1,292
Views
46
CrossRef citations to date
0
Altmetric
Review

Arsenic exposure from groundwater: environmental contamination, human health effects, and sustainable solutions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmad, S. A., M. H. Khan, and M. Haque. 2018. Arsenic contamination in groundwater in Bangladesh: Implications and challenges for healthcare policy. Risk Manage. Healthcare. Policy 11:251–61. doi:10.2147/RMHP.S153188.
  • Ahmed, S., E. Akhtar, A. Roy, O. S. Von Ehrenstein, M. Vahter, Y. Wagatsuma, and R. Raqib. 2017. Arsenic exposure alters lung function and airway inflammation in children: A cohort study in rural Bangladesh. Environ. Int. 101:108–16. doi:10.1016/j.envint.2017.01.014.
  • Alcaine, A. A., C. Schulz, J. Bundschuh, G. Jacks, R. Thunvik, J. P. Gustafsson, C. M. Mörth, O. Sracek, A. Ahmad, and P. Bhattacharya. 2020. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Sci. Total Environ. 715:136671. doi:10.1016/j.scitotenv.2020.136671.
  • Ali, W., A. Rasool, M. Junaid, and H. Zhang. 2019. A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: A global perspective with prominence of Pakistan scenario. Environ Geochem Health 41 (2):737–60. doi:10.1007/s10653-018-0169-x.
  • Alsulaili, A., M. Al-Harbi, and K. Elsayed. 2020. The influence of household filter types on quality of drinking water. Process Saf. Environ. 143:204–11. doi:10.1016/j.psep.2020.06.051.
  • Antoni, S., J. Ferlay, I. Soerjomataram, A. Znaor, A. Jemal, and F. Bray. 2017. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol 71 (1):96–108. doi:10.1016/j.eururo.2016.06.010.
  • Asere, T. G., C. V. Stevens, and G. D. Laing. 2019. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 676:706–20. doi:10.1016/j.scitotenv.2019.04.237.
  • Ashraf, S., A. Siddiqa, S. Shahida, and S. Qaisar. 2019. Titanium-based nanocomposite materials for arsenic removal from water: A review. Heliyon 5 (5):e01577. doi:10.1016/j.heliyon.2019.e01577.
  • Ayotte, J. D., L. Medalie, S. L. Qi, L. C. Backer, and B. T. Nolan. 2017. Estimating the high-arsenic domestic-well population in the conterminous United States. Environ. Sci. Technol. 51 (21):12443–54. doi:10.1021/acs.est.7b02881.
  • Bacquart, T., S. Frisbie, E. Mitchell, L. Grigg, C. Cole, C. Small, and B. Sarkar. 2015. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium. Sci. Total Environ. 517:232–45. doi:10.1016/j.scitotenv.2015.02.038.
  • Baker, B. A., V. A. Cassano, and C. Murray; ACOEM Task Force on Arsenic Exposure. 2018. Arsenic exposure, assessment, toxicity, diagnosis, and management: Guidance for occupational and environmental physicians. J. Occup. Environ. Med. 60 (12):e634–e639. doi:10.1097/JOM.0000000000001485.
  • Bang, S., M. D. Johnson, G. P. Korfiatis, and X. Meng. 2005. Chemical reactions between arsenic and zero-valent iron in water. Water Res. 39 (5):763–70. doi:10.1016/j.watres.2004.12.022.
  • Bjørklund, G., J. Aaseth, S. Chirumbolo, M. A. Urbina, and R. Uddin. 2018. Effects of arsenic toxicity beyond epigenetic modifications. Environ. Geochem. Health. 40 (3):955–65. doi:10.1007/s10653-017-9967-9.
  • Bondu, R., V. Cloutier, E. Rosa, and M. Benzaazoua. 2017. Mobility and speciation of geogenic arsenic in bedrock groundwater from the Canadian Shield in western Quebec, Canada. Sci. Total Environ. 574:509–19. doi:10.1016/j.scitotenv.2016.08.210.
  • Bretzler, A., F. Lalanne, J. Nikiema, J. Podgorski, N. Pfenninger, M. Berg, and M. Schirmer. 2017. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Sci. Total Environ. 584-585:958–70. doi:10.1016/j.scitotenv.2017.01.147.
  • Cardoso, A. P. F., L. Al-Eryani, and J. C. States. 2018. Arsenic-induced carcinogenesis: The impact of miRNA dysregulation. Toxicol. Sci 165 (2):284–90. doi:10.1093/toxsci/kfy128.
  • Carraro, A., P. Fabbri, A. Giaretta, L. Peruzzo, F. Tateo, and F. Tellini. 2015. Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy). Sci. Total Environ. 532:581–94. doi:10.1016/j.scitotenv.2015.06.003.
  • Cepoi, L., L. Rudi, T. Chiriac, S. Codreanu, and A. Valuţa. 2016. Biological methods of wastewater treatment. In Cyanobacteria for Bioremediation of Wastewaters, I. Zinicovscaia, and L. Cepoi. ed., 44–60 Cham: Springer. doi:10.1007/978-3-319-26751-7_5..
  • Chakraborti, D., B. Das, M. M. Rahman, B. Nayak, A. Pal, M. K. Sengupta, S. Ahamed, M. A. Hossain, U. K. Chowdhury, B. K. Biswas, et al. 2017. Arsenic in groundwater of the Kolkata Municipal Corporation (KMC), India: Critical review and modes of mitigation. Chemosphere 180:437–47. doi:10.1016/j.chemosphere.2017.04.051.
  • Chakraborti D, Rahman MM, Chatterjee A, Das D, Das B, Nayak B, Pal A, Chowdhury UK, Ahmed S, Biswas BK, Sengupta MK, Lodh D, Samanta G, Chakraborty S, Roy MM, Dutta RN, Saha KC, Mukherjee SC, Pati S, Kar PB. 2016. Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: Magnitude, health, socio-economic effects and mitigation approaches. J Trace Elem Med Biol. 38 :33–45. doi:10.1016/j.jtemb.2016.05.001
  • Chakraborti, D., S. K. Singh, M. M. Rahman, R. N. Dutta, S. C. Mukherjee, S. Pati, and P. B. Kar. 2018. Groundwater arsenic contamination in the Ganga River basin: A future health danger. Int. J. Environ. Res 15:180. doi:10.3390/ijerph15020180.
  • Chang, Y. W., and K. P. Singh. 2019. Arsenic-induced neoplastic transformation involves epithelial–mesenchymal transition and activation of the β-catenin/c-Myc pathway in human kidney epithelial cells. Chem. Res. Toxicol 32 (6):1299–309. doi:10.1021/acs.chemrestox.9b00089.
  • Chen, A. S. C., L. Wang, T. J. Sorg, and D. A. Lytle. 2020. Removing arsenic and co-occurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis systems. Water Res. 172:115455. doi:10.1016/j.watres.2019.115455.
  • Chen, Q. Y., J. Li, H. Sun, F. Wu, Y. Zhu, T. Kluz, A. Jordan, T. DesMarais, X. Zhang, A. Murphy, et al. 2018. Role of miR-31 and SATB2 in arsenic-induced malignant BEAS-2B cell transformation. Mol Carcinogen 57 (8):968–77. doi:10.1002/mc.22817.
  • Chiu, H.-F., and C.-Y. Yang. 2005. Decreasing trend in renal disease mortality after cessation from arsenic exposure in a previous arseniasis-endemic area in southwestern Taiwan. J. Toxicol. Environ. Health Part A 68 (5):319–27. doi:10.1080/15287390590900804.
  • Chiu, H.-F., S.-C. Chen, L.-Y. Wang, T.-N. Wu, and C.-Y. Yang. 2004. DOES ARSENIC EXPOSURE INCREASE THE RISK FOR LIVER CANCER?1. J. Toxicol. Environ. Health Part A 67 (19):1491–500. doi:10.1080/15287390490486806.
  • Choong, T. S. Y., T. G. Chuah, Y. Robiah, F. L. Gregory-Koay, and I. Azni. 2007. Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination 217 (1–3):139–66. doi:10.1016/j.desal.2007.01.015.
  • Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot, and G. E. Likens. 2009. Controlling eutrophication: Nitrogen and phosphorous. Science 323 (5917):1014–15. doi:10.1126/science.1167755.
  • Costa, M. 2019. Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol. Appl. Pharmacol 375:1–4. doi:10.1016/j.taap.2019.05.006.
  • Demanelis, K., M. Argos, L. Tong, J. Shinkle, M. Sabarinathan, M. Rakibuz-Zaman, G. Sarwar, H. Shahriar, T. Islam, M. Rahman, M. Yunus, JH. Graziano, K. Broberg, K. Engström, F. Jasmine, H. Ahsan, BL. Pierce. 2019. Association of arsenic exposure with whole blood DNA methylation: An epigenome-wide study of Bangladeshi adults. Environ. Health Perspect 127 (5):057011. doi:10.1289/EHP3849.
  • Dokou, Z., N. N. Kourgialas, and G. P. Karatzas. 2015. Assessing groundwater quality in Greece based on spatial and temporal analysis. Environ Monit. Assess 187 (12):187: 774. doi:10.1007/s10661-015-4998-0.
  • Edmunds, W. M., K. M. Ahmed, and P. G. Whitehead. 2015. A review of arsenic and its impacts in groundwater of the Ganges–Brahmaputra–Meghna delta, Bangladesh. Environ. Sci.: Process. Impacts 6. doi:10.1039/x0xx00000x.
  • Epa, U. S. 2000. United States Environmental Protection Agency. Technologies and Costs for Removal of Arsenic from Drinking Water, 268. Washington: D. C.
  • Epa, U. S. 2015. United States Environmental Protection Agency. In Arsenic in drinking water. Arsenic virtual trade show. Washington: D. C.
  • Epa, U. S. 2017. Drinking water requirements for states and public water systems. Chem. Contam. Rules. https://www.epa.gov/dwreginfo/chemical-contaminant-rules.
  • Erickson, M. L., H. F. Malenda, E. C. Berquist, and J. D. Ayotte. 2019. Arsenic concentrations after drinking water well installation: Time-varying effects on arsenic mobilization. Sci. Total Environ 678:681–91. doi:10.1016/j.scitotenv.2019.04.362.
  • Evans, H. A., Y. Wu, R. Seshadri, and A. K. Cheetham. 2020. Perovskite-related ReO3-type structures. Nat Rev Mater 5:196–213. doi:10.1038/s41578-019-0160-x.
  • Ferrari, S. G., P. G. Silva, D. M. González, J. A. Navoni, and H. J. Silva. 2013. Arsenic tolerance of cyanobacterial strains with potential use in biotechnology. Rev. Argent. Microbiol 45 (3):174–79. doi:10.1016/S0325-7541(13)70021-X.
  • Figoli, A., M. S. S. Dorraji, and A. R. Amani-Ghadim. 2017. Application of nanotechnology in drinking water purification. In Water Purification: Academic Press, ed. A. M. Grumezescu, 119–67. London: Academic Press.
  • Figoli, A., I. Fuoco, C. Apollaro, M. Chabane, R. Mancuso, B. Gabriele, R. De Rosa, G. Vespasiano, D. Barca, and A. Criscuoli. 2020. Arsenic-contaminated groundwaters remediation by nanofiltration. Sep. Purif. Technol 238:116461. doi:10.1016/j.seppur.2019.116461.
  • Flora, S. J. S. 2015. Handbook of Arsenic Toxicology. Arsenic. 1:pp. 1–49. doi:10.1016/B978-0-12-418688-0.00001-0.
  • Goswami, R., M. Kumar, N. Biyani, and P. J. Shea. 2020. Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (River Island), Assam, India. Environ. Geochem. Health 42 (2):443–60. doi:10.1007/s10653-019-00373-9.
  • Greco, S. L., A. Belova, J. Haskell, and L. Backer. 2019. Estimated burden of disease from arsenic in drinking water supplied by domestic wells in the United States. J. Water Health 17 (5):801–12. doi:10.2166/wh.2019.216.
  • Haldar, D., P. Duarah, and M. K. Purkait. 2020. MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere 251:126388. doi:10.1016/j.chemosphere.2020.126388.
  • Harmon, M. E., J. Lewis, C. Miller, J. Hoover, A.-M. S. Ali, C. Shiey, M. Cajero, S. Lucas, B. Pacheco, E. Erdei, et al. 2018. Arsenic association with a circulating oxidized low-density lipoprotein in a Native American community. J. Toxicol. Environ. Health Part A 81 (13):535–48. doi:10.1080/15287394.2018.1443860.
  • Hayati, B., A. Maleki, F. Najafi, F. Gharibi, G. McKay, V. K. Gupta, S. H. Puttaiah, and N. Marzban. 2018. Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem. Eng. J 346:258–70. doi:10.1016/j.cej.2018.03.172..
  • Hong, Y. S., B. J. Ye, Y. M. Kim, B. G. Kim, G. H. Kang, J. J. Kim, K. H. Song, Y. H. Kim, and J. W. Seo. 2017. Investigation of health effects according to the exposure of low concentration arsenic contaminated ground water. Int. J. Environ. Res. Public Health 14 (12):1461. doi:10.3390/ijerph14121461.
  • Huq, M. E., S. Fahad, Z. Shao, M. S. Sarven, A. A. Al-Huqail, M. H. Siddiqui, M. H. Rahman, I. A. Khan, M. Alam, M. Saeed, et al. 2019. High arsenic contamination and presence of other trace metals in drinking water of Kushtia district, Bangladesh. J. Environ. Manage. 242:199–209. doi:10.1016/j.jenvman.2019.04.086.
  • Jian, M., B. Liu, G. Zhang, R. Liu, and X. Zhang. 2015. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloid Surface A 465:67–76. doi:10.1016/j.colsurfa.2014.10.023..
  • Khan, F., S. Momtaz, K. Niaz, F. I. Hassan, and M. Abdollahi. 2017. Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem. Toxicol 107:406–17. doi:10.1016/j.fct.2017.07.021.
  • Khan, J. R., and K. S. Bakar. 2020. Targeting at risk households in Bangladesh exposed to arsenic contamination: A spatial analysis. Int J Environ Health Res 30 (1):1–12. doi:10.1080/09603123.2019.1570488.
  • Kumar, I., P. Ranjan, and A. R. Quaff. 2020. Cost-effective synthesis and characterization of CuO NPs as a nanosize adsorbent for As (III) remediation in synthetic arsenic-contaminated water. J. Environ. Health Sci Eng 18 (2):1131–40. doi:10.1007/s40201-020-00532-6..
  • Kuo, Y. C., Y. S. Lo, and H. R. Guo. 2017. Lung cancer associated with arsenic ingestion: Cell-type specificity and dose response. Epidemiology 28 (Suppl1):S106–S112. doi:10.1097/EDE.0000000000000743.
  • Lata, S., and S. R. Samadder. 2016. Removal of arsenic from water using nano adsorbents and challenges: A review. J. Environ. Manage 166:387–406. doi:10.1016/j.jenvman.2015.10.039.
  • Liang, C. P., Y. C. Chien, C. S. Jang, C. F. Chen, and J. S. Chen. 2017. Spatial analysis of human health risk due to arsenic exposure through drinking groundwater in Taiwan’s Pingtung Plain. Int J Environ Res Public Health 14 (1):81. doi:10.3390/ijerph14010081.
  • Lin, K. Y. A., Y. T. Liu, and S. Y. Chen. 2016. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies. J. Colloid Interface Sci 461:79–87. doi:10.1016/j.jcis.2015.08.061..
  • Liu, H., K. Zuo, and C. D. Vecitis. 2014. Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ. Sci Technol 48 (23):13871–79. doi:10.1021/es502312t..
  • Lohokare, H. R., M. R. Muthu, G. P. Agarwal, and U. K. Kharul. 2008. Effective arsenic removal using polyacrylonitrile-based ultrafiltration (UF) membrane. J. Membrane Sci 320 (1–2):159–66. doi:10.1016/j.memsci.2008.03.068.
  • Lopez-Barrera, E. A., and R. G. Barragan-Gonzalez. 2016. Metals and metalloid in eight fish species consumed by citizens of Bogota, D.C. Columbia and potential risk to humans. J. Toxicol. Environ. Health Part A 79 (5):232–43. doi:10.1080/15287394.2016.1149130.
  • Luo, Z., Z. Wang, A. Liu, Y. Yan, Y. Wu, and X. Zhang. 2020. New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes. Environ. Sci. Pollut. Res 27 (35):44460–69. doi:10.1007/s11356-020-10396-w.
  • Maity, S., R. Biswas, and A. Sarkar. 2020. Comparative valuation of groundwater quality parameters in Bhojpur, Bihar for arsenic risk assessment. Chemosphere 259:127398. doi:10.1016/j.chemosphere.2020.127398.
  • Mar Wai, K., M. Umezaki, O. Mar, M. Umemura, and C. Watanabe. 2019. Arsenic exposure through drinking Water and oxidative stress status: A cross-sectional study in the Ayeyarwady region, Myanmar. J. Trace Elem. Med. Biol 54:103–09. doi:10.1016/j.jtemb.2019.04.009.
  • Martinson, C. A., and K. J. Reddy. 2009. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J. Colloid Interface Sci 336 (2):406–11. doi:10.1016/j.jcis.2009.04.075.
  • Massoudinejad, M., M. Ghaderpoori, A. Shahsavani, A. Jafari, B. Kamarehie, A. Ghaderpoury, and M. M. Amini. 2018. Ethylenediamine-functionalized cubic ZIF-8 for arsenic adsorption from aqueous solution: Modeling, isotherms, kinetics and thermodynamics. J. Mol. Liq 255:263–68. doi:10.1016/j.molliq.2018.01.163..
  • McGrory, E. R., C. Brown, N. Bargary, N. H. Williams, A. Mannix, C. Zhang, T. Henry, E. Daly, S. Nicholas, B. M. Petrunic, et al. 2017. Arsenic contamination of drinking water in Ireland: A spatial analysis of occurrence and potential risk. Sci. Total Environ. 579:1863–75. doi:10.1016/j.scitotenv.2016.11.171.
  • Meng, X. G., G. P. Korfiatis, C. Christodoulatos, and S. Bang. 2001. Treatment of arsenic in Bangladesh well water using a household co-prepicitation and filtration system. Water Res. 35 (12):2805–10. doi:10.1016/S0043-1354(01)00007-0.
  • Meyer, C. M. C. D., J. M. Rodríguez, E. A. Carpio, P. A. García, C. Stengel, and M. Berg. 2017. Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru). Sci. Total Environ. 31 (607–608):1437–50. doi:10.1016/j.scitotenv.2017.07.059.
  • Mochizuki, H. 2019. Arsenic neurotoxicity in humans. Int J Mol Sci 20 (14):3418. doi:10.3390/ijms20143418..
  • Morales-Simfors, N., J. Bundschuh, I. Herath, C. Inguaggiato, A. T. Caselli, J. Tapia, F. E. A. Choquehuayta, M. A. Armienta, M. Ormachea, E. Joseph, et al. 2020. Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Sci. Total Environ. 716:135564. doi:10.1016/j.scitotenv.2019.135564.
  • Nancano, L. R., R. Freitas, and F. Barbosa Jr. 2014. Evaluation of seasonal dietary exposure to arsenic, cadmium and lead in schoolchildren through the analysis of meals served by public schools of Ribeiro Preto, Brazil. J. Toxicol. Environ. Health Part A 77 (7):367–74. doi:10.1080/15287394.2013.874874.
  • Narayan, V. M., O. Adejoro, I. Schwartz, M. Ziegelmann, S. Elliott, and B. R. Konety. 2018. The prevalence and impact of urinary marker testing in patients with bladder cancer. J. Urol 199 (1):74–80. doi:10.1016/j.juro.2017.08.097.
  • Nriagu, J., C. Xi, A. Siddique, A. Vincent, and B. Shomar. 2018. Influence of household water filters on bacteria growth and trace metals in tap water of Doha, Qatar. Sci. Rep 8 (1):8268. doi:10.1038/s41598-018-26529-8..
  • Palma-Lara, I., M. Martínez-Castillo, J. C. Quintana-Pérez, M. G. Arellano-Mendoza, F. Tamay-Cach, O. L. Valenzuela-Limón, E. A. García-Montalvo, and A. Hernández-Zavala. 2020. Arsenic exposure: A public health problem leading to several cancers. Regul. Toxicol. Pharmacol 110:104539. doi:10.1016/j.yrtph.2019.104539.
  • Park, K. S., Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, and O. M. Yaghi. 2006. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103 (27):10186–91. doi:10.1073/pnas.0602439103..
  • Patel, A., S. Tiwari, and S. M. Prasad. 2018. Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum. Ecotoxicol. Environ. Saf. 157:369–79. doi:10.1016/j.ecoenv.2018.03.056..
  • Podgorski, J., and M. Berg. 2020. Global threat of arsenic in groundwater. Science 368 (6493):845–50. doi:10.1126/science.aba1510.
  • Podgorski, J. E., S. A. M. A. S. Eqani, T. Khanam, R. Ullah, H. Shen, and M. Berg. 2017. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci. Adv 3 (8):e1700935. doi:10.1126/sciadv.1700935.
  • Polo, A., S. Marchese, G. De Petro, M. Montella, G. Ciliberto, A. Budillon, and S. Costantini. 2018. Identifying a panel of genes/proteins/miRNAs modulated by arsenicals in bladder, prostate, kidney cancers. Sci. Rep 8 (1):10395. doi:10.1038/s41598-018-28739-6.
  • Powers, M., T. R. Sanchez, M. Grau‐Perez, F. Yeh, K. Francesconi, W. Goessler, and A. Navas‐Acien. 2018. Low‐to‐moderate arsenic exposure and respiratory health in American Indian Communities. Ann. Am. Thorac 15 (Suppl 2):S128–S129. doi:10.1186/s12940-019-0539-6.
  • Praveena, S., and A. Aris. 2015. Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal. Water Qual. Expo. Health 617–625. https://doi.org/10.1007/s12403-015-0167-5
  • Quezada, V. D., A. M. Espinoza, and J. Bundschuh. 2020. Arsenic in geoenvironments of Nicaragua: Exposure, health effects, mitigation and future needs. Sci. Total Environ. 716:136527. doi:10.1016/j.scitotenv.2020.136527.
  • Rahman, A., and H. Rahaman. 2018. Contamination of arsenic, manganese and coliform bacteria in groundwater at Kushtia District, Bangladesh: Human health vulnerabilities. J Water Health 16 (5):782–95. doi:10.2166/wh.2018.057.
  • Rahman, H. H., K. K. Yusuf, D. Niemann, and S. R. Dipon. 2020. Urinary speciated arsenic and depression among US adults. Environ Sci Pollut Res 27 (18):23048–53. doi:10.1007/s11356-020-08858-2.
  • Rahman, M. A., A. Rahman, M. Z. K. Khan, and A. M. N. Renzaho. 2018. Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicol. Environ. Saf. 150:335–43. doi:10.1016/j.ecoenv.2017.12.032..
  • Reddy, K. J., K. J. McDonald, and H. King. 2013. A novel arsenic removal process for water using cupric oxide nanoparticles. J. Colloid Interface Sci 397:96–102. doi:10.1016/j.jcis.2013.01.041..
  • Rockafellow-Baldoni, M., S. E. Spayd, J. Y. Hong, Q. Meng, P. Ohman-Strickland, and M. G. Robson. 2018. Arsenic exposure and cancer risk reduction with local ordinance requiring whole-house dual-tank water treatment systems. Human Ecol Risk Assess 24 (5):1256–67. doi:10.1080/10807039.2017.1411779..
  • Rodriguez, G. B., L. C. Rietveld, A. J. Longley, and D. Van Halem. 2019. Arsenic contamination of rural community wells in Nicaragua: A review of two decades of experience. Sci. Total Environ. 657:1441–49. doi:10.1016/j.scitotenv.2018.12.168.
  • Rogers, S. H., L. R. Rardin, K. Lawlor, C. Y. Chen, and M. E. Borsuk. 2019. Communicating arsenic’s risks. Int. J. Environ. Res. Public Health 16 (18):3436. doi:10.3390/ijerph16183436.
  • Roh, T., C. Steinmaus, G. Marshall, C. Ferreccio, J. Liaw, and A. H. Smith. 2018. Age at exposure to arsenic in water and mortality 30-40 years after exposure cessation. Am. J. Epidemiol. 187 (11):2297–305. doi:10.1093/aje/kwy159.
  • Roh, T., C. F. Lynch, P. Weyer, K. Wang, K. M. Kelly, and G. Ludewig. 2017. Low‐level arsenic exposure from drinking water is associated with prostate cancer in Iowa. Environ. Res 159:338–43. doi:10.1016/j.envres.2017.08.026.
  • Rotiroti, M., J. McArthur, L. Fumagalli, G. A. Stefania, E. Sacchi, and T. Bonomi. 2017. Pollutant sources in an arsenic-affected multilayer aquifer in the Po Plain of Italy: Implications for drinking-water supply. Sci. Total Environ. 578:502–12. doi:10.1016/j.scitotenv.2016.10.215.
  • Saravanan, R., N. Karthikeyan, V. K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, and A. Stephen. 2013. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light. Mater. Sci. Eng. C 33 (4):2235–44. doi:10.1016/j.msec.2013.01.046.
  • Sarkar, A., and B. Paul. 2016. The global menace of arsenic and its conventional remediation - A critical review. Chemosphere 158:37–49. doi:10.1016/j.chemosphere.2016.05.043.
  • Schmidt, S. A., E. Gukelberger, M. Hermann, F. Fiedler, B. Großmann, J. Hoinkis, A. Ghosh, D. Chatterjeec, and J. Bundschuhd. 2016. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system - Towards sustainable drinking water production. J. Hazard. Mater 318 (671–678):671–78. doi:10.1016/j.jhazmat.2016.06.005.
  • Serrazina, D. C., V. L. Andrade, M. Cota, M. L. Mateus, M. Aschner, and A. P. M. Santos. 2018. Biomarkers of exposure and effect in a working population exposed to lead, manganese and arsenic. J. Toxicol. Environ. Health Part A 81 (19):983–97. doi:10.1080/15287394.2018.1509408.
  • Shahid, M., M. Khalid, C. Dumat, S. Khalid, N. K. Niazi, M. Imran, I. Bibi, I. Ahmad, H. M. Hammad, and R. A. Tabassum. 2018. Arsenic level and risk assessment of groundwater in Vehari, Punjab Province, Pakistan. Expos Health 10 (4):229–39. doi:10.1007/s12403-017-0257-7.
  • Shams, M., M. H. Dehghani, R. Nabizadeh, A. Mesdaghinia, M. Alimohammadi, and A. A. Najafpoor. 2016. Adsorption of phosphorus from aqueous solution by cubic zeolitic imidazolate framework-8: Modeling, mechanical agitation versus sonication. J. Mol. Liq 224:151–57. doi:10.1016/j.molliq.2016.09.059.
  • Sharma, S., J. Kaur, A. K. Nagpal, and I. Kaur. 2016. Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar wetland and its environs. Environ. Monit. Assess 188 (9):506. doi:10.1007/s10661-016-5507-9.
  • Sheng, G., J. Hu, H. Li, J. Li, and Y. Huang. 2016. Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study. Chemosphere 148:227–32. doi:10.1016/j.chemosphere.2016.01.035.
  • Singh, R., S. Singh, P. Parihar, V. P. Singh, and S. M. Prasad. 2015. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf 112:247–70. doi:10.1016/j.ecoenv.2014.10.009.
  • Sinha, D., and P. Prasad. 2020. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J. Appl. Toxicol. 40 (1):87–131. doi:10.1002/jat.3823..
  • Smedley, P., and D. Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. J. Appl. Geochem 17:517–68. doi:10.1016/S0883-2927(02)00018-5.
  • Smeester, L., and R. C. Fry. 2018. Long-term health effects and underlying biological mechanisms of developmental exposure to arsenic. Curr Environ Health Rep 5 (1):134–44. doi:10.1007/s40572-018-0184-1..
  • Smith, A. H., G. Marshall, T. Roh, C. Ferreccio, J. Liaw, and C. Steinmaus. 2018. Lung, bladder, and kidney cancer mortality 40 years after arsenic exposure reduction. J. Natl. Cancer Inst 110 (3):241–49. doi:10.1093/jnci/djx201.
  • Song, Y., T. Zhou, Y. Zong, B. Gu, X. Tan, and L. Yang. 2019. Arsenic inhibited cholesterol efflux of THP-1 macrophages via ROS-mediated ABCA1 hypermethylation. Toxicology 424:152225. doi:10.1016/j.tox.2019.05.012.
  • Sorg, T. J., L. Wang, and A. S. C. Chen. 2014. The costs of small drinking water systems removing arsenic from groundwater. J Water Supply Res T 64 (3):219–34. doi:10.2166/aqua.2014.044..
  • Souza, A. C. M., M. G. De Almeida, I. A. Pestana, and C. M. M. De Souza. 2019. Arsenic exposure and effects in humans: A mini-review in Brazil. Arch. Environ. Contam. Toxicol 76 (3):357–65. doi:10.1007/s00244-018-00586-6.
  • Spayd, S. E., M. G. Robson, and B. T. Buckley. 2015. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water. Sci. Total Environ 505:1361–69. doi:10.1016/j.scitotenv.2014.06.026..
  • Teixeira, M. C., A. C. Santos, C. S. Fernandes, and J. C. Ng. 2020. Arsenic contamination assessment in Brazil – Past, present and future concerns: A historical and critical review. Sci. Total Environ. 730:138217. doi:10.1016/j.scitotenv.2020.138217.
  • Tsuji, J. S., E. T. Chang, P. R. Gentry, H. J. Clewell, P. Boffetta, and S. M. Cohen. 2019. Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: The scientific basis for use of a threshold approach. Crit. Rev. Toxicol 49 (1):36–84. doi:10.1080/10408444.2019.1573804.
  • Veličković, Z., G. D. Vuković, A. D. Marinković, M. S. Moldovan, A. A. Perić-Grujić, P. S. Uskoković, and M. D. Ristić. 2012. Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem. Eng. J 181-182:174–81. doi:10.1016/j.cej.2011.11.052..
  • Wan, P., M. Yuan, X. Yu, Z. Zhang, and B. Deng. 2020. Arsenate removal by reactive mixed matrix PVDF hollow fiber membranes with UIO-66 metal organic frameworks. Chem. Eng. J 382:122921. doi:10.1016/j.cej.2019.122921.
  • Wang, B., A. P. Côté, H. Furukawa, M. O’Keeffe, and O. M. Yaghi. 2008. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453 (7192):207–11. doi:10.1038/nature06900.
  • Wang, Y., S. Wang, P. Xu, C. Liu, M. Liu, Y. Wang, C. Wang, C. Zhang, and Y. Ge. 2015. Review of arsenic speciation, toxicity and metabolism in microalgae. Rev Environ Sci Biotechnol 14 (3):427–51. doi:10.1007/s11157-015-9371-9.
  • Wang, Z., H. Guo, W. Xiu, J. Wang, and M. Shen. 2018. High arsenic groundwater in the Guide Basin, northwestern China: Distribution and genesis mechanisms. Sci. Total Environ. 640-641:194–206. doi:10.1016/j.scitotenv.2018.05.255.
  • Wang, Z., P. Liao, X. He, P. Wan, B. Hua, and B. Deng. 2020a. Enhanced arsenic removal from water by mass re-equilibrium: Kinetics and performance evaluation in a binary-adsorbent system. Water Res. 116676. doi:10.1016/j.watres.2020.116676.
  • Wang, Z., Z. Luo, and C. Yan. 2013. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environ. Sci. Pollut. Res. 20 (10):7286–95. doi:10.1007/s11356-013-1741-7.
  • WHO. 2017. Health impacts of chemicals: Arsenic. http: //www.who.int/ipcs/assessment/public_health/arsenic/en/.
  • Xue, X. M., Y. Yan, C. Xiong, G. Raber, K. Francesconi, T. Pan, J. Ye, and Y. G. Zhu. 2017. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120. Environ. Pollut 228:111–17. doi:10.1016/j.envpol.2017.05.005.
  • Yang, Q., S. V. Flanagan, S. Chillrud, J. Ross, W. Zeng, C. Culbertson, S. Spayd, L. Backer, A. E. Smith, and Y. Zheng. 2020. Reduction in drinking water arsenic exposure and health risk through arsenic treatment among private well households in Maine and New Jersey, USA. Sci. Total Environ 738:139683. doi:10.1016/j.scitotenv.2020.139683..
  • Ye, J., C. Rensing, B. P. Rosen, and Y. G. Zhu. 2012. Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 17 (3):155–62. doi:10.1016/j.tplants.2011.12.003.
  • Yoshida, T., H. Yamauchi, and G. Fan Sun. 2004. Chronic health effects in people exposed to arsenic via the drinking water: Dose-response relationships in review. Toxicol. Appl. Pharmacol. 198 (3):243–52. doi:10.1016/j.taap.2003.10.022..
  • Zhang, G., Y. Liu, J. Wang, and H. Li. 2020. Efficient arsenic(III) removal from aqueous solution by a novel nanostructured iron-copper-manganese trimetal oxide. J. Mol Liq 309:112993. doi:10.1016/j.molliq.2020.112993..
  • Zhang, Y., B. Xu, Z. Guo, J. Han, H. Li, L. Jin, F. Chen, and Y. Xiong. 2019. Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China. J. Environ. Manage. 237:163–69. doi:10.1016/j.jenvman.2019.02.067.
  • Zheng, Y. 2017. Lessons learned from arsenic mitigation among private well households. Curr. Environ. Health Rep 4 (3):373–82. doi:10.1007/s40572-017-0157-9.
  • Zhu, F., M. Yang, Z. X. Luo, R. L. Yu, G. R. Hu, and Y. Yan. 2020. Bioaccumulation and biotransformation of arsenic in Leptolyngbya boryana. Environ. Sci. Pollut. Res. 27 (24):29993–30000. doi:10.1007/s11356-020-09294-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.