1,691
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Current opinion on risk assessment of cosmetics

, , , &

References

  • Ahlberg, E., A. Amberg, L. D. Beilke, D. Bower, K. P. Cross, L. Custer, K. A. Ford, J. Van Gompel, J. Harvey, M. Honma, et al. 2016. Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: A case study using aromatic amine mutagenicity. Regul. Toxicol. Pharmacol. 77:1–12. doi:10.1016/j.yrtph.2016.02.003.
  • Ahmad, U., Z. Ahmad, A. A. Khan, J. Akhtar, S. P. Singh, and F. J. Ahmad. 2018. Strategies in development and delivery of nanotechnology based cosmetic products. Drug Research 68 (10):545–52. doi:10.1055/a-0582-9372.
  • Alajlouni, A. M., A. J. Al Malahmeh, R. Kiwamoto, S. Wesseling, A. E. Soffers, A. A. Al-Subeihi, J. Vervoort, and I. M. Rietjens. 2016. Mode of action based risk assessment of the botanical food-borne alkenylbenzene apiol from parsley using physiologically based kinetic (PBK) modelling and read-across from safrole. Food Chem. Toxicol. 89:138–50. doi:10.1016/j.fct.2016.01.018.
  • Andersen, M. E., P. D. McMullen, M. B. Phillips, M. Yoon, S. N. Pendse, H. J. Clewell, J. K. Hartman, M. Moreau, R. A. Becker, and R. A. Clewell. 2019. Developing context appropriate toxicity testing approaches using new alternative methods (NAMs). ALTEX 36 (4):523–34. doi:10.14573/altex.1906261.
  • Avila, A. M., I. Bebenek, J. A. Bonzo, T. Bourcier, K. L. Davis Bruno, D. B. Carlson, J. Dubinion, I. Elayan, W. Harrouk, S. L. Lee, et al. 2020. An FDA/CDER perspective on nonclinical testing strategies: Classical toxicology approaches and new approach methodologies (NAMs). Regul. Toxicol. Pharmacol. 114:104662. doi:10.1016/j.yrtph.2020.104662.
  • Backhaus, T., R. Altenburger, M. Faust, D. Frein, T. Frische, P. Johansson, A. Kehrer, and T. Porsbring. 2013. Proposal for environmental mixture risk assessment in the context of the biocidal product authorization in the EU. Environ. Sci. Eur. 25 (1):1–9. doi:10.1186/2190-4715-25-4.
  • Ball, N., J. Madden, A. Paini, M. Mathea, A. D. Palmer, S. Sperber, T. Hartung, and B. Van Ravenzwaay. 2020. Key read across framework components and biology based improvements. Mutat. Res. 853:503172. doi:10.1016/j.mrgentox.2020.503172.
  • Baltazar, M., S. Cable, P. Carmichael, R. Cubberley, T. Cull, M. Delagrange, M. Dent, S. Hatherell, J. Houghton, and P. Kukic. 2020. A Next-Generation Risk Assessment Case Study for Coumarin in Cosmetic Products. Toxicol. Sci. 176 (1):236–52. doi:10.1093/toxsci/kfaa048.
  • Bao, J., M. Wang, X. Ning, Y. Zhou, Y. He, J. Yang, X. Gao, S. Li, Z. Ding, and B. Chen. 2015. Phthalate concentrations in personal care products and the cumulative exposure to female adults and infants in shanghai. J. Toxicol. Environ. Health A 78 (5):325–41. doi:10.1080/15287394.2014.968696.
  • Bartosova, L., and J. Bajgar. 2012. Transdermal drug delivery in vitro using diffusion cells. Curr. Med. Chem. 19 (27):4671–77. doi:10.2174/092986712803306358.
  • Berggren, E., P. Amcoff, R. Benigni, K. Blackburn, E. Carney, M. Cronin, H. Deluyker, F. Gautier, R. S. Judson, G. E. Kass, et al. 2015. Chemical safety assessment using read-across: Assessing the use of novel testing methods to strengthen the evidence base for decision making. Environ. Health Perspect. 123 (12):1232–40. doi:10.1289/ehp.1409342.
  • Bopp, S. K., A. Kienzler, A.-N. Richarz, S. C. van der Linden, A. Paini, N. Parissis, and A. P. Worth. 2019. Regulatory assessment and risk management of chemical mixtures: Challenges and ways forward. Crit. Rev. Toxicol. 49 (2):174–89. doi:10.1080/10408444.2019.1579169.
  • Bouwman, T., M. T. Cronin, J. G. Bessems, and J. J. van de Sandt. 2008. Improving the applicability of (Q)SARs for percutaneous penetration in regulatory risk assessment. Hum. Exp. Toxicol. 27 (4):269–76. doi:10.1177/0960327107085829.
  • Boyer, I., C. L. Burnett, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. C. Liebler, J. G. Marks Jr, R. C. Shank, T. J. Slaga, et al. 2018. Safety assessment of PEGs cocamine and related ingredients as used in cosmetics. Int. J. Toxicol. 37 (2_suppl):10S–60S. doi:10.1177/1091581818794417.
  • Brockmeier, E. K., G. Hodges, T. H. Hutchinson, E. Butler, M. Hecker, K. E. Tollefsen, N. Garcia-Reyero, P. Kille, D. Becker, K. Chipman, et al. 2017. The role of omics in the application of adverse outcome pathways for chemical risk assessment. Toxicol. Sci 158 (2):252–62. doi:10.1093/toxsci/kfx097.
  • Bronaugh, R. L., R. F. Stewart, and E. R. Congdon. 1982. Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol. Appl. Pharmacol. 62 (3):481–88. doi:10.1016/0041-008x(82)90149-1.
  • Chaudhuri, I., C. Fruijtier-Pölloth, Y. Ngiewih, and L. Levy. 2018. Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: A critical review. Crit. Rev. Toxicol. 48 (2):143–69. doi:10.1080/10408444.2017.1391746.
  • Chen, R. J., Y. Y. Chen, M. Y. Liao, Y. H. Lee, Z. Y. Chen, S. J. Yan, Y. L. Yeh, L. X. Yang, Y. L. Lee, Y. H. Wu, et al. 2020a. The current understanding of autophagy in nanomaterial toxicity and its implementation in safety assessment-related alternative testing strategies. Int. J. Mol. Sci 21. doi: E2387[pii]. doi:10.3390/ijms21072387.
  • Chen, Z., Y. Liu, F. A. Wright, W. A. Chiu, and I. Rusyn. 2020b. Rapid hazard characterization of environmental chemicals using a compendium of human cell lines from different organs. ALTEX 37 (4):623–38. doi:10.14573/altex.2002291.
  • Chuberre, B., E. Araviiskaia, T. Bieber, and A. Barbaud. 2019. Mineral oils and waxes in cosmetics: An overview mainly based on the current european regulations and the safety profile of these compounds. J. Eur. Acad. Dermatol. Venereol. 33 (Suppl 7):5–14. doi:10.1111/jdv.15946.
  • Ciallella, H. L., and H. Zhu. 2019. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol. 32 (4):536–47. doi:10.1021/acs.chemrestox.8b00393.
  • Coelho, C. C., L. Grenho, P. S. Gomes, P. A. Quadros, and M. H. Fernandes. 2019. Nano-hydroxyapatite in oral care cosmetics: Characterization and cytotoxicity assessment. Sci Rep 9 (1):1–10. doi:10.1038/s41598-019-47491-z.
  • Couteau, C., E. Paparis, C. Chauvet, and L. Coiffard. 2015. Tris-biphenyl triazine, a new ultraviolet filter studied in terms of photoprotective efficacy. Int. J. Pharm. 487 (1–2):120–23. doi:10.1016/j.ijpharm.2015.03.077.
  • Cramer, G. M., R. A. Ford, and R. L. Hall. 1978. Estimation of toxic hazard: A decision tree approach. Food Cosmet. Toxicol 16 (3):255–76. doi:10.1016/S0015-6264(76)80522-6.
  • Cronin, M. T. D., A. N. Richarz, and T. W. Schultz. 2019. Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction. Regul. Toxicol. Pharmacol. 106:90–104. doi:10.1016/j.yrtph.2019.04.007.
  • Darbre, P. D., and A. K. Charles. 2010. Environmental oestrogens and breast cancer: Evidence for combined involvement of dietary, household and cosmetic xenoestrogens. Anticancer Res 30 (3):815–27. 30/3/815 [pii].
  • Dréno, B., A. Alexis, B. Chuberre, and M. Marinovich. 2019. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 33 (S7):34–46. doi:10.1111/jdv.15943.
  • Dudzina, T., C. J. Delmaar, J. W. Biesterbos, M. I. Bakker, B. G. Bokkers, P. T. Scheepers, J. G. van Engelen, K. Hungerbuehler, and N. von Goetz. 2015. The probabilistic aggregate consumer exposure model (PACEM): Validation and comparison to a lower-tier assessment for the cyclic siloxane D5. Environ. Int. 79:8–16. doi:10.1016/j.envint.2015.03.006.
  • EC (European Commission). 2009. Regulation No 1223/2009 of The European parliament and of the council on cosmetic products. Accessed February 15, 2021. https://ec.europa.eu/health/sites/health/files/endocrine_disruptors/docs/cosmetic_1223_2009_regulation_en.pdf
  • EC (European Commission). 2019. Catalogue of nanomaterials used in cosmetic products on the EU market, as notified to the European Commission by responsible persons. Accessed February 15, 2021. https://ec.europa.eu/docsroom/documents/38284
  • ECHA (European Chemicals Agency). 2008. Guidance on information requirements and chemical safety assessment. Chapter R.6: QSAR and grouping chemicals. Accessed 30 March. 2021. https://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf
  • ECHA (European Chemicals Agency). 2014. European Chemical Agency. Transitional guidance on mixture toxicity assessment for biocidal products for the environment. Transitional guidance on mixture toxicity assessment for biocidal products for the environment. Volume 45. Accessed February 15, 2021. https://echa.europa.eu/documents/10162/23492134/tg_mixture±toxicity_superseded_en.pdf/de8eede9-45f0-4be3-538e-8e922d21e8dd
  • ECHA (European Chemicals Agency). 2017. Read-Across Assessment Framework (RAAF). Accessed August 20, 2020. https://echa.europa.eu/documents/10162/13628/raaf_en.pdf
  • Ellison, C. M., P. Piechota, J. C. Madden, S. J. Enoch, and M. T. D. Cronin. 2016. Adverse outcome pathway (AOP) informed modeling of aquatic toxicology: QSARs, read-across, and interspecies verification of modes of action. Environ. Sci. Technol. 50 (7):3995–4007. doi:10.1021/acs.est.5b05918.
  • Escher, S. E., H. Kamp, S. H. Bennekou, A. Bitsch, C. Fisher, R. Graepel, J. G. Hengstler, M. Herzler, D. Knight, M. Leist, et al. 2019. Towards grouping concepts based on new approach methodologies in chemical hazard assessment: The read-across approach of the EU-ToxRisk project. Arch. Toxicol 93 (12):3643–67. doi:10.1007/s00204-019-02591-7.
  • Fakhravar, Z., P. Ebrahimnejad, H. Daraee, and A. Akbarzadeh. 2016. Nanoliposomes: Synthesis methods and applications in cosmetics. J. Cosmet. Laser Ther. 18 (3):174–81. doi:10.3109/14764172.2015.1039040.
  • FDA (Food and Drug Administration). 2014. Guidance for industry: Safety of nanomaterials in cosmetic products. Accessed February 15, 2021. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-safety-nanomaterials-cosmetic-products
  • Fischer, I., C. Milton, and H. Wallace. 2020. Toxicity testing is evolving! Toxicol. Res. (Camb) 9 (2):67–80. doi:10.1093/toxres/tfaa011.
  • Friend, D. R. 1992. In vitro skin permeation techniques. J. Control Release 18 (3):235–48. doi:10.1016/0168-3659(92)90169-R.
  • Gadaleta, D., A. Golbamaki Bakhtyari, G. J. Lavado, A. Roncaglioni, and E. Benfenati. 2020. Automated integration of structural, biological and metabolic similarities to improve read-across. ALTEX 37 (3):469–81. doi:10.14573/altex.2002281.
  • Gajbhiye, S., and S. Sakharwade. 2016. Silver nanoparticles in cosmetics. J. Cosmet. Dermatol. Sci. Applications 6:48–53.
  • Garthoff, B. 2005. Alternatives to animal experimentation: The regulatory background. Toxicol. Appl. Pharmacol. 207 (2):388–92. doi:10.1016/j.taap.2005.02.024.
  • Gerberick, G. F., J. A. Troutman, L. M. Foertsch, J. D. Vassallo, M. Quijano, R. L. Dobson, C. Goebel, and J. Lepoittevin. 2009. Investigation of peptide reactivity of pro-hapten skin sensitizers using a peroxidase-peroxide oxidation system. Toxicol. Sci 112 (1):164–74. doi:10.1093/toxsci/kfp192.
  • Gironde, C., C. Dufour, and C. Furger. 2020. Use of LUCS (light-up cell system) as an alternative live cell method to predict human acute oral toxicity. Toxicol. Rep. 7:403–12. doi:10.1016/j.toxrep.2020.02.010.
  • Guo, Y., L. Zhao, X. Zhang, and H. Zhu. 2019. Using a hybrid read-across method to evaluate chemical toxicity based on chemical structure and biological data. Ecotoxicol. Environ. Saf. 178:178–87. doi:10.1016/j.ecoenv.2019.04.019.
  • Hatherell, S., M. T. Baltazar, J. Reynolds, P. L. Carmichael, M. Dent, H. Li, S. Ryder, A. White, P. Walker, and A. M. Middleton. 2020. Identifying and characterizing stress pathways of concern for consumer safety in next-generation risk assessment. Toxicol. Sci. 176 (1):11–33. doi:10.1093/toxsci/kfaa054.
  • Heffernan, A. L., C. Baduel, L. M. Toms, A. M. Calafat, X. Ye, P. Hobson, S. Broomhall, and J. F. Mueller. 2015. Use of pooled samples to assess human exposure to parabens, benzophenone-3 and triclosan in Queensland, Australia. Environ. Int. 85:77–83. doi:10.1016/j.envint.2015.09.001.
  • Helguera, A. M., M. N. Cordeiro, M. A. Perez, R. D. Combes, and M. P. Gonzalez. 2008. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds: Species: rat; sex: male; route of administration: water. Toxicol. Appl. Pharmacol. 231 (2):197–207. doi:10.1016/j.taap.2008.04.008.
  • Henkler, F., T. Tralau, J. Tentschert, C. Kneuer, A. Haase, T. Platzek, A. Luch, and M. E. Gotz. 2012. Risk assessment of nanomaterials in cosmetics: A European Union perspective. Arch. Toxicol. 86 (11):1641–46. doi:10.1007/s00204-012-0944-x.
  • Herzog, B., S. Mongiat, C. Deshayes, M. Neuhaus, K. Sommer, and A. Mantler. 2002. In vivo and in vitro assessment of UVA protection by sunscreen formulations containing either butyl methoxy dibenzoyl methane, methylene bis‐benzotriazolyl tetramethylbutylphenol, or microfine ZnO. Int. J. Cosmetic Sci 24 (3):170–85. doi:10.1046/j.1467-2494.2002.00137.x.
  • Hirota, M., S. Fukui, K. Okamoto, S. Kurotani, N. Imai, M. Fujishiro, D. Kyotani, Y. Kato, T. Kasahara, and M. Fujita. 2015. Evaluation of combinations of in vitro sensitization test descriptors for the artificial neural network-based risk assessment model of skin sensitization. J. Appl Toxicol 35 (11):1333–47. doi:10.1002/jat.3105.
  • Hirota, M., T. Ashikaga, and H. Kouzuki. 2018. Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, Keratinosensâ and in silico structure alert parameter. J. Appl Toxicol 38 (4):514–26. doi:10.1002/jat.3558.
  • Huber, B., and J. Burfeindt. 2019. “Nanotechnology in Cosmetics.„ In Springer Nature Switzerland AG. Jean Cornier, Cornelia M. Keck, Marcel Van de Voorde (Editors). Nanocosmetics, 17–25. Springer.
  • Husoy, T., M. Andreassen, H. Hjertholm, M. H. Carlsen, N. Norberg, C. Sprong, E. Papadopoulou, A. K. Sakhi, A. Sabaredzovic, and H. A. A. M. Dirven. 2019. The norwegian biomonitoring study from the EU project EuroMix: Levels of phenols and phthalates in 24-hour urine samples and exposure sources from food and personal care products. Environ. Int. 132:105103. doi:10.1016/j.envint.2019.105103.
  • Jarabek, A. M., and W. H. Farland. 1990. The U.S. Environmental Protection Agency’s Risk Assessment Guidelines. Toxicol. Ind. Health 6 (5):199–216. doi:10.1177/074823379000600516.
  • Johansson, H., M. Lindstedt, A. S. Albrekt, and C. A. Borrebaeck. 2011. A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genomics 12 (1):399,2164–12-399. doi:10.1186/1471-2164-12-399.
  • Kar, S., K. Roy, and J. Leszczynski. 2018. Applicability domain: A step toward confident predictions and decidability for QSAR modeling. Meth Mol. Biol. 1800:141–69. doi:10.1007/978-1-4939-7899-1_6.
  • Katz, L. M., K. Dewan, and R. L. Bronaugh. 2015. Nanotechnology in cosmetics. Food Chem. Toxicol. 85:127–37. doi:10.1016/j.fct.2015.06.020.
  • Kaur, D., and S. Kumar. 2018. Niosomes: Present scenario and future aspects. J. Drug Delivery Ther. 8 (5):35–43. doi:10.22270/jddt.v8i5.1886.
  • Kesharwani, P., K. Jain, and N. K. Jain. 2014. Dendrimer as nanocarrier for drug delivery. Prog. Polymer Sci. 39:268–307.
  • Kim, J. Y., M. K. Kim, K. B. Kim, H. S. Kim, and B. M. Lee. 2019a. Quantitative structure-activity and quantitative structure-property relationship approaches as alternative skin sensitization risk assessment methods. J. Toxicol. Environ. Health A 82 (7):447–72. doi:10.1080/15287394.2019.1616437.
  • Kim, K., Y. W. Kim, S. K. Lim, T. H. Roh, D. Y. Bang, S. M. Choi, D. S. Lim, Y. J. Kim, S. Baek, M. Kim, et al. 2017. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J. Toxicol. Environ. Health B 20 (3):155–82. doi:10.1080/10937404.2017.1290516.
  • Kim, M. K., K. B. Kim, H. S. Kim, and B. M. Lee. 2019c. Alternative skin sensitization prediction and risk assessment using proinflammatory biomarkers, interleukin-1 beta (IL-1beta) and inducible nitric oxide synthase (iNOS). J. Toxicol. Environ. Health A 82 (5):361–78. doi:10.1080/15287394.2019.1609183.
  • Kim, M. K., K. B. Kim, J. Y. Lee, S. J. Kwack, Y. C. Kwon, J. S. Kang, H. S. Kim, and B. M. Lee. 2019b. Risk assessment of 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) used as a preservative in cosmetics. Toxicol. Res. 35 (2):103–17. doi:10.5487/TR.2019.35.2.103.
  • Kim, M. K., K. B. Kim, K. Yoon, S. Kacew, H. S. Kim, and B. M. Lee. 2018. IL-1alpha and IL-1beta as alternative biomarkers for risk assessment and the prediction of skin sensitization potency. J. Toxicol. Environ. Health A 81 (17):830–43. doi:10.1080/15287394.2018.1494474.
  • Kim, Y. W., M. J. Kim, B. Y. Chung, Y. Bang Du, S. K. Lim, S. M. Choi, D. S. Lim, M. C. Cho, K. Yoon, H. S. Kim, et al. 2013. Safety evaluation and risk assessment of d-limonene. J. Toxicol. Environ. Health B 16 (1):17–38. doi:10.1080/10937404.2013.769418.
  • Krewski, D., D. Acosta Jr, M. Andersen, H. Anderson, J. C. Bailar 3rd, K. Boekelheide, R. Brent, G. Charnley, V. G. Cheung, S. Green Jr, et al. 2010. Toxicity testing in the 21st century: A vision and a strategy. J. Toxicol. Environ. Health B 13 (2–4):51–138. doi:10.1080/10937404.2010.483176.
  • Krewski, D., M. E. Andersen, M. G. Tyshenko, K. Krishnan, T. Hartung, K. Boekelheide, J. F. Wambaugh, D. Jones, M. Whelan, R. Thomas, et al. 2020. Toxicity testing in the 21st century: Progress in the past decade and future perspectives. Arch. Toxicol. 94:1–58. doi:10.1007/s00204-019-02613-4.
  • Kuseva, C., T. W. Schultz, D. Yordanova, K. Tankova, S. Kutsarova, T. Pavlov, A. Chapkanov, M. Georgiev, A. Gissi, T. Sobanski, et al. 2019. The implementation of RAAF in the OECD QSAR toolbox. Regul. Toxicol. Pharmacol. 105:51–61. doi:10.1016/j.yrtph.2019.03.018.
  • Landry, C., M. T. Kim, N. L. Kruhlak, K. P. Cross, R. Saiakhov, S. Chakravarti, and L. Stavitskaya. 2019. Transitioning to composite bacterial mutagenicity models in ICH M7 (Q)SAR analyses. Regul. Toxicol. Pharmacol. 109:104488. doi:10.1016/j.yrtph.2019.104488.
  • Lee, B. M., M. Choi, I. Shin, J. Kim, Z. Choi, K. Kim, K. Choi, S. Yang, D. Y. So, S. Tae Ju, et al. 2020a. Risk communication for labeling all ingredients in consumer products. J. Toxicol. Environ. Health A 83 (13–14):509–24. doi:10.1080/15287394.2020.1780174.
  • Lee, J. D., H. Y. Kim, K. Kang, H. G. Jeong, M. K. Song, I. H. Tae, S. H. Lee, H. R. Kim, K. Lee, S. Chae, et al. 2020b. Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats. Arch. Toxicol 94 (3):887–909. doi:10.1007/s00204-020-02657-x.
  • Lee, J. D., J. Y. Lee, S. J. Kwack, C. Y. Shin, H. J. Jang, H. Y. Kim, M. K. Kim, D. W. Seo, B. M. Lee, and K. B. Kim. 2019a. Risk assessment of triclosan, a cosmetic preservative. Toxicol. Res. 35 (2):137–54. doi:10.5487/TR.2019.35.2.137.
  • Lee, J. K., K. B. Kim, J. D. Lee, C. Y. Shin, S. J. Kwack, B. M. Lee, and J. Y. Lee. 2019b. Risk assessment of drometrizole, a cosmetic ingredient used as an ultraviolet light absorber. Toxicol. Res. 35 (2):119–29. doi:10.5487/TR.2019.35.2.119.
  • Li, X., N. C. Kleinstreuer, and D. Fourches. 2020. Hierarchical quantitative structure-activity relationship modeling approach for integrating binary, multiclass, and regression models of acute oral systemic toxicity. Chem.Res.Toxicol 33 (2):353–66. doi:10.1021/acs.chemrestox.9b00259.
  • Lim, D. S., S. M. Choi, K. B. Kim, K. Yoon, S. Kacew, H. Sik Kim, and B. M. Lee. 2018. Determination of fragrance allergens and their dermal sensitization quantitative risk assessment (QRA) in 107 spray perfumes. J. Toxicol. Environ. Health A 81 (22):1173–85. doi:10.1080/15287394.2018.1543232.
  • Lim, M., and K. Lee. 2020. Aggregate exposure assessment using cosmetic co-use scenarios: I. Establishment of aggregate exposure scenarios. Food Chem. Toxicol. 142:111486. doi:10.1016/j.fct.2020.111486.
  • Maxwell, G., P. Aeby, T. Ashikaga, S. Bessou-Touya, W. Diembeck, F. Gerberick, P. Kern, M. Marrec-Fairley, J. M. Ovigne, H. Sakaguchi, et al. 2011. Skin sensitisation: The colipa strategy for developing and evaluating non-animal test methods for risk assessment. ALTEX 28 (1):50–55. doi:10.14573/altex.2011.1.050.
  • McClellan, R. O. 1994. A commentary on the NRC report “science and judgment in risk assessment”. Regul. Toxicol. Pharmacol 20 (3 Pt 2):S142–S168.
  • Meybeck, A. 1992. Past, oresent and future of liposome cosmetics, “Liposome dermatics.” Springer, 341–45.
  • MFDS (Ministry of Food and Drug Safety). 2017. Guideline of Risk Assessment of Cosmetic Ingredients. Accessed February 15, 2021. http://nifds.go.kr/brd/m_15/view.do?seq=10872&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=22
  • Morganti, P. 2010. Use and potential of nanotechnology in cosmetic dermatology. Clin. Cosmet. Investig. Dermatol. 3:5–13. doi:10.2147/ccid.s4506.
  • Mu, L., and R. L. Sprando. 2010. Application of nanotechnology in cosmetics. Pharm. Res. 27 (8):1746–49. doi:10.1007/s11095-010-0139-1.
  • Müller, R., R. Petersen, A. Hommoss, and J. Pardeike. 2007. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 59 (6):522–30. doi:10.1016/j.addr.2007.04.012.
  • Müller, R. H., M. Radtke, and S. A. Wissing. 2002. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54:S131–55. doi:10.1016/S0169-409X(02)00118-7.
  • Munro, I. C., R. A. Ford, E. Kennepohl, and J. G. Sprenger. 1996. Correlation of structural class with no-observed-effect levels: A proposal for establishing a threshold of concern. Food Chem. Toxicol. 34:829–67.
  • NAS (National Academy of Sciences). 2007. Toxicity Testing in the 21st Century: A vision and a strategy. Accessed August 20, 2020. https://www.nap.edu/catalog/11970/toxicity-testing-in-the-21st-century-a-vision-and-a
  • Nepal, M. R., G. H. Kim, D. H. Cha, and T. C. Jeong. 2019. Assessment of skin sensitizing potential of metals with β-galactosidase-expressing E. coli culture system. J. Toxicol. Environ. Health A 82 (15):879–89. doi:10.1080/15287394.2019.1664958.
  • Nepal, M. R., Y. Kang, M. J. Kang, D. H. Nam, and T. C. Jeong. 2018. A β-galactosidase-expressing E. coli culture as an alternative test to identify skin sensitizers and non-sensitizers. J. Toxicol. Environ. Health A 81 (9):288–301. doi:10.1080/15287394.2018.1440187.
  • Nohynek, G. J., and E. K. Dufour. 2012. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Arch. Toxicol 86 (7):1063–75. doi:10.1007/s00204-012-0831-5.
  • NRC (National Research Council). 1983. Risk assessment in the federal government: Managing the process. Washington, DC: National Academy Press.
  • OECD (Organization for Economic Cooperation and Development). Test No. 129: Guidance document on using cytotoxicity tests to estimate starting doses for acute oral systemic toxicity tests. Accessed February 15, 2021. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2010)20&doclanguage=en
  • OECD (Organization for Economic Cooperation and Development) Test No. 427: Skin absorption: In vivo method. Accessed 15 February, 2021. https://read.oecd-ilibrary.org/environment/test-no-427-skin-absorption-in-vivo-method_9789264071063-en#page1
  • OECD (Organization for Economic Cooperation and Development). Test No. 428: Skin absorption: In vitro method. Accessed February 15, 2021. https://www.oecd-ilibrary.org/environment/test-no-428-skin-absorption-in-vitro-method_9789264071087-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 430: In vitro skin corrosion: Transcutaneous electrical resistance test method (ter). Accessed February 15, 2021. doi:10.1787/9789264071124-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 431: In vitro skin corrosion: Reconstructed human epidermis (rhe) test method. Accessed February 15, 2021. doi:10.1787/9789264264618-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 432: In vitro 3T3 NRU phototoxicity test. Accessed February 15, 2021. doi:10.1787/9789264071162-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 437: Bovine corneal opacity and permeablility test method for identifying i) chemicals inducing serious eye damage and ii) chemicals not requiring classification for eye irritation or serious eye damage. Accessed February 15, 2021. https://www.oecd-ilibrary.org/environment/test-no-437-bovine-corneal-opacity-and-permeability-test-method-for-identifying-i-chemicals-inducing-serious-eye-damage-and-ii-chemicals-not-requiring-classification-for-eye-irritation-or-serious-eye-damage_9789264203846-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 438: Isolated chicken eys test methods for identifying ocular corrosive and severe irritants. Accessed February 15, 2021. https://www.oecd-ilibrary.org/environment/test-no-438-isolated-chicken-eye-test-method-for-identifying-ocular-corrosives-and-severe-irritants_9789264076310-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 442B: Skin sensitization: Local lymph node assay: BrdU-ELISA or –FCM. Accessed February 15, 2021. doi:10.1787/9789264090996-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 442C: In chemico skin sensitisation: Direct peptide reactivity assay (DPRA). Accessed February 15, 2021. doi:10.1787/9789264229709-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 442D: In vitro skin sensitisation: ARE-Nrf2 Luciferase Test Method. Accessed February 15, 2021. doi:10.1787/9789264229822-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 442E: In vitro skin sensitisation: Human cell line activation test (H-CLAT). Accessed February 15, 2021. doi:10.1787/9789264264359-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 460: Fluorescein leakage test method for identifying ocular corrosive and severe irritants. Accessed February 15, 2021. https://www.oecd-ilibrary.org/environment/test-no-460-fluorescein-leakage-test-method-for-identifying-ocular-corrosives-and-severe-irritants_9789264185401-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 471: Bacterial reverse mutation test. Accessed August 20, 2020. doi:10.1787/9789264071247-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 476: In vitro mammalian cell gene mutation tests using the HPRT and XPRT genes. Accessed February 15, 2021. doi:10.1787/9789264243088-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 487: In vitro mammalian cell micronucleus test. Accessed February 15, 2021. doi:10.1787/9789264264861-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 491: Short time exposure in vitro test method for identifying i) chemicals inducing serious eye damage and ii) chemicals not requiring classification for eye irritation or serious eye damage. Accessed February 15, 2021. https://www.oecd-ilibrary.org/environment/test-no-491-short-time-exposure-in-vitro-test-method-for-identifying-i-chemicals-inducing-serious-eye-damage-and-ii-chemicals-not-requiring-classification-for-eye-irritation-or-serious-eye-damage_9789264242432-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 492: Reconstructed human cornea-like epithelium (rhce) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage. Accessed February 15, 2021. https://read.oecd-ilibrary.org/environment/test-no-492-reconstructed-human-cornea-like-epithelium-rhce-test-method-for-identifying-chemicals-not-requiring-classification-and-labelling-for-eye-irritation-or-serious-eye-damage_9789264242548-en#page1
  • OECD (Organization for Economic Cooperation and Development). Test No. 494: Vitrigel-eye irritancy test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage. Accessed February 15, 2021. https://www.oecd-ilibrary.org/environment/tg-494-vitrigel-eye-irritancy-test-method-for-identifying-chemicals-not-requiring-classification-and-labelling-for-eye-irritation-or-serious-eye-damage_9f20068a-en
  • OECD (Organization for Economic Cooperation and Development). Test No. 495: ROS (Reactive Oxygen Species) assay for photoreactivity. Accessed August 20, 2020. https://www.oecd-ilibrary.org/environment/tg-495-ros-reactive-oxygen-species-assay-for-photoreactivity_915e00ac-en
  • OECD (Organization for Economic Cooperation and Development). 2014. Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. Accessed August 20, 2020. https://www.oecd.org/env/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models-9789264085442-en.htm
  • OECD (Organization for Economic Cooperation and Development). 2015. In vitro Bhas 42 cell transformation assay. Accessed August 20, 2020. https://www.oecd.org/env/ehs/testing/Bhas%2042%20CTA%20GD%20after%203rd%20comments-F_CLEAN.pdf
  • Pant, K., S. W. Bruce, J. E. Sly, T. Kunkelmann, S. Kunz-Bohnenberger, A. Poth, G. Engelhardt, M. Schulz, and K. R. Schwind. 2012. Prevalidation study of the Syrian hamster embryo (SHE) cell transformation assay at pH 6.7 for assessment of carcinogenic potential of chemicals. Mutat. Res. 744 (1):54–63. doi:10.1016/j.mrgentox.2011.12.005.
  • Pardeike, J., A. Hommoss, and R. H. Müller. 2009. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 366 (1–2):170–84. doi:10.1016/j.ijpharm.2008.10.003.
  • Pardeike, J., K. Schwabe, and R. H. Müller. 2010. Influence of nanostructured lipid carriers (NLC) on the physical properties of the cutanova nanorepair Q10 cream and the in vivo skin hydration effect. Int. J. Pharm. 396 (1–2):166–73. doi:10.1016/j.ijpharm.2010.06.007.
  • Patlewicz, G., G. Helman, P. Pradeep, and I. Shah. 2017. Navigating through the minefield of read-across tools: A review of in silico tools for grouping. Comput. Toxicol. 3:1–18. doi:10.1016/j.comtox.2017.05.003.
  • Patlewicz, G., M. T. Cronin, G. Helman, J. C. Lambert, L. E. Lizarraga, and I. Shah. 2018. Navigating through the minefield of read-across frameworks: A commentary perspective. Comput. Toxicol. 6:39–54. doi:10.1016/j.comtox.2018.04.002.
  • Patlewicz, G., N. Ball, E. D. Booth, E. Hulzebos, E. Zvinavashe, and C. Hennes. 2013. Use of category approaches, read-across and (Q)SAR: General considerations. Regul. Toxicol. Pharmacol. 67 (1):1–12. doi:10.1016/j.yrtph.2013.06.002.
  • Pirih, N., and T. Kunej. 2017. Toward a taxonomy for multi-omics science? Terminology development for whole genome study approaches by omics technology and hierarchy. Omics 21 (1):1–16. doi:10.1089/omi.2016.0144.
  • Prieto, P., T. Cole, R. Curren, R. M. Gibson, M. Liebsch, H. Raabe, A. M. Tuomainen, M. Whelan, and A. Kinsner-Ovaskainen. 2013. Assessment of the predictive capacity of the 3T3 Neutral Red Uptake cytotoxicity test method to identify substances not classified for acute oral toxicity (LD50>2000mg/kg): Results of an ECVAM validation study. Regul. Toxicol. Pharmacol. 65 (3):344–65. doi:10.1016/j.yrtph.2012.11.013.
  • Puglia, C., and D. Santonocito. 2019. Cosmeceuticals: Nanotechnology-based strategies for the delivery of phytocompounds. Curr. Pharm. Des. 25 (21):2314–22. doi:10.2174/1381612825666190709211101.
  • Punt, A., H. Bouwmeester, B. J. Blaauboer, S. Coecke, B. Hakkert, D. F. G. Hendriks, P. Jennings, N. I. Kramer, S. Neuhoff, R. Masereeuw, et al. 2020. New approach methodologies (NAMs) for human-relevant biokinetics predictions: Meeting the paradigm shift in toxicology towards an animal-free chemical risk assessment. ALTEX. doi:10.14573/altex.2003242.
  • Russo, D. P., M. T. Kim, W. Wang, D. Pinolini, S. Shende, J. Strickland, T. Hartung, and H. Zhu. 2017. CIIPro: A new read-across portal to fill data gaps using public large-scale chemical and biological data. Bioinformatics (Oxford, England) 33 (3):464–66. doi:10.1093/bioinformatics/btw640.
  • Safford, B., A. M. Api, C. Barratt, D. Comiskey, E. J. Daly, G. Ellis, C. McNamara, C. O’Mahony, S. Robison, B. Smith, et al. 2015. Use of an aggregate exposure model to estimate consumer exposure to fragrance ingredients in personal care and cosmetic products. Regul. Toxicol. Pharmacol. 72 (3):673–82. doi:10.1016/j.yrtph.2015.05.017.
  • SCCS (Scientific Committee on Consumer Safety). 2010a. The SCCS’s Notes of guidance for the testing of cosmetic ingredients and their safety evaluation. 7th Revision. Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_004.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2010b. Opinion on Cyclomethicone, Octamethylcyclotetrasiloxane (D4) and Decamethylcyclopentasiloxane (D5). Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_029.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2011a. Clarification on opinion SCCS/1348/10 in the light of the Danish clause of safeguard banning the use of parabens in cosmetic products intended for children under three years of age. Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_069.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2011b. Opinion on Triclosan (Colipa no P32). Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2011c. Opinion on 1,3,5-triazine, 2,4,6-tris[1,1ʹ-biphenyl]-4-yl-. Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_070.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2012. Opinion on Zinc Oxide (Nano Form). Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_103.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2013. Opinion on 3-Benzylidene camphor. Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_134.pdf
  • SCCS (ScientificCommittee on Consumer Safety). 2014 Opinion on Titanium Dioxide (Nano Form). Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_136.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2015a. Opinion on 2,2ʹ-methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (Nano Form). Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_168.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2015b. Opinion on silica, hydrated silica, and silica surface modified with alkyl silicates (Nano Form). Accessed February 15, 2021. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_175.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2020a. Opinion on titanium dioxide (TiO2) used in cosmetic products that lead to exposure by inhalation. Accessed March 26, 2021. https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_238.pdf
  • SCCS (Scientific Committee on Consumer Safety). 2020b. The scientific advice on the safety of nanomaterials in cosmetics. Accessed February 15, 2021. https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_239.pdf
  • Schultz, T. W., P. Amcoff, E. Berggren, F. Gautier, M. Klaric, D. J. Knight, C. Mahony, M. Schwarz, A. White, and M. T. Cronin. 2015. A strategy for structuring and reporting a read-across prediction of toxicity. Regul. Toxicol. Pharmacol. 72 (3):586–601. doi:10.1016/j.yrtph.2015.05.016.
  • Sharma, R. P., M. Schuhmacher, and V. Kumar. 2018. Development of a human physiologically based pharmacokinetic (PBPK) model for phthalate (DEHP) and its metabolites: A bottom up modeling approach. Toxicol. Lett. 296:152–62. doi:10.1016/j.toxlet.2018.06.1217.
  • Souto, E., and R. Müller. 2008. Cosmetic features and applications of lipid nanoparticles (SLN®, NLC). Int. J. Cosmet Sci. 30 (3):157–65. doi:10.1111/j.1468-2494.2008.00433.x.
  • Sperber, S., M. Wahl, F. Berger, H. Kamp, O. Lemke, V. Starck, T. Walk, M. Spitzer, and B. V. Ravenzwaay. 2019. Metabolomics as read-across tool: An example with 3-aminopropanol and 2-aminoethanol. Reg. Toxicol. Pharmacol. 108:104442. doi:10.1016/j.yrtph.2019.104442.
  • Spoiala, A., M. Albu, A. Ficai, A. Andronescu, G. Voicu, and C. Ungurean. 2014. The SiO2/ZnO composite materials for cosmetic creams. Dig. J. Nanomater. Bios. 9:1729–37.
  • Statista. 2021. Annual growth of the global cosmetics market from 2004 to 2019. Accessed 2020 March 26, 2021. https://www.statista.com/statistics/297070/growth-rate-of-the-global-cosmetics-market
  • Sung, C. R., K. B. Kim, J. Y. Lee, B. M. Lee, and S. J. Kwack. 2019. Risk assessment of ethylhexyl dimethyl PABA in cosmetics. Toxicol. Res. 35 (2):131–36. doi:10.5487/TR.2019.35.2.131.
  • Tinto-Moliner, A., and M. Martin. 2020. Quantitative weight of evidence method for combining predictions of quantitative structure-activity relationship models. SAR QSAR Environ. Res 31 (4):261–79. doi:10.1080/1062936X.2020.1725116.
  • Tozer, S., C. O’Mahony, J. Hannah, J. O’Brien, S. Kelly, K. Kosemund-Meynen, and C. Alexander-White. 2019. Aggregate exposure modelling of vitamin A from cosmetic products, diet and food supplements. Food Chem.Toxicol. 131:110549. doi:10.1016/j.fct.2019.05.057.
  • Tung, C.-W., -C.-C. Wang, and -S.-S. Wang. 2018. Mechanism-informed read-across assessment of skin sensitizers based on SkinSensDB. Regul. Toxicol. Pharmacol. 94:276–82. doi:10.1016/j.yrtph.2018.02.014.
  • Turley, A. E., K. K. Isaacs, B. A. Wetmore, A. L. Karmaus, M. R. Embry, and M. Krishan. 2019. Incorporating new approach methodologies in toxicity testing and exposure assessment for tiered risk assessment using the RISK21 approach: Case studies on food contact chemicals. Food Chem. Toxicol. 134:110819. doi:10.1016/j.fct.2019.110819.
  • Urbisch, D., N. Honarvar, S. N. Kolle, A. Mehling, T. Ramirez, W. Teubner, and R. Landsiedel. 2016. Peptide reactivity associated with skin sensitization: The QSAR toolbox and TIMES compared to the DPRA. Toxicol. in Vitro 34:194–203. doi:10.1016/j.tiv.2016.04.005.
  • USEPA (US Environmental Protection Agency). 1987. The risk assessment guidelines of 1986. Office of Health and Environmental Assessment. US Environmental Protection Agency EPA/600/8-87/045, August 1987, 81.
  • USEPA (US Environmental Protection Agency). 2004. Supplementary guidance for conducting health risk assessment of chemical mixtures. Risk Assessment Forum Office of Research and development. Washington DC.
  • Wilm, A., C. Stork, C. Bauer, A. Schepky, J. Kühnl, and J. Kirchmair. 2019. Skin doctor: Machine learning models for skin sensitization prediction that provide estimates and indicators of prediction reliability. Int. J. Mol. Sci. 20 (19):4833. doi:10.3390/ijms20194833.
  • Wissing, S. A., and R. H. Müller. 2003. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 254 (1):65–68. doi:10.1016/S0378-5173(02)00684-1
  • Wu, Y., and G. Wang. 2018. Machine learning based toxicity prediction: From chemical structural description to transcriptome analysis. Int. J. Mol. Sci 19(8):2358. doi: E2358[pii]. doi:10.3390/ijms19082358.
  • Yang, C., S. M. Barlow, K. L. M. Jacobs, V. Vitcheva, A. R. Boobis, S. P. Felter, K. B. Arvidson, D. Keller, M. T. D. Cronin, S. Enoch, et al. 2017. Thresholds of toxicological concern for cosmetics-related substances: New database, thresholds, and enrichment of chemical space. Food Chem. Toxicol. 109:170–93. doi:10.1016/j.fct.2017.08.043.
  • Yang, H., C. Lou, W. Li, G. Liu, and Y. Tang. 2020. Computational approaches to identify structural alerts and their applications in environmental toxicology and drug discovery. Chem. Res. Toxicol 33 (6):1312–22. doi:10.1021/acs.chemrestox.0c00006.
  • Yazdimamaghani, M., Moos, P. J., Dobrovolskaia, M. A., and H. Ghandehari. 2019. Genotoxicity of amorphous silica nanoparticles: Status and prospects. Nanomed. 16: 106–25. doi:10.1016/j.nano.2018.11.013
  • Zhu, H., M. Bouhifd, E. Donley, L. Egnash, N. Kleinstreuer, E. D. Kroese, Z. Liu, T. Luechtefeld, J. Palmer, D. Pamies, et al. 2016. Supporting read-across using biological data. ALTEX 33:167–82. doi:10.14573/altex.1601252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.