6,277
Views
36
CrossRef citations to date
0
Altmetric
Review

Xenobiotic metabolism and transport in Caenorhabditis elegans

, , , , , , , , ORCID Icon, & ORCID Icon show all

References

  • Aarnio, V., L. Heikkinen, J. Peltonen, G. Goldsteins, M. Lakso, and G. Wong. 2014. Transcriptional profiling reveals differential expression of a neuropeptide-like protein and pseudogenes in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 9:40–48. doi: 10.1016/j.cbd.2013.12.001.
  • Abbass, M., Y. Chen, V. M. Arlt, and S. R. Sturzenbaum. 2021. Benzo[a]pyrene and Caenorhabditis elegans: Defining the genotoxic potential in an organism lacking the classical CYP1A1 pathway. Archives of Toxicology. doi: 10.1007/s00204-020-02968-z.
  • Ahn, J.-M., H.-J. Eom, X. Yang, J. N. Meyer, and J. Choi. 2014. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108:343–52. doi: 10.1016/j.chemosphere.2014.01.078.
  • Ahn, T., and C.-H. Yun. 2010. Molecular Mechanisms Regulating the Mitochondrial Targeting of Microsomal Cytochrome P450 EnzymesMolecular Mechanisms Regulating the Mitochondrial Targeting of Microsomal Cytochrome P450 Enzymes. <![CDATA[Current Drug Metabolism]]> 11:830–38 doi: 10.2174/138920010794479655. 10
  • Alaimo, J. T., S. J. Davis, S. S. Song, C. R. Burnette, M. Grotewiel, K. L. Shelton, J. T. Pierce-Shimomura, A. G. Davies, and J. C. Bettinger. 2012. Ethanol Metabolism and Osmolarity Modify Behavioral Responses to Ethanol inC. elegans Alcoholism: Clinical and Experimental Research 36: 1840–50 doi: 10.1111/j.1530-0277.2012.01799.x. 11
  • Allard, P., and M. P. Colaiacovo. 2010. Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proceedings of the National Academy of Sciences 107: 20405–10. doi: 10.1073/pnas.1010386107. 47
  • Allard, P., N. C. Kleinstreuer, T. B. Knudsen, and M. P. Colaiacovo. 2013. A C. elegans screening platform for the rapid assessment of chemical disruption of germline function Environ. Health. Perspect. 121: 717–24. doi: 10.1289/ehp.1206301.
  • Altun, Z. F., and D. H. Hall 2009a. Alimentary System, Pharynx. In WormAtlas.
  • Altun, Z. F., and D. H. Hall 2009b. Excretory system. In WormAtlas.
  • Anbalagan, C., I. Lafayette, M. Antoniou-Kourounioti, C. Gutierrez, J. R. Martin, D. K. Chowdhuri, and D. I. De Pomerai. 2013. Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. Ecotoxicology. 22:72–85. doi: 10.1007/s10646-012-1004-2.
  • Andersen, E. C., J. P. Gerke, J. A. Shapiro, J. R. Crissman, R. Ghosh, J. S. Bloom, M. A. Felix, and L. Kruglyak. 2012 Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat. Genet. 44:285–90. doi: 10.1038/ng.1050.
  • Andersen, E. C., T. C. Shimko, J. R. Crissman, R. Ghosh, J. S. Bloom, H. S. Seidel, J. P. Gerke, and L. Kruglyak 2015. A powerful new quantitative genetics platform, combining Caenorhabditis elegans high-throughput fitness assays with a large collection of recombinant strains. G3. (Bethesda). 5:911–20 doi: 10.1534/g3.115.017178.
  • Arda, H. E., S. Taubert, L. T. MacNeil, C. C. Conine, B. Tsuda, M. Van Gilst, R. Sequerra, L. Doucette-Stamm, K. R. Yamamoto, and A. J. Walhout. 2010. Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network. Mol. Syst. Biol. 6:367. doi: 10.1038/msb.2010.23.
  • Ardelli, B. F. 2013. Transport proteins of the ABC systems superfamily and their role in drug action and resistance in nematodes. Parasitol. Int. 62:639–46. doi: 10.1016/j.parint.2013.02.008.
  • Ashrafi, K., F. Y. Chang, J. L. Watts, A. G. Fraser, R. S. Kamath, J. Ahringer, and G. Ruvkun. 2003. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature. 421:268–72.
  • (ASTM), American Society of Testing and Materials. 2001. Conducting Laboratory Soil Toxicity Tests with the Nematode Caenorhabditis elegans.
  • Au, C., A. Benedetto, J. Anderson, A. Labrousse, K. Erikson, J. J. Ewbank, and M. Aschner. 2009. SMF-1, SMF-2 and SMF-3 DMT1 orthologues regulate and are regulated differentially by manganese levels in C. Elegans. PLoS One 4:e7792. doi: 10.1371/journal.pone.0007792.
  • Avdeef, A. 2001. Physicochemical profiling (solubility, permeability and charge state). Curr. Top. Med. Chem. 1:277–351. doi: 10.2174/1568026013395100.
  • Avery, L., and Y. J. You . 2012. C. elegans feeding (May 21, 2012), ed. In WormBook. The C. elegans Research Community
  • Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita, B. L. Wanner, and H. Mori. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2: 2006 0008. doi: 10.1038/msb4100050.
  • Bargmann, C. I. 2006. Chemosensation in C. elegans. WormBook: Pasadena, CA, United States. 1–29.
  • Baugh, L. R. 2013. To grow or not to grow: Nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics. 194: 539–55. doi: 10.1534/genetics.113.150847.
  • Baumeister, R., E. Schaffitzel, and M. Hertweck. 2006. Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J. Endocrinol. 190:191–202. doi: 10.1677/joe.1.06856.
  • Behl, M., J. H. Hsieh, T. J. Shafer, W. R. Mundy, J. R. Rice, W. A. Boyd, J. H. Freedman, E. S. Hunter 3rd, K. A. Jarema, S. Padilla, et al. 2015. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicol. Teratol. 52:181–93. doi: 10.1016/j.ntt.2015.09.003.
  • Benz, R., K. Janko, and P. Läuger. 1980. Pore formation by the matrix protein (porin) of Escherichia coli in planar bilayer membranes. Ann. N. Y. Acad. Sci. 358:13–24. doi: 10.1111/j.1749-6632.1980.tb15382.x.
  • Berg, M., B. Stenuit, J. Ho, A. Wang, C. Parke, M. Knight, L. Alvarez-Cohen, and M. Shapira. 2016. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. Isme J 10:1998–2009. doi: 10.1038/ismej.2015.253.
  • Blackwell, T. K., M. J. Steinbaugh, J. M. Hourihan, C. Y. Ewald, and M. Isik. 2015. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic. Biol. Med. 88: 290–301. doi: 10.1016/j.freeradbiomed.2015.06.008.
  • Blum, J., and I. Fridovich. 1983. Superoxide, hydrogen peroxide, and oxygen toxicity in two free-living nematode species. Arch. Biochem. Biophys. 222:35–43.
  • Bock, K. W. 2014. Homeostatic control of xeno- and endobiotics in the drug-metabolizing enzyme system. Biochem. Pharmacol. 90:1–6. doi: 10.1016/j.bcp.2014.04.009.
  • Boyd, W. A., M. V. Smith, C. A. Co, J. R. Pirone, J. R. Rice, K. R. Shockley, and J. H. Freedman. 2015. Developmental effects of the ToxCast Phase I and II chemicals in and corresponding responses in zebrafish, rats, and rabbits. Environ. Health. Perspect. doi: 10.1289/ehp.1409645.
  • Boyd, W. A., M. V. Smith, C. A. Co, J. R. Pirone, J. R. Rice, K. R. Shockley, and J. H. Freedman. 2016. Developmental effects of the ToxCast™ Phase I and Phase II chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environ. Health. Perspect. 124:586–93. doi: 10.1289/ehp.1409645.
  • Boyd, W. A., M. V. Smith, G. E. Kissling, and J. H. Freedman. 2009. Medium- and high-throughput screening of neurotoxicants using C. Elegans. Neurotoxicol Teratol.
  • Boyd, W. A., and P. L. Williams. 2003. Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity tests. Environ. Toxicol. Chem. 22: 2768–74.
  • Boyd, W. A., S. J. McBride, and J. H. Freedman. 2007. Effects of genetic mutations and chemical exposures on Caenorhabditis elegans feeding: Evaluation of a novel, high-throughput screening assay. PLoS .ONE. 2:e1259.
  • Boyd, W. A., S. J. McBride, J. R. Rice, D. W. Snyder, and J. H. Freedman. 2010. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol. Appl. Pharmacol. 245: 153–59.
  • Brady, S. C., S. Zdraljevic, K. W. Bisaga, R. E. Tanny, D. E. Cook, D. Lee, Y. Wang, and E. C. Andersen. 2019. A novel gene underlies bleomycin-response variation in Caenorhabditis elegans. Genetics. 212:1453–68. doi: 10.1534/genetics.119.302286.
  • Brady, S. P., E. Monosson, C. W. Matson, and J. W. Bickham. 2017. Evolutionary toxicology: Toward a unified understanding of life’s response to toxic chemicals. Evol. Appl 10:745–51. doi: 10.1111/eva.12519.
  • Brinkhaus, S. G., J. Bornhorst, S. Chakraborty, C. A. Wehe, R. Niehaus, O. Reifschneider, M. Aschner, and U. Karst. 2014. Elemental bioimaging of manganese uptake in C. Elegans. Metallomics. 6:617–21. doi: 10.1039/c3mt00334e..
  • Brinkmann, V., N. Ale-Agha, J. Haendeler, and N. Ventura. 2019. The aryl hydrocarbon receptor (AhR) in the aging process: Another puzzling role for this highly conserved transcription factor. Front Physiol. 10:1561. doi: 10.3389/fphys.2019.01561.
  • Broeks, A., B. Gerrard, R. Allikmets, M. Dean, and R. H. Plasterk. 1996. Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis. Elegans. EMBO. J. 15 6132–43.
  • Broeks, A., H. W. Janssen, J. Calafat, and R. H. Plasterk. 1995. A P-glycoprotein protects Caenorhabditis elegans against natural toxins. Embo. J. 14:1858–66.
  • Brooks, B. W., T. Sabo-Attwood, K. Choi, S. Kim, J. Kostal, C. A. LaLone, L. M. Langan, L. Margiotta-Casaluci, J. You, and X. Zhang. 2020. Toxicology advances for 21st century chemical pollution. OneEarth. 2:312–16.
  • Burchell, B., C.H. Brierley, G. Monaghan, and D.J. Clarke. 1998. „The structure and function of the UDP-glucuronosyltransferase gene family.„ Adv Pharmacol 42:335-8. doi: 10.1016/s1054-3589(08)60758-9.
  • Burns, A. R., I. M. Wallace, J. Wildenhain, M. Tyers, G. Giaever, G. D. Bader, C. Nislow, S. R. Cutler, and P. J. Roy. 2010. A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat. Chem. Biol. 6:5 49–557. doi: 10.1038/nchembio.380.
  • Cabreiro, F., C. Au, K. Y. Leung, N. Vergara-Irigaray, H. M. Cocheme, T. Noori, D. Weinkove, E. Schuster, N. D. Greene, and D. Gems. 2013. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 153:228–39. doi: 10.1016/j.cell.2013.02.035.
  • Cabreiro, F., and D. Gems. 2013. Worms need microbes too: Microbiota, health and aging in Caenorhabditis elegans. EMBO. Mol. Med. 5:1300–10. doi: 10.1002/emmm.201100972.
  • Cao, X., C. Yan, X. Wu, L. Zhou, and G. Xiu. 2020. Nonylphenol induced individual and population fluctuation of Caenorhabditis elegans: Disturbances on developmental and reproductive system. Environ. Res. 186:109486. doi: 10.1016/j.envres.2020.109486.
  • Carroll, B. T., G. R. Dubyak, M. M. Sedensky, and P. G. Morgan. 2006. Sulfated signal from ASJ sensory neurons modulates stomatin-dependent coordination in Caenorhabditis elegans. J. Biol. Chem. 281:35989–96. doi: 10.1074/jbc.M606086200.
  • Casarett, L. J., J. Doull, and C. D. Klaassen. 2008. Casarett and Doull’s Toxicology: The Basic Science of Poisons. 7th ed. New York: McGraw-Hill.
  • Cassada, R. C., and R. L. Russell. 1975. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46:326–42. doi: 10.1016/0012-1606(75)90109-8.
  • César-Razquin, A., B. Snijder, T. Frappier-Brinton, R. Isserlin, G. Gyimesi, X. Bai, R. A. Reithmeier, D. Hepworth, M. A. Hediger, A. M. Edwards, et al. 2015. A call for systematic research on solute carriers. Cell. 162: 478–87. doi: 10.1016/j.cell.2015.07.022.
  • Chakrapani, B. P., S. Kumar, and J. R. Subramaniam. 2008. Development and evaluation of an in vivo assay in Caenorhabditis elegans for screening of compounds for their effect on cytochrome P450 expression. J. Biosci. 33: 269–77.
  • Chamoli, M., A. Singh, Y. Malik, and A. Mukhopadhyay. 2014. A novel kinase regulates dietary restriction-mediated longevity in Caenorhabditis elegans. Aging.Cell. 13:641–55. doi: 10.1111/acel.12218.
  • Chang, T. K., J. Chen, V. Pillay, J. Y. Ho, and S. M. Bandiera. 2003. Real-time polymerase chain reaction analysis of CYP1B1 gene expression in human liver. Toxicol. Sci. 71: 11–19. doi: 10.1093/toxsci/71.1.11.
  • Chaudhuri, J., Y. Bains, S. Guha, A. Kahn, D. Hall, N. Bose, A. Gugliucci, and P. Kapahi. 2018. The role of advanced glycation end products in aging and metabolic diseases: Bridging association and causality. Cell Metab. 28:337–52. doi: 10.1016/j.cmet.2018.08.014.
  • Chen, C., T. K. Samuel, M. Krause, H. A. Dailey, and I. Hamza. 2012. Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2. J. Biol. Chem. 287:9601–12. doi: 10.1074/jbc.M111.307694.
  • Chen, H., C. Wang, H. Li, R. Ma, Z. Yu, L. Li, M. Xiang, X. Chen, X. Hua, and Y. Yu. 2019. A review of toxicity induced by persistent organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) in the nematode Caenorhabditis elegans.J. Environ. Manage. 237:519–25. doi: 10.1016/j.jenvman.2019.02.102.
  • Chen, Y., L. Shu, Z. Qiu, D. Y. Lee, S. J. Settle, S. Que Hee, D. Telesca, X. Yang, and P. Allard. 2016. Exposure to the BPA-substitute Bisphenol S causes unique alterations of germline function. PLoS Genet. 12:e1006223. doi: 10.1371/journal.pgen.1006223.
  • Choi, J., O. V. Tsyusko, J. M. Unrine, N. Chatterjee, J. M. Ahn, X. Y. Yang, B. L. Thornton, I. T. Ryde, D. Starnes, and J. N. Meyer. 2014. A micro-sized model for the in vivo study of nanoparticle toxicity: What has Caenorhabditis elegans taught us? Environ. Chem. 11: 227–46. doi: 10.1071/En13187.
  • Claus, S. P., H. Guillou, and S. Ellero-Simatos. 2016. The gut microbiota: A major player in the toxicity of environmental pollutants? NPJ. Biofilms. Microbiomes. 2:16003. doi: 10.1038/npjbiofilms.2016.3.
  • Clavijo, A., M. F. Kronberg, A. Rossen, A. Moya, D. Calvo, S. E. Salatino, E. A. Pagano, J. A. Morabito, and E. R. Munarriz. 2016. The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution. Sci. Total Environ. 569-570: 252–61. doi: 10.1016/j.scitotenv.2016.06.057.
  • Colas, C., P. Man-Un Ung, and A. Schlessinger. 2016. SLC transporters: Structure, function, and drug discovery. Med. Chem. Comm. 7:1069–81. doi: 10.1039/C6MD00005C.
  • Collin, B., E. Oostveen, O. V. Tsyusko, and J. M. Unrine. 2014. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ. Sci. Technol. 48: 1280–89. doi: 10.1021/es404503c.
  • Congress, U. S. 2016. Frank R. Lautenberg Chemical Safety for the 21st Century Act. In 130 Stat. 448. Washington, DC: U.S. Government Publishing Office.
  • Cook, D. E., S. Zdraljevic, J. P. Roberts, and E. C. Andersen. 2017. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucl. Acids. Res. 45: D650–D657. doi: 10.1093/nar/gkw893.
  • Cooper, J. F., and J. M. Van Raamsdonk. 2018. Modeling Parkinson’s disease in C. Elegans. J. Parkinsons. Dis. 8:17–32. doi: 10.3233/JPD-171258.
  • Cox, G. N., M. Kusch, and R. S. Edgar. 1981a. Cuticle of Caenorhabditis elegans: Its isolation and partial characterization. J. Cell Biol. 90:7–17. doi: 10.1083/jcb.90.1.7.
  • Cox, G. N., S. Staprans, and R. S. Edgar. 1981b. The cuticle of Caenorhabditis elegans: II. Stage-specific changes in ultrastructure and protein composition during postembryonic development. Dev. Biol. 86:456–70. doi: 10.1016/0012-1606(81)90204-9.
  • Crombie, T. A., S. Zdraljevic, D. E. Cook, R. E. Tanny, S. C. Brady, Y. Wang, K. S. Evans, S. Hahnel, D. Lee, B. C. Rodriguez, et al. 2019. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. Elife. 8. doi: 10.7554/eLife.50465.
  • Crone, B., M. Aschner, T. Schwerdtle, U. Karst, and J. Bornhorst. 2015. Elemental bioimaging of cisplatin in Caenorhabditis elegans by LA-ICP-MS. Metallomics. 7:1189–95. doi: 10.1039/c5mt00096c.
  • Crook-McMahon, H. M., M. Olahova, E. L. Button, J. J. Winter, and E. A. Veal. 2014. Genome-wide screening identifies new genes required for stress-induced phase 2 detoxification gene expression in animals. BMC Biol. 12:64. doi: 10.1186/s12915-014-0064-6.
  • Cui, Y. X., S. J. McBride, W. A. Boyd, S. Alper, and J. H. Freedman. 2007. Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol. 8. doi: 10.1186/gb-2007-8-6-r122. 1465–6914.
  • Custodia, N., S. J. Won, A. Novillo, M. Wieland, C. Li, and I. P. Callard. 2001. Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann. N. Y. Acad. Sci. 948: 32–42. doi: 10.1111/j.1749-6632.2001.tb03984.x.
  • Cvilink, V., L. Skálová, B. Szotáková, J. Lamka, R. Kostiainen, and R. A. Ketola. 2008. LC-MS-MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus. Anal Bioanal Chem 391:337–43. doi: 10.1007/s00216-008-1863-9.
  • Dasgupta, M., M. Shashikanth, A. Gupta, A. Sandhu, A. De, S. Javed, and V. Singh. 2020. “NHR-49 transcription factor regulates immunometabolic response and survival of Caenorhabditis elegans during Enterococcus faecalis infection. Infect. Immun. 88. doi: 10.1128/iai.00130-20.
  • Davies, A. G., J. T. Pierce-Shimomura, H. Kim, M. K. VanHoven, T. R. Thiele, A. Bonci, C. I. Bargmann, and S. L. McIntire. 2003. A central role of the BK potassium channel in behavioral responses to ethanol in C. Elegans. Cell. 115: 655–66. doi: 10.1016/s0092-8674(03)00979-6.
  • De Ley, P. 2006. A quick tour of nematode diversity and the backbone of nematode phylogeny WormBook:1–8. doi: 10.1895/wormbook.1.41.1.
  • De Ley, P., I. T. De Ley, K. Morris, E. Abebe, M. Mundo-Ocampo, M. Yoder, J. Heras, D. Waumann, A. Rocha-Olivares, A. H. Jay Burr, et al. 2005. An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Phil.Trans. R.Soc .Lond B. Biol. Sci. 360: 1945–58. doi: 10.1098/rstb.2005.1726.
  • de Veer, M. J., J. M. Kemp, and E. N. Meeusen. 2007. The innate host defence against nematode parasites. Parasite. Immunol. 29:1–9. doi: 10.1111/j.1365-3024.2006.00910.x.
  • DeGorter, M. K., C. Q. Xia, J. J. Yang, and R. B. Kim. 2012. Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol. 52:249–73. doi: 10.1146/annurev-pharmtox-010611-134529.
  • Dejima, K., D. Murata, S. Mizuguchi, K. H. Nomura, K. Gengyo-Ando, S. Mitani, S. Kamiyama, S. Nishihara, and K. Nomura. 2009. The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis. Elegans. FASEB. J. 23: 2215–25. doi: 10.1096/fj.08-123737.
  • Deline, M., J. Keller, M. Rothe, W. H. Schunck, R. Menzel, and J. L. Watts. 2015. Epoxides derived from dietary dihomo-gamma-linolenic acid induce germ cell death in C. elegans. Sci. Rep. 5:15417. doi: 10.1038/srep15417.
  • 1996 Interconnections Between Human and Ecosystem Health. Edited by R. T. Di Giulio, and E. Monosson: Springer.
  • Di, R., H. Zhang, and M. A. Lawton. 2018. Transcriptome analysis of C. elegans reveals novel targets for DON cytotoxicity. Toxins. 10. doi: 10.3390/toxins10070262.
  • Dietrich, N., C. H. Tan, C. Cubillas, B. J. Earley, and K. Kornfeld. 2016. Insights into zinc and cadmium biology in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys. 611:120–33. doi: 10.1016/j.abb.2016.05.021.
  • Dirksen, P., A. Assie, J. Zimmermann, F. Zhang, A. M. Tietje, S. A. Marsh, M. A. Felix, M. Shapira, C. Kaleta, H. Schulenburg, et al. 2020. CeMbio - The Caenorhabditis elegans microbiome resource. G3. (Bethesda). doi: 10.1534/g3.120.401309.
  • Dirksen, P., S. A. Marsh, I. Braker, N. Heitland, S. Wagner, R. Nakad, S. Mader, C. Petersen, V. Kowallik, P. Rosenstiel, et al. 2016. The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biol. 14:38. doi: 10.1186/s12915-016-0258-1.
  • Ekschmitt, K., and G. W. Korthals. 2006. Nematodes as sentinels of heavy metals and organic toxicants in the soil. J. Nematol. 38:13–19.
  • Elsworth, B., J. Wasmuth, and M. Blaxter. 2011. NEMBASE4: The nematode transcriptome resource. Int. J. Parasitol. 41:881–94. doi: 10.1016/j.ijpara.2011.03.009.
  • Emmons, S. W. 2005. Male development (November 10, 2005), WormBook, ed. In WormBook. The C. elegans Research Community.
  • Environmental Protection, U. S. Agency (US EPA). 2019. Directive to Prioritize Efforts to Reduce Animal Testing. Washington, DC: U.S. EPA
  • Erkut, C., S. Penkov, H. Khesbak, D. Vorkel, J.-M. Verbavatz, K. Fahmy, and T. V. Kurzchalia. 2011. Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr. Biol. 21:1331–36. doi: 10.1016/j.cub.2011.06.064.
  • Evans, K. S., and E. C. Andersen. 2020. The gene scb-1 underlies variation in Caenorhabditis elegans chemotherapeutic responses. G3. (Bethesda). 10: 2353–64 doi: 10.1534/g3.120.401310.
  • Evans, K. S., S. C. Brady, J. S. Bloom, R. E. Tanny, D. E. Cook, S. E. Giuliani, S. W. Hippleheuser, M. Zamanian, and E. C. Andersen. 2018. Shared genomic regions underlie natural variation in diverse toxin responses. Genetics. 210:1509–25. doi: 10.1534/genetics.118.301311.
  • Ferguson, G. D., and W. J. Bridge. 2019. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox. Biol. 24:101171. doi: 10.1016/j.redox.2019.101171.
  • Ferreira, D. W., and P. Allard. 2015. Models of germ cell development and their application for toxicity studies. Environ. Mol. Mutagen. 56:637–49. doi: 10.1002/em.21946.
  • Fielenbach, N., and A. Antebi. 2008. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22:2149–65. doi: 10.1101/gad.1701508.
  • Figueiredo, L. A., T. F. Rebouças, S. R. Ferreira, G. F. Rodrigues-Luiz, R. C. Miranda, R. N. Araujo, and R. T. Fujiwara. 2018. Dominance of P-glycoprotein 12 in phenotypic resistance conversion against ivermectin in Caenorhabditis elegans. PloS. One. 13: e0192995–e0192995. doi: 10.1371/journal.pone.0192995.
  • Fischer, M., C. Regitz, M. Kahl, M. Werthebach, M. Boll, and U. Wenzel. 2012. Phytoestrogens genistein and daidzein affect immunity in the nematode Caenorhabditis elegans via alterations of vitellogenin expression. Mol. Nutr. Food. Res. 56:957–65. doi: 10.1002/mnfr.201200006.
  • Fisher, A. L., and G. J. Lithgow. 2006. The nuclear hormone receptor DAF-12 has opposing effects on Caenorhabditis elegans lifespan and regulates genes repressed in multiple long-lived worms. Aging.Cell. 5:127–38. doi: 10.1111/j.1474-9726.2006.00203.x.
  • Fitch, D. H. 2005. Introduction to nematode evolution and ecology. WormBook:1–8. doi: 10.1895/wormbook.1.19.1.
  • Fitsanakis, V. A., R. Negga, and H. E. Hatfield. 2014. Caenorhabditis elegans as a model for biomarkers of diseases and toxicities. Biomarker. Toxicol.: 113–28. doi: 10.1016/B978-0-12-404630-6.00006-3.
  • Fontaine, P., and K. Choe. 2018. The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist 8: 312–19. doi: 10.1016/j.ijpddr.2018.04.006.
  • Franco, A. L. C., L. A. Gherardi, C. M. de Tomasel, W. S. Andriuzzi, K. E. Ankrom, E. A. Shaw, E. M. Bach, O. E. Sala, and D. H. Wall. 2019. Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslands. Proc. Natl. Acad. Sci. U.S.A. 116:12883–88. doi: 10.1073/pnas.1900572116.
  • Freedman, J. H., L. W. Slice, D. Dixon, A. Fire, and C. S. Rubin. 1993. The novel metallothionein genes of Caenorhabditis elegans. Structural organization and inducible, cell-specific expression. J. Biol. Chem. 268:2554–64.
  • Fukushige, T., H. E. Smith, J. Miwa, M. W. Krause, and J. A. Hanover. 2017. A genetic analysis of the Caenorhabditis elegans detoxification response. Genetics. 206: 939–52. doi: 10.1534/genetics.117.202515.
  • Fuxman Bass, J. I., C. Pons, L. Kozlowski, J. S. Reece-Hoyes, S. Shrestha, A. D. Holdorf, A. Mori, C. L. Myers, and A. J. Walhout. 2016. A gene-centered C. elegans protein-DNA interaction network provides a framework for functional predictions. Mol. Syst. Biol. 12: 884. doi: 10.15252/msb.20167131.
  • Gallo, M., D. Park, D. S. Luciani, K. Kida, F. Palmieri, O. E. Blacque, J. D. Johnson, and D. L. Riddle. 2011. MISC-1/OGC links mitochondrial metabolism, Apoptosis and insulin secretion. PLoS .ONE. 6:e17827
  • Garcia-Gonzalez, A. P., A. D. Ritter, S. Shrestha, E. C. Andersen, L. S. Yilmaz, and A. J. M. Walhout. 2017. Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell. 169:431–441 e8. doi: 10.1016/j.cell.2017.03.046
  • Gaytan, B. D., and C. D. Vulpe. 2014. Functional toxicology: Tools to advance the future of toxicity testing. Front Genet 5:110. doi: 10.3389/fgene.2014.00110.
  • Gerbaba, T. K., L. Green-Harrison, and A. G. Buret. 2017. Modeling host-microbiome interactions In. Caenorhabditis Elegans. J Nematol 49: 348–56.
  • Gerisch, B., C. Weitzel, C. Kober-Eisermann, V. Rottiers, and A. Antebi. 2001. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1:841–51. doi: 10.1016/s1534-5807(01)00085-5.
  • Gill, M. S., J. M. Held, A. L. Fisher, B. W. Gibson, and G. J. Lithgow. 2004. Lipophilic regulator of a developmental switch in Caenorhabditis elegans. Aging.Cell. 3:413–21. doi: 10.1111/j.1474-9728.2004.00126.x.
  • Glavinas, H., P. Krajcsi, J. Cserepes, and B. Sarkadi. 2004. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr. Drug. Deliv. 1: 27–42. doi: 10.2174/1567201043480036.
  • Goh, G. Y. S., J. J. Winter, F. Bhanshali, K. R. S. Doering, R. Lai, K. Lee, E. A. Veal, and S. Taubert. 2018. NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging.Cell. 17:e12743. doi: 10.1111/acel.12743.
  • Gong, P., K. B. Donohue, A. M. Mayo, Y. Wang, H. Hong, M. S. Wilbanks, N. D. Barker, X. Guan, and K. A. Gust. 2018. Comparative toxicogenomics of three insensitive munitions constituents 2,4-dinitroanisole, nitroguanidine and nitrotriazolone in the soil nematode Caenorhabditis elegans. BMC .Syst .Biol 12 (Suppl 7): 92–92. doi: 10.1186/s12918-018-0636-0.
  • Gonzalez-Moragas, L., L. L. Maurer, V. M. Harms, J. N. Meyer, A. Laromaine, and A. Roig. 2017b. Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism Caenorhabditis elegans.” Mater. Horiz. 4:719–46. doi: 10.1039/C7MH00166E.
  • Gonzalez-Moragas, L., P. Berto, C. Vilches, R. Quidant, A. Kolovou, R. Santarella-Mellwig, Y. Schwab, S. Stürzenbaum, A. Roig, and A. Laromaine. 2017a. In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism. Acta Biomater 53:598–609. doi: 10.1016/j.actbio.2017.01.080.
  • Govindan, J. A., E. Jayamani, X. Zhang, E. Mylonakis, and G. Ruvkun. 2015. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans. Proc. Natl. Acad. Sci. U.S.A. 112:12456–61. doi: 10.1073/pnas.1517448112.
  • Gracida, X., and C. R. Eckmann. 2013. Fertility and germline stem cell maintenance under different diets requires NHR-114/HNF4 in C. Elegans. Curr. Biol. 23: 607–13. doi: 10.1016/j.cub.2013.02.034.
  • Grants, J. M., G. Y. Goh, and S. Taubert. 2015. The mediator complex of Caenorhabditis elegans: Insights into the developmental and physiological roles of a conserved transcriptional coregulator.” Nucl. Acids. Res. 43:2442–53. doi: 10.1093/nar/gkv037.
  • Gu, Q. L., Y. Zhang, X. M. Fu, Z. L. Lu, Y. Yu, G. Chen, R. Ma, W. Kou, and Y. M. Lan. 2020. Toxicity and metabolism of 3-bromopyruvate in Caenorhabditis elegans. J. Zhejiang. Univ. Sci. B. 21:77–86. doi: 10.1631/jzus.B1900370.
  • Guengerich, F. P. 2006. Cytochrome P450s and other enzymes in drug metabolism and toxicity. Aaps J 8:E101–E111. doi: 10.1208/aapsj080112.
  • Guengerich, F. P. 2008. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 21: 70–83. doi: 10.1021/tx700079z.
  • Gujar, M. R., A. M. Stricker, and E. A. Lundquist. 2017. Flavin monooxygenases regulate Caenorhabditis elegans axon guidance and growth cone protrusion with UNC-6/Netrin signaling and Rac GTPases. PLoS Genet. 13:e1006998. doi: 10.1371/journal.pgen.1006998.
  • Haegerbaeumer, A., R. Raschke, N. Reiff, W. Traunspurger, and S. Hoss. 2019. Comparing the effects of fludioxonil on non-target soil invertebrates using ecotoxicological methods from single-species bioassays to model ecosystems. Ecotoxicol. Environ. Saf. 183:109596. doi: 10.1016/j.ecoenv.2019.109596.
  • Haegerbaeumer, A., S. Hoss, P. Heininger, and W. Traunspurger. 2018a. Is Caenorhabditis elegans representative of freshwater nematode species in toxicity testing? Environ. Sci. Pollut. Res. Int. 25:2879–88. doi: 10.1007/s11356-017-0714-7.
  • Haegerbaeumer, A., S. Hoss, P. Heininger, and W. Traunspurger. 2018b. Response of nematode communities to metals and PAHs in freshwater microcosms. Ecotoxicol. Environ. Saf. 148:244–53. doi: 10.1016/j.ecoenv.2017.10.030.
  • Hagerbaumer, A., S. Hoss, P. Heininger, and W. Traunspurger. 2015. Experimental studies with nematodes in ecotoxicology: An overview. J. Nematol. 47:11–27.
  • Hahn, M. E. 2019. Evolutionary concepts can benefit both fundamental research and applied research in toxicology (A comment on Brady et al. 2017). Evol. Appl 12:350–52. doi: 10.1111/eva.12695.
  • Haitzer, M., B. K. Burnison, S. Höss, W. Traunspurger, and C. E. W. Steinberg. 1999. Effects of quantity, quality, and contact time of dissolved organic matter on bioconcentration of benzo[a]pyrene in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 18: 459–65. doi: 10.1002/etc.5620180314.
  • Hamon, Y., C. Broccardo, O. Chambenoit, M.-F. Luciani, F. Toti, S. Chaslin, J.-M. Freyssinet, P. F. Devaux, J. McNeish, D. Marguet, et al. 2000. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat. Cell Biol. 2: 399–406. doi: 10.1038/35017029.
  • Hanada, K., K. Nishijima, H. Ogata, S. Atagi, and M. Kawahara. 2001. Population pharmacokinetic analysis of cisplatin and its metabolites in cancer patients: Possible misinterpretation of covariates for pharmacokinetic parameters calculated from the concentrations of unchanged cisplatin, ultrafiltered platinum and total platinum. Jap. J. Clin. Oncol. 31: 179–84. doi: 10.1093/jjco/hye040.
  • Harborne, J. B. 1988. Introduction to Ecological Biochemistry. 3rd ed. London; San Diego: Academic Press.
  • Harlow, P. H., S. J. Perry, A. J. Stevens, and A. J. Flemming. 2018. Comparative metabolism of xenobiotic chemicals by cytochrome P450s in the nematode Caenorhabditis elegans. Rep. 8:13333. doi: 10.1038/s41598-018-31215-w.
  • Harlow, P. H., S. J. Perry, S. Widdison, S. Daniels, E. Bondo, C. Lamberth, R. A. Currie, and A. J. Flemming. 2016. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome. Sci. Rep. 6:22965. doi: 10.1038/srep22965.
  • Harrington, A. J., S. Hamamichi, G. A. Caldwell, and K. A. Caldwell. 2010. C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev.Dynamics. 239: 1282–95 doi: 10.1002/Dvdy.22231.
  • Harris, J. B., J. H. Hartman, A. L. Luz, J. Y. Wilson, A. Dinyari, and J. N. Meyer. 2020. Zebrafish CYP1A expression in transgenic Caenorhabditis elegans protects from exposures to benzo[a]pyrene and a complex polycyclic aromatic hydrocarbon mixture Toxicology. 440: 152473. doi: 10.1016/j.tox.2020.152473.
  • Harris, T. R., P. A. Aronov, P. D. Jones, H. Tanaka, M. Arand, and B. D. Hammock. 2008. Identification of two epoxide hydrolases in Caenorhabditis elegans that metabolize mammalian lipid signaling molecules. Arch. Biochem. Biophys. 472:139–49. doi: 10.1016/j.abb.2008.01.016.
  • Hartman, P. S., and R. K. Herman. 1982. Radiation-sensitive mutants of Caenorhabditis elegans. Genetics. 102:159–78.
  • Harvey, S. C., and H. E. Orbidans. 2011. All eggs are not equal: The maternal environment affects progeny reproduction and developmental fate in Caenorhabditis elegans. PLoS. One. 6:e25840. doi: 10.1371/journal.pone.0025840.
  • Haschek, W. M., M. Berenbaum, D. E. Hinton, M. Cora, N. Chernoff, G. Travlos, C. W. Liu, K. Lu, and M. Law. 2019. Pathology in ecological research with implications for one health: Session summary. Toxicol. Pathol. 47:1072–75. doi: 10.1177/0192623319880530.
  • Hasegawa, K., and J. Miwa. 2010. Genetic and cellular characterization of Caenorhabditis elegans mutants abnormal in the regulation of many phase II enzymes. PLoS. One. 5: e11194. doi: 10.1371/journal.pone.0011194.
  • Hasegawa, K., S. Miwa, K. Isomura, K. Tsutsumiuchi, H. Taniguchi, and J. Miwa. 2007. Acrylamide-responsive genes in the nematode Caenorhabditis elegans. Toxicol. Sci. 101: 215–25. doi: 10.1093/toxsci/kfm276.
  • Hasegawa, K., S. Miwa, K. Tsutsumiuchi, and J. Miwa. 2010. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor. Plos. One. 5:e9267. doi: 10.1371/journal.pone.0009267.
  • Hattori, K., M. Inoue, T. Inoue, H. Arai, and H. Tamura. 2006. A novel sulfotransferase abundantly expressed in the dauer larvae of Caenorhabditis elegans. J. Biochem. 139: 355–62. doi: 10.1093/jb/mvj041.
  • Hediger, M. A., B. Clémençon, R. E. Burrier, and E. A. Bruford. 2013. The ABCs of membrane transporters in health and disease (SLC series): Introduction. Mol. Aspects Med. 34: 95–107. doi: 10.1016/j.mam.2012.12.009.
  • Helmcke, K. J., D. S. Avila, and M. Aschner. 2010. Utility of Caenorhabditis elegans in high throughput neurotoxicological research. Neurotoxicol. Teratol. 32: 62–67. doi: 10.1016/j.ntt.2008.11.005.
  • Helmcke, K. J., T. Syversen, D. M. Miller 3rd, and M. Aschner. 2009. Characterization of the effects of methylmercury on Caenorhabditis elegans. Toxicol. Appl. Pharmacol. 240: 265–72.
  • Hengartner, M. O., and H. R. Horvitz. 1994. Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 4: 581–86.
  • Herholz, M., E. Cepeda, L. Baumann, A. Kukat, J. Hermeling, S. Maciej, K. Szczepanowska, V. Pavlenko, P. Frommolt, and A. Trifunovic. 2019. KLF-1 orchestrates a xenobiotic detoxification program essential for longevity of mitochondrial mutants. Nat. Commun. 10: 3323. doi: 10.1038/s41467-019-11275-w.
  • Herndon, L. A., P. J. Schmeer, J. M. Dudaronek, P. A. Brown, K. M. Listner, Y. Sakano, M. C. Paupard, D. H. Hall, and M. Driscoll. 2002. Stochastic and genetic factors influence tissue-specific decline in ageing C. Elegans. Nature. 419: 808–14.
  • Hirani, N., M. Westenberg, P. T. Seed, M. I. R. Petalcorin, and C. T. Dolphin. 2016. C. elegans flavin-containing monooxygenase-4 is essential for osmoregulation in hypotonic stress. Biol. Open. 5: 537–49. doi: 10.1242/bio.017400.
  • Hobert, O. 2005. Specification of the nervous system. In WormBook, edited by The C. elegans Research Community. Internet: Wormbook.
  • Hoffmann, J. M., and L. Partridge. 2015. Nuclear hormone receptors: Roles of xenobiotic detoxification and sterol homeostasis in healthy aging. Crit. Rev. Biochem. Mol. Biol. 50: 380–92. doi: 10.3109/10409238.2015.1067186.
  • Höglund, P. J., K. J. V. Nordström, H. B. Schiöth, and R. Fredriksson. 2011. The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol. Biol. Evol. 28:1531–41. doi: 10.1093/molbev/msq350.
  • Honnen, S. 2017. Caenorhabditis elegans as a powerful alternative model organism to promote research in genetic toxicology and biomedicine. Arch. Toxicol. 91:2029–44. doi: 10.1007/s00204-017-1944-7.
  • Horsman, J. W., and D. L. Miller. 2016. Mitochondrial sulfide quinone oxidoreductase prevents activation of the unfolded protein response in hydrogen sulfide. J. Biol. Chem. 291: 5320–25. doi: 10.1074/jbc.M115.697102.
  • Höss, S., K. Schlottmann, and W. Traunspurger. 2011. Toxicity of ingested cadmium to the nematode Caenorhabditis elegans. Environ. Sci. Technol. 45:10219–25. doi: 10.1021/es2027136.
  • Hoss, S., and L. Weltje. 2007. Endocrine disruption in nematodes: Effects and mechanisms. Ecotoxicology. 16:15–28. doi: 10.1007/s10646-006-0108-y.
  • Hoss, S., M. Haitzer, W. Traunspurger, and C. E. W. Steinberg. 1999. Growth and fertility of Caenorhabditis elegans (Nematoda) in unpolluted freshwater sediments: Response to particle size distribution and organic content. Environ. Toxicol. Chem. 18:2921–25.
  • Hoss, S., M. HAitzer, W. Traunspurger, H. Gratzer, W. Ahlf, and C. Steinberg. 1997. Influence of particle size distribution and content of organic matter on the toxicity of copper in sediment bioassays using Caenorhabditis elegans (nematoda). Water. Air. Soi.l Pollut. 99: 689–95.
  • Hoss, S., S. Jansch, T. Moser, T. Junker, and J. Rombke. 2009. Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. Ecotoxicol. Environ. Saf. 72:1811–18. doi: 10.1016/j.ecoenv.2009.07.003.
  • Hotchkiss, A. K., C. V. Rider, C. R. Blystone, V. S. Wilson, P. C. Hartig, G. T. Ankley, P. M. Foster, C. L. Gray, and L. E. Gray. 2008. Fifteen years after “Wingspread”–environmental endocrine disrupters and human and wildlife health: Where we are today and where we need to go. Toxicol. Sci. 105:235–59. doi: 10.1093/toxsci/kfn030.
  • Hu, Q., D. R. D’Amora, L. T. MacNeil, A. J. M. Walhout, and T. J. Kubiseski. 2018. The Caenorhabditis elegans oxidative stress response requires the NHR-49 transcription factor. G3. (Bethesda). 8: 3857–63 doi: 10.1534/g3.118.200727.
  • Huang, X., J. A. Powell-Coffman, and Y. Jin. 2004. The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. Elegans. Development. 131:819–28. doi: 10.1242/dev.00959.
  • Hunt, P. R. 2017. The C. elegans model in toxicity testing. J. Appl. Toxicol. 37:50–59. doi: 10.1002/jat.3357.
  • Hunt, P. R., N. Olejnik, K. D. Bailey, C. A. Vaught, and R. L. Sprando. 2018. C. elegans development and activity test detects mammalian developmental neurotoxins. Food Chem. Toxicol. 121:583–92. doi: 10.1016/j.fct.2018.09.061.
  • International Standard Organization (ISO). 2020. ISO 10872 - Water and soil quality - Determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of Caenorhabditis elegans (Nematoda). Switzerland: ISO.
  • Ioannides, C. 2001. Xenobiotic metabolism: An overview. In Enzyme Systems that Metabolise Drugs and Other Xenobiotics, pp. 1–32.
  • Jackson, B. P., P. L. Williams, A. Lanzirotti, and P. M. Bertsch. 2005. Evidence for biogenic pyromorphite formation by the nematode Caenorhabditis elegans. Environ. Sci. Technol. 39:5620–25. doi: 10.1021/es050154k.
  • Jacobs, M. A., A. Alwood, I. Thaipisuttikul, D. Spencer, E. Haugen, S. Ernst, O. Will, R. Kaul, C. Raymond, R. Levy, et al. 2003. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 100:14339–44. doi: 10.1073/pnas.2036282100.
  • James, C. E., and M. W. Davey. 2009. Increased expression of ABC transport proteins is associated with ivermectin resistance in the model nematode Caenorhabditis elegans. Int. J. Parasitol. 39:213–20. doi: 10.1016/j.ijpara.2008.06.009.
  • Jeong, J., H. Kim, and J. Choi. 2019. In silico molecular docking and in vivo validation with Caenorhabditis elegans to discover molecular initiating events in adverse outcome pathway framework: Case study on endocrine-disrupting chemicals with estrogen and androgen receptors. Int. J. Mol. Sci. 20. doi: 10.3390/ijms20051209.
  • Jia, K., P. S. Albert, and D. L. Riddle. 2002. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development. 129: 221–31.
  • Jin, M. S., M. L. Oldham, Q. Zhang, and J. Chen. 2012. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature. 490: 566–69. doi: 10.1038/nature11448.
  • Johnston, W. L., and J. W. Dennis. 2012. The eggshell in the C. elegans oocyte-to-embryo transition. Genesis. 50:333–49. doi: 10.1002/dvg.20823.
  • Johnstone, I. L. 1994. The cuticle of the nematode Caenorhabditis elegans: A complex collagen structure. Bioessays. 16:171–78. doi: 10.1002/bies.950160307.
  • Johnstone, I. L. 2000. Cuticle collagen genes: Expression in Caenorhabditis elegans. Trends. Genet. 16:21–27. doi: 10.1016/S0168-9525(99)01857-0.
  • Jones, L. M., A. J. Flemming, and P. E. Urwin. 2015. NHR-176 regulates CYP-35d1 to control hydroxylation-dependent metabolism of thiabendazole in Caenorhabditis elegans. Biochem. J. 466: 37–44. doi: 10.1042/BJ20141296.
  • Jones, L. M., S. J. Rayson, A. J. Flemming, and P. E. Urwin. 2013. Adaptive and specialised transcriptional responses to xenobiotic stress in Caenorhabditis elegans are regulated by nuclear hormone receptors. PLoS. One. 8: e69956. doi: 10.1371/journal.pone.0069956.
  • Kamath, R. S., A. G. Fraser, Y. Dong, G. Poulin, R. Durbin, M. Gotta, A. Kanapin, N. Le Bot, S. Moreno, M. Sohrmann, et al. 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 421: 231–37.
  • Kapitonov, D., and R. K. Yu. 1999. Conserved domains of glycosyltransferases. Glycobiology. 9:961–78. doi: 10.1093/glycob/9.10.961.
  • Kell, D. 2020a. How drugs really get into cells: Why passive bilayer diffusion is a myth.
  • Kell, D. B. 2020b. Hitchhiking into the cell. Nat. Chem. Biol. 16:367–68. doi: 10.1038/s41589-020-0489-x.
  • Kelly, W. G. 2014. Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenet. Chromatin. 7: 6. doi: 10.1186/1756-8935-7-6.
  • Kiontke, K., and D. H. Fitch. 2013. Nematodes. Curr. Biol. 23:R862–R864. doi: 10.1016/j.cub.2013.08.009.
  • Klaassen, C. D. 2019. Casarett and Doull’s Toxicology, 9th ed., 159–169. Blacklick, USA, United States: McGraw-Hill Professional Publishing.
  • Koontz, J. M., B. C. R. Dancy, C. L. Horton, J. D. Stallings, V. T. DiVito, and J. A. Lewis. 2019. The role of the human microbiome in chemical toxicity. Int. J. Toxicol. 38: 251–64. doi: 10.1177/1091581819849833.
  • Koppel, N., V. Maini Rekdal, and E. P. Balskus. 2017. Chemical transformation of xenobiotics by the human gut microbiota. Science 356. doi: 10.1126/science.aag2770.
  • Kulas, J., C. Schmidt, M. Rothe, W. H. Schunck, and R. Menzel. 2008. Cytochrome P450-dependent metabolism of eicosapentaenoic acid in the nematode Caenorhabditis Elegans. Arch. Biochem. Biophys. 472:65–75.
  • Kurz, C. L., M. Shapira, K. Chen, D. L. Baillie, and M.-W. Tan. 2007. Caenorhabditis elegans pgp-5 is involved in resistance to bacterial infection and heavy metal and its regulation requires TIR-1 and a p38 map kinase cascade. Biochem. Biophys. Res. Commun. 363: 438–43. doi: 10.1016/j.bbrc.2007.08.190.
  • Laing, S. T., A. Ivens, R. Laing, S. Ravikumar, V. Butler, D. J. Woods, and J. S. Gilleard. 2010. Characterization of the xenobiotic response of Caenorhabditis elegans to the anthelmintic drug albendazole and the identification of novel drug glucoside metabolites. Biochem. J. 432: 505–16. doi: 10.1042/BJ20101346.
  • Lažetić, V., and D. S. Fay. 2017. Molting in C. elegans. Worm. 6:e1330246–e1330246. doi: 10.1080/21624054.2017.1330246.
  • Lee, J. H., Y. G. Kim, M. Kim, E. Kim, H. Choi, Y. Kim, and J. Lee. 2017. Indole-associated predator-prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ. Microbiol. 19:1776–90. doi: 10.1111/1462-2920.13649.
  • Lee, S., Y. Kim, and J. Choi. 2020. Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 187:109777. doi: 10.1016/j.ecoenv.2019.109777.
  • Leiser, S. F., H. Miller, R. Rossner, M. Fletcher, A. Leonard, M. Primitivo, N. Rintala, F. J. Ramos, D. L. Miller, and M. Kaeberlein. 2015. Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span. Science 350:1375–78. doi: 10.1126/science.aac9257.
  • Lenz, K. A., C. Pattison, and H. Ma. 2017. Triclosan (TCS) and triclocarban (TCC) induce systemic toxic effects in a model organism the nematode Caenorhabditis elegans. Environ. Pollut. 231: 462–70 doi: 10.1016/j.envpol.2017.08.036.
  • Leung, M. C., J. V. Goldstone, W. A. Boyd, J. H. Freedman, and J. N. Meyer. 2010. Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol. Sci. 118:444–53. doi: 10.1093/toxsci/kfq295.
  • Leung, M. C., P. L. Williams, A. Benedetto, C. Au, K. J. Helmcke, M. Aschner, and J. N. Meyer. 2008. Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106:5–28. doi: 10.1093/toxsci/kfn121.
  • Leung, M. C. K., A. C. Procter, J. V. Goldstone, J. Foox, R. DeSalle, C. J. Mattingly, M. E. Siddall, and A. R. Timme-Laragy. 2017. Applying evolutionary genetics to developmental toxicology and risk assessment. Reprod. Toxicol. 69:174–86. doi: 10.1016/j.reprotox.2017.03.003.
  • Liao, V. H., and C. W. Yu. 2005. Caenorhabditis elegans gcs-1 confers resistance to arsenic-induced oxidative stress. Biometals 18:519–28.
  • Lincke, C. R., A. Broeks, I. The, R. H. Plasterk, and P. Borst. 1993. The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells. Embo. J. 12:1615–20.
  • Lindblom, T. H., and A. K. Dodd. 2006. Xenobiotic detoxification in the nematode Caenorhabditis elegans. J. Exp. Zoolog. Part A Comp. Exp. Biol. 305:720–30. doi: 10.1002/jez.a.324.
  • Lindblom, T. H., G. J. Pierce, and A. E. Sluder. 2001. A C. elegans orphan nuclear receptor contributes to xenobiotic resistance. Curr. Biol. 11: 864–68. doi: 10.1016/s0960-9822(01)00236-6.
  • Lints, R., and D. H. Hall 2009. The cuticle. In WormAtlas. doi:10.3908/wormatlas.1.12.
  • Liu, F., Y. Zhang, M. Zhang, Q. Luo, X. Cao, C. Cui, K. Lin, and K. Huang. 2020. Toxicological assessment and underlying mechanisms of tetrabromobisphenol A exposure on the soil nematode Caenorhabditis elegans. Chemosphere 242: 125078. doi: 10.1016/j.chemosphere.2019.125078.
  • Ludewig, A. H., M. Klapper, and F. Döring. 2014. Identifying evolutionarily conserved genes in the dietary restriction response using bioinformatics and subsequent testing in Caenorhabditis elegans. Genes Nutr 9:363–363. doi: 10.1007/s12263-013-0363-5.
  • Luz, A. L., T. R. Godebo, D. P. Bhatt, O. R. Ilkayeva, L. L. Maurer, M. D. Hirschey, and J. N. Meyer. 2016. From the over: Arsenite uncouples mitochondrial respiration and induces a Warburg-like effect in Caenorhabditis elegans. Toxicol. Sci. 152:349–62. doi: 10.1093/toxsci/kfw093.
  • Luz, A. L., T. R. Godebo, L. L. Smith, T. C. Leuthner, L. L. Maurer, and J. N. Meyer. 2017. Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology. doi: 10.1016/j.tox.2017.05.018.
  • Mackowiak, B., and H. Wang. 2016. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochim. Biophys. Acta 1859:1130–40. doi: 10.1016/j.bbagrm.2016.02.006.
  • Magner, D. B., J. Wollam, Y. Shen, C. Hoppe, D. Li, C. Latza, V. Rottiers, H. Hutter, and A. Antebi. 2013. The NHR-8 nuclear receptor regulates cholesterol and bile acid homeostasis in C. Elegans. Cell. Metab. 18:212–24. doi: 10.1016/j.cmet.2013.07.007.
  • Mahajan-Miklos, S., M. W. Tan, L. G. Rahme, and F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell. 96:47–56.
  • Mak, H. Y., and G. Ruvkun. 2004. Intercellular signaling of reproductive development by the C. elegans DAF-9 cytochrome P450. Development. 131:1777–86. doi: 10.1242/dev.01069.
  • Manallack, D. T., R. J. Prankerd, E. Yuriev, T. I. Oprea, and D. K. Chalmers. 2013. The significance of acid/base properties in drug discovery. Chem. Soc. Rev. 42:485–96. doi: 10.1039/c2cs35348b.
  • Martin, J., B. A. Rosa, P. Ozersky, K. Hallsworth-Pepin, X. Zhang, V. Bhonagiri-Palsikar, R. Tyagi, Q. Wang, Y. J. Choi, X. Gao, et al. 2015. Helminth.net: Expansions to nematode.net and an introduction to trematode.net. Nucl. Acids. Res. 43 ( Database issue): D698–D06. doi: 10.1093/nar/gku1128.
  • Mattingly, C. J., M. C. Rosenstein, A. P. Davis, G. T. Colby, J. N. Forrest Jr., and J. L. Boyer. 2006. The comparative toxicogenomics database: A cross-species resource for building chemical-gene interaction networks. Toxicol. Sci. 92:587–95. doi: 10.1093/toxsci/kfl008.
  • Maupas, E. 1900. Modes et formes de reproduction des nématodes. Arch. Zool. Exp. 8:463–624.
  • Maurer, L. L., A. L. Luz, and J. N. Meyer. 2018. Detection of mitochondrial toxicity of environmental pollutants using Caenorhabditis elegans. In Drug-Induced Mitochondrial Dysfunction, edited by J. A. Dykens, and Y. Will, 655-689. Hoboken, NJ, USA: Wiley.
  • Maurer, L. L., X. Yang, A. J. Schindler, R. K. Taggart, C. Jiang, H. Hsu-Kim, D. R. Sherwood, and J. N. Meyer. 2015. Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis Elegans. Nanotoxicology:1–5. doi: 10.3109/17435390.2015.1110759.
  • Maurer, L. L., X. Yang, A. J. Schindler, R. K. Taggart, C. Jiang, H. Hsu-Kim, D. R. Sherwood, and J. N. Meyer. 2016. Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans. Nanotoxicology 10:831–35. doi: 10.3109/17435390.2015.1110759.
  • McDonnell, A. M., and C. H. Dang. 2013. Basic review of the cytochrome p450 system. J. Adv. Practitioner. Oncol. 4:263–68. doi: 10.6004/jadpro.2013.4.4.7.
  • McGhee, J. D. 2013. The Caenorhabditis elegans intestine. Wiley.Interdiscip. Rev. Dev. Biol. 2: 347–67. doi: 10.1002/wdev.93.
  • Meech, R., D. G. Hu, R. A. McKinnon, S. N. Mubarokah, A. Z. Haines, P. C. Nair, A. Rowland, and P. I. Mackenzie. 2019. The UDP-glycosyltransferase (UGT) superfamily: New members, new functions, and novel paradigms. Physiol. Rev. 99:1153–222. doi: 10.1152/physrev.00058.2017.
  • Melendez, A., and B. Levine. 2009. Autophagy in C. elegans. WormBook:1–26
  • Menez, C., M. Alberich, E. Courtot, F. Guegnard, A. Blanchard, H. Aguilaniu, and A. Lespine. 2019. The transcription factor NHR-8: A new target to increase ivermectin efficacy in nematodes. PLoS Pathog. 15:e1007598. doi: 10.1371/journal.ppat.1007598.
  • Menzel, R., S. Sturzenbaum, A. Barenwaldt, J. Kulas, and C. E. Steinberg. 2005. Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis. Elegans. Environ. Sci. Technol. 39:8324–32.
  • Menzel, R., T. Bogaert, and R. Achazi. 2001. A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Arch. Biochem. Biophys. 395:158–68.
  • Mesnage, R., M. N. Antoniou, D. Tsoukalas, G. N. Goulielmos, and A. Tsatsakis. 2018. Gut microbiome metagenomics to understand how xenobiotics impact human health Curr. Opin. Toxicol. 11-12:51–58.
  • Metzler, R., E. A. Meleshkevitch, J. Fox, H. Kim, and D. Y. Boudko. 2013. An SLC6 transporter of the novel B0,− system aids in absorption and detection of nutrient amino acids in Caenorhabditis elegans. J. Exp. Biol. 216:2843–57. doi: 10.1242/jeb.081497.
  • Meyer, D., and P. L. Williams. 2014. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. J. Toxicol. Environ. Health B. 17: 284–306. doi: 10.1080/10937404.2014.933722.
  • Meyer, J. N., C. A. Lord, X. Y. Yang, E. A. Turner, A. R. Badireddy, S. M. Marinakos, A. Chilkoti, M. R. Wiesner, and M. Auffan. 2010. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat. Toxicol. 100:140–50. doi: 10.1016/j.aquatox.2010.07.016.
  • Mimoto, A., M. Fujii, M. Usami, M. Shimamura, N. Hirabayashi, T. Kaneko, N. Sasagawa, and S. Ishiura. 2007. Identification of an estrogenic hormone receptor in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 364:883–88. doi: 10.1016/j.bbrc.2007.10.089.
  • Mitchell, P. H., K. Bull, S. Glautier, N. A. Hopper, L. Holden-Dye, and V. O’Connor. 2007. The concentration-dependent effects of ethanol on Caenorhabditis elegans behaviour. Pharmacogenomics J. 7:411–17. doi: 10.1038/sj.tpj.6500440.
  • Miwa, J., E. Schierenberg, S. Miwa, and G. von Ehrenstein. 1980. Genetics and mode of expression of temperature-sensitive mutations arresting embryonic development in Caenorhabditis elegans. Dev. Biol. 76:160–74. doi: 10.1016/0012-1606(80)90369-3.
  • Monosson, E. 2012. Evolution in a Toxic World: How Life Responds to Chemical Threats. Washington, D.C: Island Press.
  • Monteverdi, G. H., and R. T. Di Giulio. 2000. In vitro and in vivo association of 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene with the yolk-precursor protein vitellogenin. Environ. Toxicol. Chem. 19: 2502–11. doi: 10.1002/etc.5620191016.
  • Motola, D. L., C. L. Cummins, V. Rottiers, K. K. Sharma, T. Li, Y. Li, K. Suino-Powell, H. E. Xu, R. J. Auchus, A. Antebi, et al. 2006. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. Elegans. Cell. 12: 1209–23. doi: 10.1016/j.cell.2006.01.037.
  • Murphy, C. T. 2006. The search for DAF-16/FOXO transcriptional targets: Approaches and discoveries. Exp. Gerontol. 41:910–21. doi: 10.1016/j.exger.2006.06.040.
  • Na, H., O. Ponomarova, G. E. Giese, and A. J. M. Walhout. 2018. C. elegans MRP-5 exports vitamin B12 from mother to offspring to support embryonic development. Cell. Rep. 22: 3126–33. doi: 10.1016/j.celrep.2018.02.100.
  • Nass, R., D. H. Hall, D. M. Miller, and R. D. Blakely. 2002. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Nat. Acad. Sc.i USA. 99:3264–69.
  • Nass, R., D. M. Miller, and R. D. Blakely. 2001. C-elegans: A novel pharmacogenetic model to study Parkinson’s disease. Parkinsonism. Related. Disorders. 7:185–91.
  • Nass, R., and I. Hamza. 2007. The nematode C. elegans as an animal model to explore toxicology in vivo: Solid and axenic growth culture conditions and compound exposure parameters. Curr. Protoc. Toxicol. Chapter. 1: Unit1 9. doi: 10.1002/0471140856.tx0109s31.
  • National Academies of Sciences, Engineering, and Medicine. 2017. Application of Systematic Review Methods in an Overall Strategy for Evaluating Low-Dose Toxicity from Endocrine Active Chemicals. Washington, DC: The National Academies Press.
  • National Academies of Sciences, Engineering, and Medicine. 2018. Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy. Washington, DC: The National Academies Press.
  • Nebert, D. W., K. Wikvall, and W. L. Miller. 2013. Human cytochromes P450 in health and disease. Phil.Trans. R.Soc .Lond B. Biol. Sci. 368: 20120431. doi: 10.1098/rstb.2012.0431.
  • Nebert, D. W., T. P. Dalton, A. B. Okey, and F. J. Gonzalez. 2004. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J. Biol. Chem. 279:23847–50. doi: 10.1074/jbc.R400004200.
  • Negi, H., S. K. Saikia, R. Kanaujia, S. Jaiswal, and R. Pandey. 2017. 3β-Hydroxy-urs-12-en-28-oic acid confers protection against ZnONPs induced adversity in Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 53:105–10. doi: 10.1016/j.etap.2017.05.004.
  • Nelson, F. K., and D. L. Riddle. 1984. Functional study of the Caenorhabditis elegans secretory-excretory system using laser microsurgery. J. Exp. Zool. 231:45–56. doi: 10.1002/jez.1402310107.
  • Nelson, F. K., P. S. Albert, and D. L. Riddle. 1983. Fine structure of the Caenorhabditis elegans secretory-excretory system. J. Ultrastruct. Res. 82:156–1571. doi: 10.1016/s0022-5320(83)90050-3.
  • Nigon, V. M., and M. A. Felix. 2017. History of research on C. elegans and other free-living nematodes as model organisms. WormBook: 1–91. doi: 10.1895/wormbook.1.181.1.
  • Nikoletopoulou, V., and N. Tavernarakis. 2014. Necrotic cell death in Caenorhabditis elegans. Meth. Enzymol. 545:127–55. doi: 10.1016/B978-0-12-801430-1.00006-8.
  • Nuclear Receptors Nomenclature, Committee. 1999. “A unified nomenclature system for the nuclear receptor superfamily.” Cell. 97 (2):161–63. doi: 10.1016/s0092-8674(00)80726-6.
  • Offermann, K., A. Matthäi, and W. Ahlf. 2009. Assessing the importance of dietborne cadmium and particle characteristics on bioavailability and bioaccumulation in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 28:1149–58. doi: 10.1897/08-272.1.
  • Oladimeji, P. O., and T. Chen. 2018. PXR: More than just a master xenobiotic receptor. Mol. Pharmacol. 93:119–27. doi: 10.1124/mol.117.110155.
  • Olsen, A., and M. Gill. 2017. Ageing: Lessons from C. elegans.. Cham, Switzerland: Springer.
  • Olson, S. K., G. Greenan, A. Desai, T. Müller-Reichert, and K. Oegema. 2012. Hierarchical assembly of the eggshell and permeability barrier in C. Elegans. J.Cell. Biology. 198: 731–48. doi: 10.1083/jcb.201206008.
  • Page, A. P., and I. L. Johnstone 2007. The cuticle (March 19, 2007), WormBook, ed. In WormBook. The C. elegans Research Community. doi/10.1895/ wormbook.1.138.1, http://www.wormbook.org.
  • Pender, C. L., and H. R. Horvitz. 2018. Hypoxia-inducible factor cell non-autonomously regulates C. elegans stress responses and behavior via a nuclear receptor. Elife. 7. doi: 10.7554/eLife.36828.
  • Peng, Y., Z.-H. Tong, H.-J. Chong, and X.-Y. Shao. 2018. Toxic effects of prolonged exposure to [C14mim]Br on Caenorhabditis elegans. Chemosphere 208:226–32. doi: 10.1016/j.chemosphere.2018.05.176.
  • Perally, S., E. J. LaCourse, A. M. Campbell, and P. M. Brophy. 2008. Heme transport and detoxification in nematodes: Subproteomics evidence of differential role of glutathione transferases. J. Proteome Res. 7:4557–65. doi: 10.1021/pr800395x.
  • Peredney, C. L., and P. L. Williams. 2000. Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Arch. Environ. Contam. Toxicol. 39:113–18. doi: 10.1007/s002440010086.
  • Perez, A., and J. Pierce WiseSr., 2018. One environmental health: An emerging perspective in toxicology. F1000Res 7. doi: 10.12688/f1000research.14233.1.
  • Perkins, L. A., E. M. Hedgecock, J. N. Thomson, and J. G. Culotti. 1986. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117:456–87. doi: 10.1016/0012-1606(86)90314-3.
  • Petalcorin, M. I., G. W. Joshua, P. M. Agapow, and C. T. Dolphin. 2005. The FMO genes of Caenorhabditis elegans and C. briggsae: Characterisation, gene expression and comparative genomic analysis. Gene. 346:83–96. doi: 10.1016/j.gene.2004.09.021.
  • Peterson, N. D., H. K. Cheesman, P. Liu, S. M. Anderson, K. J. Foster, R. Chhaya, P. Perrat, J. Thekkiniath, Q. Yang, C. M. Haynes, et al. 2019. The nuclear hormone receptor NHR-86 controls anti-pathogen responses in C.elegans. PLoS Genet. 15:e1007935. doi: 10.1371/journal.pgen.1007935.
  • Powell, J. R., and F. M. Ausubel. 2008. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. Meth.Mol. Biol. 415:403–27. doi: 10.1007/978-1-59745-570-1_24.
  • Powell-Coffman, J. A., C. A. Bradfield, and W. B. Wood. 1998. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc. Natl. Acad. Sci. U.S.A. 95:2844–49. doi: 10.1073/pnas.95.6.2844.
  • Prahlad, V., and R. I. Morimoto. 2009. Integrating the stress response: Lessons for neurodegenerative diseases from C. elegans. Trends Cell Biol. 19:52–61. doi: 10.1016/j.tcb.2008.11.002.
  • Pryor, R., P. Norvaisas, G. Marinos, L. Best, L. B. Thingholm, L. M. Quintaneiro, W. De Haes, D. Esser, S. Waschina, C. Lujan, et al. 2019. Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell. 178: 1299–1312 e29. doi: 10.1016/j.cell.2019.08.003.
  • Pukkila-Worley, R., R. L. Feinbaum, D. L. McEwan, A. L. Conery, and F. M. Ausubel. 2014. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification. PLoS Pathog. 10:e1004143. doi: 10.1371/journal.ppat.1004143.
  • Queiros, L., J. L. Pereira, F. J. M. Goncalves, M. Pacheco, M. Aschner, and P. Pereira. 2019. Caenorhabditis elegans as a tool for environmental risk assessment: Emerging and promising applications for a “nobelized worm”. Crit. Rev. Toxicol. 49:411–29. doi: 10.1080/10408444.2019.1626801.
  • Rajkumar, P., B. S. Mathew, S. Das, R. Isaiah, S. John, R. Prabha, and D. H. Fleming. 2016. Cisplatin concentrations in long and short duration infusion: Implications for the optimal time of radiation delivery. J .Clin. Diagnostic. Res. 10: XC01–XC04. doi: 10.7860/JCDR/2016/18181.8126.
  • Rappleye, C. A., A. Tagawa, N. Le Bot, J. Ahringer, and R. V. Aroian. 2003. Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC Dev. Biol. 3:8.
  • Reece-Hoyes, J. S., C. Pons, A. Diallo, A. Mori, S. Shrestha, S. Kadreppa, J. Nelson, S. Diprima, A. Dricot, B. R. Lajoie, et al. 2013. Extensive rewiring and complex evolutionary dynamics in a C. elegans multiparameter transcription factor network. Mol. Cell. 5:116–27. doi: 10.1016/j.molcel.2013.05.018.
  • Rees, D. C., E. Johnson, and O. Lewinson. 2009. ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol. 10:218–27. doi: 10.1038/nrm2646.
  • Rich, J. R., R. A. Dunn, and J. W. Noling. 2004. Nematicides: Past and present uses. In Nematology: Advances and Perspectives, edited by Z. X. Chen, S. Y. Chen, and D. W. Dickson. Cambridge, MA: CABI Publishing. pp. 1179–200.
  • Rieckher, M., A. Bujarrabal, M. A. Doll, N. Soltanmohammadi, and B. Schumacher. 2018. A simple answer to complex questions: Caenorhabditis elegans as an experimental model for examining the DNA damage response and disease genes. J. Cell. Physiol. 233: 2781–90. doi: 10.1002/jcp.25979.
  • Ristow, M., and S. Schmeisser. 2011. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 51:327–36. doi: 10.1016/j.freeradbiomed.2011.05.010.
  • Rodriguez, M., L. B. Snoek, M. De Bono, and J. E. Kammenga. 2013. Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends. Genet. 29:367–74. doi: 10.1016/j.tig.2013.01.010.
  • Roh, J. Y., H. J. Lee, and J. H. Kwon. 2016. Internal concentration and time are important modifiers of toxicity: The case of chlorpyrifos on Caenorhabditis elegans. Environ. Sci. Technol. 50:9689–96. doi: 10.1021/acs.est.6b02751.
  • Rutter, J. W., T. Ozdemir, E. R. Galimov, L. M. Quintaneiro, L. Rosa, G. M. Thomas, F. Cabreiro, and C. P. Barnes. 2019. Detecting changes in the Caenorhabditis elegans intestinal environment using an engineered bacterial biosensor. A. CS. Synth. Biol. 8: 2620–28. doi: 10.1021/acssynbio.9b00166.
  • Sammi, S. R., Z. S. Agim, and J. R. Cannon. 2018. From the cover: Harmane-induced selective dopaminergic neurotoxicity in Caenorhabditis elegans. Toxicol. Sci. 161:335–48. doi: 10.1093/toxsci/kfx223.
  • Schafer, P., M. Muller, A. Kruger, C. E. Steinberg, and R. Menzel. 2009. Cytochrome P450-dependent metabolism of PCB52 in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys. 488:60–68.
  • Schenk, J., S. Hoss, M. Brinke, N. Kleinbolting, H. Bruchner-Huttemann, and W. Traunspurger. 2020. Nematodes as bioindicators of polluted sediments using metabarcoding and microscopic taxonomy. Environ Int 143:105922. doi: 10.1016/j.envint.2020.105922.
  • Schmeisser, K., J. Mansfeld, D. Kuhlow, S. Weimer, S. Priebe, I. Heiland, M. Birringer, M. Groth, A. Segref, Y. Kanfi, et al. 2013. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide Nat. Chem. Biol. 9: 693–700. doi: 10.1038/nchembio.1352.
  • Schmid, T., L. B. Snoek, E. Fröhli, M. Leontien van der Bent, J. Kammenga, and A. Hajnal. 2015. Systemic regulation of RAS/MAPK signaling by the serotonin metabolite 5-HIAA. PLoS. Genet. 11: e1005236. doi: 10.1371/journal.pgen.1005236.
  • Schwartz, M. S., J. L. Benci, D. S. Selote, A. K. Sharma, A. G. Chen, H. Dang, H. Fares, and O. K. Vatamaniuk. 2010. Detoxification of multiple heavy metals by a half-molecule ABC transporter, HMT-1, and coelomocytes of Caenorhabditis elegans. PLoS. One. 5: e9564. doi: 10.1371/journal.pone.0009564.
  • Scott, T. A., L. M. Quintaneiro, P. Norvaisas, P. P. Lui, M. P. Wilson, K. Y. Leung, L. Herrera-Dominguez, S. Sudiwala, A. Pessia, P. T. Clayton, et al. 2017. Host-microbe Co-metabolism dictates cancer drug efficacy in C. elegans. Cell. 169:442–456.e18. doi: 10.1016/j.cell.2017.03.040.
  • Scotti, E., S. Boué, G. Lo Sasso, F. Zanetti, V. Belcastro, C. Poussin, N. Sierro, J. Battey, A. Gimalac, N. V. Ivanov, et al. 2017. Exploring the microbiome in health and disease: Implicationsfor toxicology. Toxicol. Res. Appl 1:2397847317741884. doi: 10.1177/2397847317741884.
  • Sender, R., S. Fuchs, and R. Milo. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14:e1002533. doi: 10.1371/journal.pbio.1002533.
  • Sengupta, P. 2007. Generation and modulation of chemosensory behaviors in C. Elegans. Pflügers.Archiv - Eur. J Physiol. 454:721. doi: 10.1007/s00424-006-0196-9.
  • Serrano-Saiz, E., M. C. Vogt, S. Levy, Y. Wang, K. K. Kaczmarczyk, X. Mei, G. Bai, A. Singson, B. D. Grant, and O. Hobert. 2020. „SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes.„Genetics 214 (1):163–178. doi:10.1534/genetics.119.302855
  • Serrano-Saiz, E., R. J. Poole, T. Felton, F. Zhang, E. D. De La Cruz, and O. Hobert. 2013. Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell. 155:659–73. doi: 10.1016/j.cell.2013.09.052.
  • Shaye, D. D., and I. Greenwald. 2011. OrthoList: A compendium of C. elegans genes with human orthologs. PLoS. One. 6: e20085. doi: 10.1371/journal.pone.0020085.
  • Shen, C., D. Nettleton, M. Jiang, S. K. Kim, and J. A. Powell-Coffman. 2005. Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. J. Biol. Chem. 280:20580–88. doi: 10.1074/jbc.M501894200.
  • Shen, P., R. Zhang, D. J. McClements, and Y. Park. 2019. Nanoemulsion-based delivery systems for testing nutraceutical efficacy using Caenorhabditis elegans: Demonstration of curcumin bioaccumulation and body-fat reduction. Food. Res. Int. 120:157–66. doi: 10.1016/j.foodres.2019.02.036.
  • Sheps, J. A., S. Ralph, Z. Zhao, D. L. Baillie, and V. Ling. 2004. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol. 5:R15. doi: 10.1186/gb-2004-5-3-r15.
  • Shiizaki, K., M. Kawanishi, and T. Yagi. 2017. Modulation of benzo[a]pyrene-DNA adduct formation by CYP1 inducer and inhibitor. Genes.Environ. 39:14. doi: 10.1186/s41021-017-0076-x.
  • Shomer, N., A. Z. Kadhim, J. M. Grants, X. Cheng, D. Alhusari, F. Bhanshali, A. F. Poon, M. Y. Y. Lee, A. Muhuri, J. I. Park, et al. 2019. Mediator subunit MDT-15/MED15 and nuclear receptor HIZR-1/HNF4 cooperate to regulate toxic metal stress responses in Caenorhabditis elegans. PLoS Genet. 15: e1008508. doi: 10.1371/journal.pgen.1008508.
  • Shore, D. E., and G. Ruvkun. 2013. A cytoprotective perspective on longevity regulation. Trends Cell Biol. 23:409–20. doi: 10.1016/j.tcb.2013.04.007.
  • Simmer, F., C. Moorman, A. M. van der Linden, E. Kuijk, P. V. van den Berghe, R. S. Kamath, A. G. Fraser, J. Ahringer, and R. H. Plasterk. 2003. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 1:e12.
  • Sinclair, J., and I. Hamza. 2015. Lessons from bloodless worms: Heme homeostasis in C. elegans. Biometals 28:481–89. doi: 10.1007/s10534-015-9841-0.
  • Singh, R. N., and J. E. Sulston. 1978. Some observations on moulting in Caenorhabditis elegans. Nematologica. 24:63. doi: 10.1163/187529278X00074.
  • Slice, L. W., J. H. Freedman, and C. S. Rubin. 1990. Purification, characterization, and cDNA cloning of a novel metallothionein-like, cadmium-binding protein from Caenorhabditis. Elegans. J. Biol. Chem. 265: 256–63.
  • Snyder, P. W., P. Mann, B. Bolon, S. Elmore, W. Haschek-Hock, K. McDorman, D. M. Morton, R. Ochoa, and A. M. Ryan. 2010. The Society of Toxicologic Pathology and the “One Health” initiative Toxicol. Pathol. 38:521.
  • Song, B. J., H. V. Gelboin, S. S. Park, C. S. Yang, and F. J. Gonzalez. 1986. Complementary DNA and protein sequences of ethanol-inducible rat and human cytochrome P-450s. Transcriptional and post-transcriptional regulation of the rat enzyme. J. Biol. Chem. 261: 16689–97.
  • Spann, N., W. Goedkoop, and W. Traunspurger. 2015. Phenanthrene bioaccumulation in the nematode Caenorhabditis elegans. Environ. Sci. Technol. 49:1842–50. doi: 10.1021/es504553t.
  • Sprando, R. L., N. Olejnik, H. N. Cinar, and M. Ferguson. 2009. A method to rank order water soluble compounds according to their toxicity using Caenorhabditis elegans, a complex object parametric analyzer and sorter, and axenic liquid media. Food Chem. Toxicol. 47: 722–28. doi: 10.1016/j.fct.2009.01.007.
  • Starnes, D. L., J. M. Unrine, C. P. Starnes, B. E. Collin, E. K. Oostveen, R. Ma, G. V. Lowry, P. M. Bertsch, and O. V. Tsyusko. 2015. Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. Environ. Pollut. 196:239–46. doi: 10.1016/j.envpol.2014.10.009.
  • Stein, K. K., and A. Golden 2015. The C. elegans eggshell. (December 30, 2015), WormBook, ed In WormBook. The C. elegans Research Community.
  • Steinberg, C. E., S. R. Sturzenbaum, and R. Menzel. 2008. Genes and environment - striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci. Total Environ. 400:142–61. doi: 10.1016/j.scitotenv.2008.07.023.
  • Sterken, M. G., L. B. Snoek, J. E. Kammenga, and E. C. Andersen. 2015. The laboratory domestication of Caenorhabditis elegans. Trends. Genet. 31:224–31. doi: 10.1016/j.tig.2015.02.009.
  • Stone, C. E., D. H. Hall, and M. V. Sundaram. 2009. Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system. Dev. Biol. 329:201–11. doi: 10.1016/j.ydbio.2009.02.030.
  • Stupp, G. S., S. H. von Reuss, Y. Izrayelit, R. Ajredini, F. C. Schroeder, and A. S. Edison. 2013. Chemical detoxification of small molecules by Caenorhabditis elegans ACS. Chem. Biol. 8: 309–13. doi: 10.1021/cb300520u.
  • Sulston, J. E., D. G. Albertson, and J. N. Thomson. 1980. The Caenorhabditis elegans male: Postembryonic development of nongonadal structures. Dev. Biol. 78:542–76. doi: 10.1016/0012-1606(80)90352-8.
  • Sumida, A., K. Kinoshita, T. Fukuda, H. Matsuda, I. Yamamoto, T. Inaba, and J. Azuma. 1999. Relationship between mRNA levels quantified by reverse transcription-competitive PCR and metabolic activity of CYP3A4 and CYP2E1 in human liver. Biochem. Biophys. Res. Commun. 262:499–503. doi: 10.1006/bbrc.1999.1233.
  • Sundaram, M. V., and M. Buechner. 2016. The Caenorhabditis elegans excretory system: A model for tubulogenesis, cell fate specification, and plasticity. Genetics. 203:35. doi: 10.1534/genetics.116.189357.
  • Swain, S. C., K. Keusekotten, R. Baumeister, and S. R. Sturzenbaum. 2004. C. elegans metallothioneins: New insights into the phenotypic effects of cadmium toxicosis. J. Mol. Biol. 341:951–59. doi: 10.1016/j.jmb.2004.06.050.
  • Tang, B., P. L. Williams, K. S. Xue, J. S. Wang, and L. Tang. 2020. Detoxification mechanisms of nickel sulfate in nematode Caenorhabditis elegans. Chemosphere 260:127627. doi: 10.1016/j.chemosphere.2020.127627.
  • Taubert, S., J. D. Ward, and K. R. Yamamoto. 2011. Nuclear hormone receptors in nematodes: Evolution and function. Mol. Cell. Endocrinol. 334:49–55. doi: 10.1016/j.mce.2010.04.021.
  • Taubert, S., M. Hansen, M. R. Van Gilst, S. B. Cooper, and K. R. Yamamoto. 2008. The mediator subunit MDT-15 confers metabolic adaptation to ingested material. PLoS Genet. 4: e1000021. doi: 10.1371/journal.pgen.1000021.
  • Taubert, S., M. R. Van Gilst, M. Hansen, and K. R. Yamamoto. 2006. A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. Elegans. Genes. Dev. 20:1137–49. doi: 10.1101/gad.1395406.
  • Tejeda-Benitez, L., and J. Olivero-Verbel. 2016. Caenorhabditis elegans, a biological model for research in toxicology. Rev Environ Contam Toxicol 237:1–35. doi: 10.1007/978-3-319-23573-8_1.
  • Tonelli, C., I. I. C. Chio, and D. A. Tuveson. 2018. Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 29:1727–45. doi: 10.1089/ars.2017.7342.
  • Traunspurger, W., M. Haitzer, S. Hoss, S. Beier, W. Ahlf, and C. Steinberg. 1997. Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (nematoda) - A method for testing liquid medium and whole-sediment samples. Environ. Toxicol. Chem. 16:245–50.
  • Treonis, A. M., and D. H. Wall. 2005. Soil nematodes and desiccation survival in the extreme arid environment of the antarctic dry valleys. Integr. Comp. Biol. 45:741–50. doi: 10.1093/icb/45.5.741.
  • Tsiaoussis, J., M. N. Antoniou, I. Koliarakis, R. Mesnage, C. I. Vardavas, B. N. Izotov, A. Psaroulaki, and A. Tsatsakis. 2019. Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicol. Lett. 312:72–97. doi: 10.1016/j.toxlet.2019.04.014.
  • Vatamaniuk, O. K., E. A. Bucher, J. T. Ward, and P. A. Rea. 2001. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J. Biol. Chem. 276: 20817–20.
  • Verma, S., U. Jagtap, A. Goyala, and A. Mukhopadhyay. 2018. A novel gene-diet pair modulates C. elegans aging. PLoS Genet. 14: e1007608. doi: 10.1371/journal.pgen.1007608.
  • Viñuela, A., L. B. Snoek, J. A. G. Riksen, and J. E. Kammenga. 2010. Genome-wide gene expression analysis in response to organophosphorus pesticide chlorpyrifos and diazinon in C. Elegans. PloS. One. 5:e12145–e12145. doi: 10.1371/journal.pone.0012145.
  • Wallace, B. D., and M. R. Redinbo. 2013. Xenobiotic-sensing nuclear receptors involved in drug metabolism: A structural perspective. Drug Metab. Rev. 45: 79–100. doi: 10.3109/03602532.2012.740049.
  • Wang, D. 2019a. Molecular Toxicology in Caenorhabditis elegans: Springer.
  • Wang, D. 2019b. Target organ toxicology in Caenorhabditis elegans: Springer.
  • Wang, D. 2020. Exposure Toxicology in Caenorhabditis elegans: Springer.
  • Wang, J., J. Luo, D. K. Aryal, W. C. Wetsel, R. Nass, and J. L. Benovic. 2017. G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans. J. Biol. Chem. 292:5943–56. doi: 10.1074/jbc.M116.760850.
  • Wani, K. A., D. Goswamy, S. Taubert, R. Ratnappan, A. Ghazi, and J. E. Irazoqui. 2020. NHR-49/PPAR-α and HLH-30/TFEB promote C. elegans host defense via a flavin-containing monooxygenase. Bio.Rxiv: 2020.9.03.282087. doi: 10.1101/2020.09.03.282087.
  • Ward, S., N. Thomson, J. G. White, and S. Brenner. 1975. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU. J. Comp. Neurol. 160: 313–37. doi: 10.1002/cne.901600305.
  • Ware, R. W., D. Clark, K. Crossland, and R. L. Russell. 1975. The nerve ring of the nematode Caenorhabditis elegans: Sensory input and motor output. J. Comp. Neurol. 162:71–110. doi: 10.1002/cne.901620106.
  • Watson, E., L. T. MacNeil, A. D. Ritter, L. S. Yilmaz, A. P. Rosebrock, A. A. Caudy, and A. J. M. Walhout. 2014. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell. 156:1336–37. doi: 10.1016/j.cell.2014.02.036.
  • Weikum, E. R., X. Liu, and E. A. Ortlund. 2018. The nuclear receptor superfamily: A structural perspective. Protein. Sci. 27:1876–92. doi: 10.1002/pro.3496.
  • Weinhouse, C., L. Truong, J. N. Meyer, and P. Allard. 2018. Caenorhabditis elegans as an emerging model system in environmental epigenetics. Environ. Mol. Mutagen. 59:560–75. doi: 10.1002/em.22203.
  • Williams, P. L., and D. B. Dusenbery. 1987. Screening test for neurotoxins using Caenorhabditis elegans. Prog. Clin. Biol. Res. 253:163–70.
  • Williams, P. L., and D. B. Dusenbery. 1988. Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol. Ind. Health. 4: 469–78.
  • Williams, P. L., and D. B. Dusenbery. 1990a. A promising indicator of neurobehavioral toxicity using the nematode Caenorhabditis elegans and computer tracking. Toxicol Ind Health 6: 425–40.
  • Williams, P. L., and D. B. Dusenbery. 1990b. Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environ. Toxicol. Chem. 9:1285–90.
  • Williamson, V. M., and A. Kumar. 2006. Nematode resistance in plants: The battle underground. Trends. Genet. 22: 396–403. doi: 10.1016/j.tig.2006.05.003.
  • Williamson, V. M., M. Long, and G. Theodoris. 1991. Isolation of Caenorhabditis elegans mutants lacking alcohol dehydrogenase activity. Biochem. Genet. 29: 313–23. doi: 10.1007/BF00554139.
  • Wittkowski, P., P. Marx-Stoelting, N. Violet, V. Fetz, F. Schwarz, M. Oelgeschläger, G. Schönfelder, and S. Vogl. 2019. Caenorhabditis elegans as a promising alternative model for environmental chemical mixture effect assessment-A comparative study. Environ. Sci. Technol. 53: 12725–33. doi: 10.1021/acs.est.9b03266.
  • Wolkow, C. A., and D. H. Hall 2011. The dauer cuticle.” In WormAtlas.
  • Woodruff, G. C., C. M. Knauss, T. K. Maugel, and E. S. Haag. 2014. Mating damages the cuticle of C. elegans hermaphrodites. PloS. One. 9: e104456–e104456. doi: 10.1371/journal.pone.0104456.
  • Wu, C. W., A. Deonarine, A. Przybysz, K. Strange, and K. P. Choe. 2016. The Skp1 homologs SKR-1/2 are required for the Caenorhabditis elegans SKN-1 antioxidant/detoxification response independently of p38 MAPK. PLoS Genet. 12: e1006361. doi: 10.1371/journal.pgen.1006361.
  • Wu, H., C. Huang, F. A. Taki, Y. Zhang, D. L. Dobbins, L. Li, H. Yan, and X. Pan. 2015. Benzo-α-pyrene induced oxidative stress in Caenorhabditis elegans and the potential involvements of microRNA. Chemosphere 139:496–503. doi: 10.1016/j.chemosphere.2015.08.031.
  • Wyatt, L. H., S. E. Diringer, L. A. Rogers, H. Hsu-Kim, W. K. Pan, and J. N. Meyer. 2016. Antagonistic growth effects of mercury and selenium in Caenorhabditis elegans are chemical-species-dependent and do not depend on internal Hg/Se ratios. Environ. Sci. Technol. doi: 10.1021/acs.est.5b06044.
  • Xia, M., R. Huang, Q. Shi, W. A. Boyd, J. Zhao, N. Sun, J. R. Rice, P. E. Dunlap, A. J. Hackstadt, M. F. Bridge, et al. 2018. Comprehensive analyses and prioritization of Tox21 10K chemicals affecting mitochondrial function by in-depth mechanistic studies. Environ. Health. Perspect. 126:077010. doi: 10.1289/EHP2589.
  • Xiong, H., C. Pears, and A. Woollard. 2017. An enhanced C. elegans based platform for toxicity assessment. Sci. Rep. 7: 9839. doi: 10.1038/s41598-017-10454-3.
  • Xu, C., C. Y. Li, and A. N. Kong. 2005. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch. Pharm. Res. 28:249–68. doi: 10.1007/bf02977789.
  • Yang, X. Y., C. J. Jiang, H. Hsu-Kim, A. R. Badireddy, M. Dykstra, M. Wiesner, D. E. Hinton, and J. N. Meyer. 2014. Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: Effects of natural organic matter. Environ. Sci. Technol. 48: 3486–95. doi:10.1021/Es404444n.
  • Yang, Y. F., Y. J. Lin, and C. M. Liao. 2017. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans. Int. J. Nanomed. 12: 4607–21. doi: 10.2147/ijn.S138790.
  • Zdraljevic, S., B. W. Fox, C. Strand, O. Panda, F. J. Tenjo, S. C. Brady, T. A. Crombie, J. G. Doench, F. C. Schroeder, and E. C. Andersen. 2019. Natural variation in C. elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. Elife. 8. doi: 10.7554/eLife.40260.
  • Zdraljevic, S., and E. C. Andersen. 2017. Natural diversity facilitates the discovery of conserved chemotherapeutic response mechanisms. Curr. Opin. Genet. Dev. 47:41–47. doi: 10.1016/j.gde.2017.08.002.
  • Zhang, F., M. Berg, K. Dierking, M. A. Felix, M. Shapira, B. S. Samuel, and H. Schulenburg. 2017. Caenorhabditis elegans as a model for microbiome research. Front. Microbiol. 8:485. doi: 10.3389/fmicb.2017.00485.
  • Zhang, J., A. D. Holdorf, and A. J. Walhout. 2017. C. elegans and its bacterial diet as a model for systems-level understanding of host-microbiota interactions. Curr. Opin. Biotechnol. 46:74–80. doi: 10.1016/j.copbio.2017.01.008.
  • Zhang, J., X. Li, A. R. Jevince, L. Guan, J. Wang, D. H. Hall, X. Huang, and M. Ding. 2013. Neuronal target identification requires AHA-1-mediated fine-tuning of Wnt signaling in C. elegans. PLoS Genet. 9: e1003618. doi: 10.1371/journal.pgen.1003618.
  • Zhang, X., H. Q. Zhong, Z. W. Chu, X. Zuo, L. Wang, X. L. Ren, H. Ma, R. Y. Du, J. J. Ju, X. L. Ye, et al. 2020. Arsenic induces transgenerational behavior disorders in Caenorhabditis elegans and its underlying mechanisms. Chemosphere 252:126510. doi: 10.1016/j.chemosphere.2020.126510.
  • Zhao, Y. L., Q. L. Wu, Y. P. Li, and D. Y. Wang. 2013. Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC. Adv 3:5741–57. doi: 10.1039/c2ra22798c.
  • Zhao, Z., J. A. Sheps, V. Ling, L. L. Fang, and D. L. Baillie. 2004. Expression Analysis of ABC transporters reveals differential functions of tandemly duplicated genes in Caenorhabditis elegans. J. Mol. Biol. 344: 409–17. doi: 10.1016/j.jmb.2004.09.052.
  • Zheng, S.-Q., A.-J. Ding, G.-P. Li, G.-S. Wu, and H.-R. Luo. 2013. Drug absorption efficiency in Caenorhbditis elegans delivered by different methods. PloS. One. 8:e56877–e56877. doi: 10.1371/journal.pone.0056877.
  • Zhou, G. W., X. R. Yang, F. Zheng, Z. X. Zhang, B. X. Zheng, Y. G. Zhu, and X. M. Xue. 2020. Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans. Environ. Pollut. 260: 113991. doi: 10.1016/j.envpol.2020.113991.