:2169–75. doi:10.1021/es9035557.
  • Lu, K., R. Mahbub, and J. G. Fox. 2015. Xenobiotics: Interaction with the intestinal microflora. Ilar J. 56:218–27. doi:10.1093/ilar/ilv018.
  • Mankertz, J., and J. Schulzke. 2007. Altered permeability in inflammatory bowel disease: Pathophysiology and clinical implications. Curr. Opin. Gastroenterol. 23:379–83. doi:10.1097/MOG.0b013e32816aa392.
  • Marques, M. R. C., R. Loebenberg, and M. Almukainzi. 2011. Simulated biological fluids with possible application in dissolution testing. Dissolut. Technol. 18:15–28. doi:10.14227/DT180311P15.
  • Mercier-Bonin, M., B. Despax, P. Raynaud, E. Houdeau, and M. Thomas. 2018. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles. Crit. Rev. Food Sci. Nutr. 58:1023–32. doi:10.1080/10408398.2016.1243088.
  • Miele, L., V. Valenza, G. La Torre, M. Montalto, G. Cammarota, R. Ricci, R. Mascianà, A. Forgione, M. L. Gabrieli, G. Perotti, et al. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49:1877–87. doi:10.1002/hep.22848.
  • Moorthy, A., and H. Eberl. 2013. Assessing the influence of reactor system design criteria on the performance of model colon fermentation units. J. Biosci. Bioeng. 117. doi:10.1016/j.jbiosc.2013.09.015.
  • Muñoz-Tamayo, R., B. Laroche, É. Walter, J. Doré, and M. Leclerc. 2010. Mathematical modelling of carbohydrate degradation by human colonic microbiota. J. Theor. Biol. 266:189–201. doi:10.1016/j.jtbi.2010.05.040.
  • Mwilu, S. K., A. M. El Badawy, K. Bradham, C. Nelson, D. Thomas, K. G. Scheckel, T. Tolaymat, L. Ma, and K. R. Rogers. 2013. Changes in silver nanoparticles exposed to human synthetic stomach fluid: Effects of particle size and surface chemistry. Sci. Total Environ. 447:90–98. doi:10.1016/j.scitotenv.2012.12.036.
  • Myers, C. R., and K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 240:1319–21. doi:10.1126/science.240.4857.1319.
  • Ngamchuea, K., C. Batchelor-McAuley, and R. G. Compton. 2018. The fate of silver nanoparticles in authentic human saliva. Nanotoxicology 12:305–11. doi:10.1080/17435390.2018.1438680.
  • Peulen, T.-O., and K. J. Wilkinson. 2011. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 45:3367–73. doi:10.1021/es103450g.
  • Pietroiusti, A., A. Magrini, and L. Campagnolo. 2016. New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol. Appl. Pharmacol. 299:90–95. doi:10.1016/j.taap.2015.12.017.
  • Pinďáková, L., V. Kašpárková, K. Kejlová, M. Dvořáková, D. Krsek, D. Jírová, and L. Kašparová. 2017. Behaviour of silver nanoparticles in simulated saliva and gastrointestinal fluids. Int. J. Pharm. 527:12–20. doi:10.1016/j.ijpharm.2017.05.026.
  • Price, D., L. Ackland, and C. Suphioglu. 2013. Nuts ‘n’ guts: Transport of food allergens across the intestinal epithelium. Asia Pac. Allergy 3:257–65. doi:10.5415/apallergy.2013.3.4.257.
  • Reed, R. B., J. J. Faust, Y. Yang, K. Doudrick, D. G. Capco, K. Hristovski, and P. Westerhoff. 2014. Characterization of nanomaterials in metal colloid-containing dietary supplement drinks and assessment of their potential interactions after ingestion. ACS Sustain. Chem. Eng. 2:1616–24. doi:10.1021/sc500108m.
  • Robbe, C., C. Capon, B. Coddeville, and J.-C. Michalski. 2004. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem. J. 384:307–16. doi:10.1042/bj20040605.
  • Robert, H., D. Payros, P. Pinton, V. Théodorou, M. Mercier-Bonin, and I. P. Oswald. 2017. Impact of mycotoxins on the intestine: Are mucus and microbiota new targets? J. Toxicol. Environ. Health B. 20:249–75. doi:10.1080/10937404.2017.1326071.
  • Roco, M. 2018. Affirmation of nanotechnology between 2000 and 2030 (Chapter 1). In Nanotechnology commercialization: Manufacturing processes and products, ed. T. O. Mensah, B. Wang, G. D. Bothun, J. Winter, and V. Davis. Wiley.
  • Rogers, K. R., K. Bradham, T. Tolaymat, D. J. Thomas, T. Hartmann, L. Ma, and A. Williams. 2012. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid. Sci. Total Environ. 420:334–39. doi:10.1016/j.scitotenv.2012.01.044.
  • Rong, H., S. Garg, P. Westerhoff, and T. D. Waite. 2018. In vitro characterization of reactive oxygen species (ROS) generation by the commercially available Mesosilver™ dietary supplement. Environ. Sci. 5:2686–98. doi:10.1039/c8en00701b.
  • Rosenfeld, C. S. 2017. Gut dysbiosis in animals due to environmental chemical exposures. Front. Cell Infect. Microbiol. 7:396–396. doi:10.3389/fcimb.2017.00396.
  • Sarker, D. C., A. Sathasivan, and B. E. Rittmann. 2015. Modelling combined effect of chloramine and copper on ammonia-oxidizing microbial activity using a biostability approach. Water Res. 84:190–97. doi:10.1016/j.watres.2015.07.019.
  • Schluter, J., and K. R. Foster. 2012. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 10:e1001424. doi:10.1371/journal.pbio.1001424.
  • Schoepf, J. J., Y. Bi, J. Kidd, P. Herckes, K. Hristovski, and P. Westerhoff. 2017. Detection and dissolution of needle-like hydroxyapatite nanomaterials in infant formula. NanoImpact 5:22–28. doi:10.1016/j.impact.2016.12.007.
  • Schroeder, B. O., G. M. H. Birchenough, M. Ståhlman, L. Arike, M. E. V. Johansson, G. C. Hansson, and F. Bäckhed. 2018. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23:27–40.e7. doi:10.1016/j.chom.2017.11.004.
  • Schwarz, A. O., and B. E. Rittmann. 2007. A biogeochemical framework for metal detoxification in sulfidic systems. Biodegradation 18:675–92. doi:10.1007/s10532-007-9101-2.
  • Shahrokh, S., B. Hosseinkhani, and G. Emtiazi. 2014. The impact of silver nanoparticles on bacterial aerobic nitrate reduction. J. Bioprocess Biotech. 4:152. doi:10.4172/2155-9821.1000152.
  • Songkasiri, W., D. Reed, and B. Rittmann. 2002. Biosorption of neptunium(V) by Pseudomonas fluorescens. Radiochim. Acta 90:785–89. doi:10.1524/ract.2002.90.9-11_2002.785.
  • Sonnenburg, J. L., J. Xu, D. D. Leip, C.-H. Chen, B. P. Westover, J. Weatherford, J. D. Buhler, and J. I. Gordon. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–59. doi:10.1126/science.1109051.
  • Tang, J., Y. Wu, S. Esquivel-Elizondo, S. J. Sørensen, and B. E. Rittmann. 2018. How microbial aggregates protect against nanoparticle toxicity. Trends Biotechnol. 36:1171–82. doi:10.1016/j.tibtech.2018.06.009.
  • Vaarala, O., M. A. Atkinson, and J. Neu. 2008. The “Perfect Storm” for type 1 diabetes. Complex Interplay Between Intestinal Microbiota, Gut Permeability, Mucosal Immun. 57:2555–62. doi:10.2337/db08-0331.
  • Vamanu, E., M. Ene, B. Biță, C. Ionescu, L. Crăciun, and I. Sârbu. 2018. In vitro human microbiota response to exposure to silver nanoparticles biosynthesized with mushroom extract. Nutrients 10:607. doi:10.3390/nu10050607.
  • van Beek, A. A., B. Sovran, F. Hugenholtz, B. Meijer, J. A. Hoogerland, V. Mihailova, C. van der Ploeg, C. Belzer, M. V. Boekschoten, J. H. J. Hoeijmakers, et al. 2016. Supplementation with Lactobacillus plantarum WCFS1 prevents decline of mucus barrier in colon of accelerated aging Ercc1−/Δ7 mice. Front. Immunol. 7. doi:10.3389/fimmu.2016.00408.
  • van den Brule, S., J. Ambroise, H. Lecloux, C. Levard, R. Soulas, P.-J. De Temmerman, M. Palmai-Pallag, E. Marbaix, and D. Lison. 2016. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part. Fibre Toxicol. 13:38. doi:10.1186/s12989-016-0149-1.
  • VandeVoort, A. R., and Y. Arai. 2012. Effect of silver nanoparticles on soil denitrification kinetics. Ind. Biotechnol. 8:358–64. doi:10.1089/ind.2012.0026.
  • Verleysen, E., E. Van Doren, N. Waegeneers, P. J. De Temmerman, M. Abi Daoud Francisco, and J. Mast. 2015. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J. Agric. Food Chem. 63:3570–78. doi:10.1021/acs.jafc.5b00578.
  • Wakshlak, R. B.-K., R. Pedahzur, and D. Avnir. 2015. Antibacterial activity of silver-killed bacteria: The “zombies” effect. Sci. Rep. 5:9555. doi:10.1038/srep09555.
  • Walczak, A. P., R. Fokkink, R. Peters, P. Tromp, Z. E. Herrera Rivera, I. M. C. M. Rietjens, P. J. M. Hendriksen, and H. Bouwmeester. 2012. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 7:1198–210. doi:10.3109/17435390.2012.726382.
  • Wijnhoven, S. W. P., W. J. G. M. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen, E. H. W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van De Meent, et al. 2009. Nano-silver – A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–38. doi:10.1080/17435390902725914.
  • Wilding, L. A., C. M. Bassis, K. Walacavage, S. Hashway, P. R. Leroueil, M. Morishita, A. D. Maynard, M. A. Philbert, and I. L. Bergin. 2016. Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology 10:513–20. doi:10.3109/17435390.2015.1078854.
  • Williams, K., J. Milner, M. D. Boudreau, K. Gokulan, C. E. Cerniglia, and S. Khare. 2015. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology 9:279–89. doi:10.3109/17435390.2014.921346.
  • Woodrow Wilson International Center for Scholars. 2019. The project on emerging nanotechnologies Accessed http://www.nanotechproject.org/cpi/.
  • Woolschlager, J. E., B. E. Rittmann, and P. Piriou. 2005. Water quality decay in distribution systems – Problems, causes, and new modeling tools. Urban Water J. 2:69–79. doi:10.1080/15730620500144027.
  • Wu, W., R. Zhang, D. J. McClements, B. Chefetz, T. Polubesova, and B. Xing. 2018. Transformation and speciation analysis of silver nanoparticles of dietary supplement in simulated human gastrointestinal tract. Environ. Sci. Technol. 52:8792–800. doi:10.1021/acs.est.8b01393.
  • Yada, R. Y., N. Buck, R. Canady, C. DeMerlis, T. Duncan, G. Janer, L. Juneja, M. Lin, D. J. McClements, G. Noonan, et al. 2014. Engineered nanoscale food ingredients: Evaluation of current knowledge on material characteristics relevant to uptake from the gastrointestinal tract. Compr. Rev. Food Sci. Food Saf. 13:730–44. doi:10.1111/1541-4337.12076.
  • Yang, Y., Q. Chen, J. D. Wall, and Z. Hu. 2012. Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Res. 46:1176–84. doi:10.1016/j.watres.2011.12.024.
  • Yang, Y., Y. Wang, K. Hristovski, and P. Westerhoff. 2015. Simultaneous removal of nanosilver and fullerene in sequencing batch reactors for biological wastewater treatment. Chemosphere 125:115–21. doi:10.1016/j.chemosphere.2014.12.003.
  • Yin, N., R. Gao, B. Knowles, J. Wang, P. Wang, G. Sun, and Y. Cui. 2019. Formation of silver nanoparticles by human gut microbiota. Sci. Total Environ. 651:1489–94. doi:10.1016/j.scitotenv.2018.09.312.
  • Zhang, C., Z. Liang, and Z. Hu. 2014. Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Res. 50:350–58. doi:10.1016/j.watres.2013.10.047.
  • Zhang, W., B. Rittmann, and Y. Chen. 2011. Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ. Sci. Technol. 45:2172–78. doi:10.1021/es103376y.
  • Zhang, W., C. Miller, and F. Digiano. 2004. Bacterial regrowth model for water distribution systems incorporating alternating split-operator solution technique. J. Environ. Eng. 130. doi:10.1061/(asce)0733-9372(2004)130:9(932).
  • Zhao, J., and V. Castranova. 2011. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B 14:593–632. doi:10.1080/10937404.2011.615113.
  • Zhou, C., Z. Wang, A. Marcus, and B. Rittmann. 2016. Biofilm-enhanced continuous synthesis and stabilization of palladium nanoparticles (PdNPs). Environ. Sci. 3:1396–404. doi:10.1039/c6en00308g.
  • Zhou, C., Z. Wang, A. Ontiveros-Valencia, M. Long, C.-Y. Lai, H.-P. Zhao, S. Xia, and B. E. Rittmann. 2017. Coupling of Pd nanoparticles and denitrifying biofilm promotes H2-based nitrate removal with greater selectivity towards N2. Appl. Catal. B 206:461–70. doi:10.1016/j.apcatb.2017.01.068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.