1,758
Views
3
CrossRef citations to date
0
Altmetric
Review

Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures

, &

References

  • Afshar-Mohajer, N., C. Y. Wu, T. Ladun, D. A. Rajon, and Y. Huang. 2015. Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer. Build. Environ. 93:293–301. doi:10.1016/j.buildenv.2015.07.013.
  • Alberts, E., M. Ballentine, E. Barnes, and A. Kennedy. 2021. Impact of metal additives on particle emission profiles from a fused filament fabrication 3D printer. Atmos. Environ. 244:117956. Article. doi:10.1016/j.atmosenv.2020.117956.
  • Aluri, M., B. Monami, B. S. Raj, and R. S. Mamilla. 2021. Review on particle emissions during fused deposition modeling of acrylonitrile butadiene styrene and polylactic acid polymers. Materials Today: Proceedings (E-print).
  • ASTM International, Standards under the jurisdiction of D22. ASTM International 2021 [ cited February 2, 2021]. Available from https://www.astm.org/COMMIT/SUBCOMMIT/D22.htm
  • Bau, S., D. Rousset, R. Payet, and F. X. Keller. 2020. Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles. J Occup Environ Hyg 17 (2–3):59–72. doi:10.1080/15459624.2019.1696969.
  • Beisser, R., M. Buxtrup, D. Fendler, L. Hohenberger, V. Kazda, Y. Von Mering, H. Niemann, K. Pitzke, and R. Weiß. 2017. Inhalation exposure to metals during additive processes (3D printing). Gefahrstoffe Reinhaltung der Luft 77:487–96.
  • Bernatikova, S., A. Dudacec, R. Prichystalova, V. Klecka, and L. Kocurkova. 2021. Characterization of ultrafine particles and VOCs emitted from a 3D printer. Int J Environ Res Public Health Article. 18 (3):929. doi:10.3390/ijerph18030929.
  • Bharti, N., and S. Singh. 2017. Three-dimensional (3D) printers in libraries: Perspective and preliminary safety analysis. J. Chem. Educ. 94 (7):879–85. doi:10.1021/acs.jchemed.6b00745.
  • Bourell, D. L. 2016. Perspectives on additive manufacturing. Annu Rev Mater Res 46 (1):1–18. doi:10.1146/annurev-matsci-070115-031606.
  • Bours, J., B. Adzima, S. Gladwin, J. Cabral, and S. Mau. 2017. Addressing hazardous implications of additive manufacturing: Complementing life cycle assessment with a framework for evaluating direct human health and environmental impacts. Journal of Industrial Ecology 21 (S1):S25–S36. doi:10.1111/jiec.12587.
  • Bravi, L., F. Murmura, and G. Santos. 2019. Additive manufacturing: Possible problems with indoor air quality. Procedia Manufacturing 41:952–59. doi:10.1016/j.promfg.2019.10.020.
  • Chan, F. L., C. Y. Hon, S. M. Tarlo, N. Rajaram, and R. House. 2020. Emissions and health risks from the use of 3D printers in an occupational setting. J. Toxicol. Environ. Health Part A 83 (7):279–87. doi:10.1080/15287394.2020.1751758.
  • Chang, T. Y., L. J. Lee, J. D. Wang, R. H. Shie, and C. C. Chan. 2004. Occupational risk assessment on allergic contact dermatitis in a resin model making process. Journal of Occuppational Health 46 (2):148–52. doi:10.1539/joh.46.148.
  • Chen, R., H. Yin, I. S. Cole, S. Shen, X. Zhou, Y. Wang, and S. Tang. 2020. Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: A review. Chemosphere 259:127452. Article. doi:10.1016/j.chemosphere.2020.127452.
  • Chýlek, R., L. Kudela, J. Pospíšil, and L. Šnajdárek. 2019. Fine particle emission during fused deposition modelling and thermogravimetric analysis for various filaments. J. Clean. Prod. 237:117790. Article. doi:10.1016/j.jclepro.2019.117790.
  • Damanhuri, A. A. M., A. Hariri, M. R. Alkahari, M. H. F. M. Fauadi, and S. F. Z. Bakri. 2019a. Indoor air concentration from selective laser sintering 3D printer using virgin polyamide nylon (PA12) powder: A pilot study. International Journal of Integrated Engineering 11 (5 Special):140–49.
  • Damanhuri, A. A. M., A. S. A. Subki, A. Hariri, B. T. Tee, M. H. F. M. Fauadi, M. S. F. Hussin, and M. S. S. Mustafa. 2019b. Comparative study of selected indoor concentration from selective laser sintering process using virgin and recycled polyamide nylon (PA12). IOP Conference Series: Earth and Environmental Science 373 Article 012014, Malacca, Malaysia.
  • Davis, A. Y., Q. Zhang, J. P. S. Wong, R. J. Weber, and M. S. Black. 2019. Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Build. Environ. 160:106209. Article. doi:10.1016/j.buildenv.2019.106209.
  • Deak, S. M. 1999. Safe work practices for rapid prototyping. Rapid Prototyping Journal 5 (4):161–63. doi:10.1108/13552549910295479.
  • Deng, Y., S. J. Cao, A. Chen, and Y. Guo. 2016. The impact of manufacturing parameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction. Build. Environ. 104:311–19. doi:10.1016/j.buildenv.2016.05.021.
  • Ding, S., B. F. Ng, X. Shang, H. Liu, X. Lu, and M. P. Wan. 2019. The characteristics and formation mechanisms of emissions from thermal decomposition of 3D printer polymer filaments. Science of the Total Environment 692:984–94. doi:10.1016/j.scitotenv.2019.07.257.
  • Ding, S., M. P. Wan, and B. F. Ng. 2020. Dynamic analysis of particle emissions from FDM 3D printers through a comparative study of chamber and flow tunnel measurements. Environ. Sci. Technol. 54 (22):14568–77. doi:10.1021/acs.est.0c05309.
  • DOL. Sampling and Analytical Methods. Directorate of Technical Support and Emergency Management/Salt Lake Technical Center [ cited February 2, 2021]. Available from https://www.osha.gov/dts/sltc/methods/index.html
  • Du Preez, S., A. Johnson, R. F. LeBouf, S. J. L. Linde, A. B. Stefaniak, and J. Du Plessis. 2018b. Exposures during industrial 3-D printing and post-processing tasks. Rapid Prototyping Journal 24 (5):865–71. doi:10.1108/RPJ-03-2017-0050.
  • Du Preez, S., D. J. de Beer, and J. L. Du Plessis. 2018a. Titanium powders used in powder bed fusion: Their relevance to respiratory health. South African Journal of Industrial Engineering 29 (4):94–102. doi:10.7166/29-4-1975.
  • Dunn, K. L., D. Hammond, K. Menchaca, G. Roth, and K. H. Dunn. 2020b. Reducing ultrafine particulate emission from multiple 3D printers in an office environment using a prototype engineering control. Journal of Nanoparticle Research Article. 22 (5):112. doi:10.1007/s11051-020-04844-4.
  • Dunn, K. L., K. H. Dunn, D. Hammond, and S. Lo. 2020a. Three-dimensional printer emissions and employee exposures to ultrafine particles during the printing of thermoplastic filaments containing carbon nanotubes or carbon nanofibers. Journal of Nanoparticle Research Article. 22 (2):46. doi:10.1007/s11051-020-4750-8.
  • Elder, A., and G. Oberdörster. 2006. Translocation and effects of ultrafine particles outside of the lung. Clin Occup Environ Med 5 (4):785–96. doi:10.1016/j.coem.2006.07.003.
  • EPA. SW-846: Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. US EPA Office of Solid Waste; Economic, Methods, and Risk Analysis Division 2014 [ cited February 2, 2021]. Available from https://www.epa.gov/hw-sw846
  • Fierz, M., A. Keller, and H. Burtscher. 2009. Charge-based personal aerosol samplers. Inhal Toxicol 21 (Suppl sup1):30–34. doi:10.1080/08958370902942632.
  • Fierz, M., S. Weimer, and H. Burtscher. 2009. Design and performance of an optimized electrical diffusion battery. J Aerosol Sci 40 (2):152–63. doi:10.1016/j.jaerosci.2008.09.007.
  • Ford, S. 2014. Additive Manufacturing technology: Potential implications for U.S. manufacturing competitiveness. Journal of International Commerce and Economics. http://www.usitc.gov/journals.
  • Freiser, M. E., A. Ghodadra, L. Hart, C. Griffith, and N. Jabbour. 2018. Safety of drilling 3-dimensional-printed temporal bones. Otolaryngology-Head & Neck Surgery 144:797–801.
  • Gomes, J. F., R. M. Miranda, J. P. Oliveira, H. M. Esteves, and P. C. Albuquerque. 2019. Evaluation of the amount of nanoparticles emitted in LASER additive manufacture/welding. Inhal Toxicol 31 (3):125–30. doi:10.1080/08958378.2019.1621965.
  • Graff, P., B. Ståhlbom, E. Nordenberg, A. Graichen, P. Johansson, and H. Karlsson. 2017. Evaluating measuring techniques for occupational exposure during additive manufacturing of metals: A pilot study. Journal of Industrial Ecology 21 (S1):S120–S129. doi:10.1111/jiec.12498.
  • Gu, J., M. Wensing, E. Uhde, and T. Salthammer. 2019. Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environmental International 123:476–85. doi:10.1016/j.envint.2018.12.014.
  • He, C., L. Morawska, and L. Taplin. 2007. Particle emission characteristics of office printers. Environmental Science & Technology 41 (17):6039–45. doi:10.1021/es063049z.
  • ISO/ASTM. 2015. 52900: Additive manufacturing — General principles — Terminology Geneva. Switzerland: ISO.
  • Ivanova, O., C. Williams, and T. Campbell. 2013. Additive manufacturing (AM) and nanotechnology: Promises and challenges. Rapid Prototyping Journal 19 (5):353–64. doi:10.1108/RPJ-12-2011-0127.
  • Jensen, A. C. O., H. Harboe, A. Brostrøm, K. A. Jensen, and A. S. Fonseca. 2020. Nanoparticle exposure and workplace measurements during processes related to 3D printing of a metal object. Frontiers in Public Health 8 (Article):608718. doi:10.3389/fpubh.2020.608718.
  • Katz, E. F., J. D. Goetz, C. Wang, J. L. Hart, B. Terranova, M. L. Taheri, M. S. Waring, and P. F. DeCarlo. 2020. Chemical and physical characterization of 3D printer aerosol emissions with and without a filter attachment. Environmental Science & Technology 54 (2):947–54. doi:10.1021/acs.est.9b04012.
  • Kolb, T., P. Schmidt, R. Beisser, J. Tremel, and M. Schmidt. 2017. Safety in additive manufacturing: Fine dust measurements for a process chain in laser beam melting of metals. RTeJournal: Fachforum Fur Rapid Technologie2017.
  • LeBouf, R. F., B. Hawley, and K. J. Cummings. 2019. Potential hazards not communicated in safety data sheets of flavoring formulations, including diacetyl and 2,3-pentanedione. Annals of Work Exposure and Health 63 (1):124–30. doi:10.1093/annweh/wxy093.
  • Leso, V., M. L. Ercolano, I. Mazzotta, M. Romano, F. Cannavacciuolo, and I. Iavicoli. 2021. Three-dimensional (3D) printing: Implications for risk assessment and management in occupational settings. Annals of Work Exposure and Health (E-print). doi:10.1093/annweh/wxaa146.
  • Lewinski, N. A., L. E. Secondo, and J. K. Ferri. 2019. On-site three-dimensional printer aerosol hazard assessment: Pilot study of a portable in vitro exposure cassette. Process Safety Progress 38 (3), 6. doi: 10.1002/prs.12030.
  • Ljunggren, S. A., H. Karlsson, B. Ståhlbom, B. Krapi, L. Fornander, L. E. Karlsson, B. Bergström, E. Nordenberg, T. K. Ervik, and P. Graff. 2019. Biomonitoring of Metal Exposure During Additive Manufacturing (3D Printing). Saf Health Work 10 (4):518–26. doi:10.1016/j.shaw.2019.07.006.
  • Ma, X., J. Liu, W. Zhu, M. Tang, N. Lawrence, C. Yu, M. Gou, and S. Chen. 2018. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv. Drug Deliv. Rev. 132:235–51. doi:10.1016/j.addr.2018.06.011.
  • McDonnell, B., X. J. Guzman, M. Dolack, T. W. Simpson, and J. M. Cimbala. 2016. 3D printing in the wild: A preliminary investigation of air quality in college maker spaces. Paper read at Solid Freeform Fabrication 2016 – An Additive Manufacturing Conference, at Austin, TX.
  • Mellin, P., C. Jönsson, M. Åkermo, P. Fernberg, E. Nordenberg, H. Brodin, and A. Strondl. 2016. Nano-sized by-products from metal 3D printing, composite manufacturing and fabric production. J. Clean. Prod. 139:1224–33. doi:10.1016/j.jclepro.2016.08.141.
  • Mendes, L., A. Kangas, K. Kukko, B. Mølgaard, A. Säämänen, T. Kanerva, I. Flores Ituarte, M. Huhtiniemi, H. Stockmann-Juvala, J. Partanen, et al.. 2017. Characterization of emissions from a desktop 3D printer. Journal of Industrial Ecology 21 (S1):S94–S106. doi:10.1111/jiec.12569.
  • Nagarajan, H. P. N., S. Panicker, H. Mokhtarian, E. Coatanéa, and K. R. Haapala. 2020. Improving worker health and safety in wire arc additive manufacturing: A graph-based approach. Procedia CIRP 90:461–66. doi:10.1016/j.procir.2020.01.116.
  • NIOSH. 2007. NIOSH Pocket Guide to Chemical Hazards. In DHHS (NIOSH) Publication 2005-149 ed, Cincinnati, OH: DHHS (NIOSH). [Cited February 2, 2021]. Available from https://www.cdc.gov/niosh/npg/default.html
  • NIOSH Manual of Analytical Methods (NMAM), 5th Edition U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health 2020 [ cited February 2, 2021]. Available from https://www.cdc.gov/niosh/nmam/default.html
  • Oberbek, P., P. Kozikowski, K. Czarnecka, P. Sobiech, S. Jakubiak, and T. Jankowski. 2019. Inhalation exposure to various nanoparticles in work environment—contextual information and results of measurements. Journal of Nanoparticle Research Article. 21 (11):222. doi:10.1007/s11051-019-4651-x.
  • Pelley, J. 2018. Safety Standards Aim to Rein in 3-D Printer Emissions. ACS Central Science 4 (2):134–36. doi:10.1021/acscentsci.8b00090.
  • Petretta, M., G. Desando, B. Grigolo, and L. Roseti. 2019. 3D printing of musculoskeletal tissues: Impact on safety and health at work. Journal of Toxicology and Environmental Health A 82 (16):891–912. doi:10.1080/15287394.2019.1663458.
  • Philippot, C., C. L’Allain, S. Artous, D. Locatelli, S. Jacquinot, S. Derrough, L. Aixala, P. Mougenel, and Y. Gallet. 2020. Potential workers exposure measurement in metal additive manufacturing and how to manage it. Proceedings of Euro Powder Metallurgy, Bilbao, Spain.
  • Pinheiro, N. D., R. T. Freire, J. Aparecida, M. Conrado, A. D. Batista, and J. F. Da S Petruci. 2021. Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments. Anal. Chim. Acta 1143:1–8. doi:10.1016/j.aca.2020.11.012.
  • Potter, P. M., S. R. Al-Abed, D. Lay, and S. M. Lomnicki. 2019. VOC emissions and formation mechanisms from carbon nanotube composites during 3D printing. Environ. Sci. Technol. 53 (8):4364–70. doi:10.1021/acs.est.9b00765.
  • Ra, K., S. M. Teimouri Sendesi, M. Nuruddin, N. N. Zyaykina, E. N. Conkling, B. E. Boor, C. T. Jafvert, J. A. Howarter, J. P. Youngblood, and A. J. Whelton. 2019. Considerations for emission monitoring and liner analysis of thermally manufactured sewer cured-in-place-pipes (CIPP). J. Hazard. Mater. 371:540–49. doi:10.1016/j.jhazmat.2019.02.097.
  • Roth, G. A., C. L. Geraci, A. Stefaniak, V. Murashov, and J. Howard. 2019. Potential occupational hazards of additive manufacturing. J Occup Environ Hyg 16 (5):321–28. doi:10.1080/15459624.2019.1591627.
  • Ryan, T., and D. Hubbard. 2016. 3-D printing hazards: Literature review & preliminary hazard assessment. Prof Saf 61:56–62.
  • Shahin-Shamsabadi, A., and P. R. Selvaganapathy. 2019. ExCeL: Combining extrusion printing on cellulose scaffolds with lamination to create in vitro biological models. Biofabrication Article. 11 (3):035002. doi:10.1088/1758-5090/ab0798.
  • Short, D. B., A. Sirinterlikci, P. Badger, and B. Artieri. 2015. Environmental, health, and safety issues in rapid prototyping. Rapid Prototyping Journal 21 (1):105–10. doi:10.1108/RPJ-11-2012-0111.
  • Simon, T. R., G. A. Aguilera, and F. Zhao. 2017. Characterization of particle emission from fuse deposition modeling printers. Paper read at Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference, Los Angeles, CA.
  • Sousa, M., P. Arezes, and F. Silva. 2019. Nanomaterials exposure as an occupational risk in metal additive manufacturing. Journal of Physics: Conference Series 1323 Article 012013, Minatec-Grenoble, France.
  • Stabile, L., M. Scungio, G. Buonanno, F. Arpino, and G. Ficco. 2017. Airborne particle emission of a commercial 3D printer: The effect of filament material and printing temperature. Indoor Air 27 (2):398–408. doi:10.1111/ina.12310.
  • Stefaniak, A. B., A. R. Johnson, S. Du Preez, D. R. Hammond, J. R. Wells, J. E. Ham, R. F. LeBouf, K. W. Menchaca, S. B. Martin Jr., M. G. Duling, et al.. 2019c. Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printers. Journal of Chemical Health and Safety 26 (2):19–30. doi:10.1016/j.jchas.2018.11.001.
  • Stefaniak, A. B., A. R. Johnson, S. Du Preez, D. R. Hammond, J. R. Wells, J. E. Ham, R. F. LeBouf, S. B. Martin Jr., M. G. Duling, L. N. Bowers, et al.. 2019b. Insights into emissions and exposures from use of industrial-scale additive manufacturing machines. Saf Health Work 10 (2):229–36. doi:10.1016/j.shaw.2018.10.003.
  • Stefaniak, A. B., L. N. Bowers, A. K. Knepp, M. A. Virji, E. M. Birch, J. E. Ham, J. R. Wells, C. Qi, D. Schwegler-Berry, S. Friend, et al.. 2018. Three-dimensional printing with nano-enabled filaments releases polymer particles containing carbon nanotubes into air. Indoor Air 28 (6):840–51. doi:10.1111/ina.12499.
  • Stefaniak, A. B., L. N. Bowers, A. K. Knepp, T. P. Luxton, D. M. Peloquin, E. J. Baumann, J. E. Ham, J. R. Wells, A. R. Johnson, R. F. LeBouf, et al.. 2019a. Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers. J Occup Environ Hyg 16 (8):519–31. doi:10.1080/15459624.2019.1612068.
  • Steinle, P. 2016. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J Occup Environ Hyg 13 (2):121–32. doi:10.1080/15459624.2015.1091957.
  • Stephens, B., P. Azimi, Z. El Orch, and T. Ramos. 2013. Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79:334–39. doi:10.1016/j.atmosenv.2013.06.050.
  • Sutton, A. T., C. S. Kriewall, S. Karnati, M. C. Leu, and J. W. Newkirk. 2020. Characterization of AISI 304L stainless steel powder recycled in the laser powder-bed fusion process. Additive Manufacturing 32 (Article):100981. doi:10.1016/j.addma.2019.100981.
  • Todea, A. M., S. Beckmann, H. Kaminski, D. Bard, S. Bau, S. Clavaguera, D. Dahmann, H. Dozol, N. Dziurowitz, K. Elihn, et al.. 2017. Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Science of the Total Environment 605-606:929–45. doi:10.1016/j.scitotenv.2017.06.041.
  • Väisänen, A. J. K., M. Hyttinen, S. Ylönen, and L. Alonen. 2019. Occupational exposure to gaseous and particulate contaminants originating from additive manufacturing of liquid, powdered, and filament plastic materials and related post-processes. J Occup Environ Hyg 16 (3):258–71. doi:10.1080/15459624.2018.1557784.
  • Vance, M. E., V. Pegues, S. Van Montfrans, W. Leng, and L. C. Marr. 2017. Aerosol emissions from fuse-deposition modeling 3D printers in a chamber and in real indoor environments. Environmental Science & Technology 51 (17):9516–23. doi:10.1021/acs.est.7b01546.
  • Walter, J., A. Baumgärtel, M. Hustedt, R. Hebisch, and S. Kaierle. 2018. Inhalation exposure to hazardous substances during powder-bed processes. Procedia CIRP 74:295–99. doi:10.1016/j.procir.2018.08.114.
  • Wei, Z., X. Liu, M. Ooka, L. Zhang, M. J. Song, R. Huang, N. C. Kleinstreuer, A. Simeonov, M. Xia, and M. Ferrer. 2020. Two-dimensional cellular and three-dimensional bio-printed skin models to screen topical-use compounds for irritation potential. Frontiers in Bioengineering Biotechnology 8:109. 8 Article. doi:10.3389/fbioe.2020.00109.
  • Wojtyła, S., P. Klama, K. Śpiewak, and T. Baran. 2020. 3D printer as a potential source of indoor air pollution. International Journal of Environmental Science and Technology 17 (1):207–18. doi:10.1007/s13762-019-02444-x.
  • Wu, H., W. P. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, A. Kafi, S. Bateman, and J. H. Koo. 2020. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci 111:1–47. doi:10.1016/j.pmatsci.2020.100638.
  • Yang, Y., and L. Li. 2018. Total volatile organic compound emission evaluation and control for stereolithography additive manufacturing process. J. Clean. Prod. 170:1268–78. doi:10.1016/j.jclepro.2017.09.193.
  • Yi, J., R. F. LeBouf, M. G. Duling, T. R. Nurkiewicz, B. T. Chen, D. Schwegler-Berry, M. A. Virji, and A. B. Stefaniak. 2016. Emission of particulate matter from a desktop three-dimensional (3-D) printer. Journal of Toxicology and Environmental Health A 79 (11):453–65. doi:10.1080/15287394.2016.1166467.
  • Youn, J. S., J. W. Seo, S. Han, and K. J. Jeon. 2019. Characteristics of nanoparticle formation and hazardous air pollutants emitted by 3D printer operations: From emission to inhalation. RSC Adv 9 (34):19606–12. doi:10.1039/C9RA03248G.
  • Zhang, Y., W. Jarosinski, Y.-G. Jung, and J. Zhang. 2018. 2 - Additive manufacturing processes and equipment. In Additive Manufacturing, ed. J. Zhang, and Y.-G. Jung. (pp. 39-51). Butterworth-Heineman, Oxford, United Kingdom.
  • Zhou, Y., X. Kong, A. Chen, and S. Cao. 2015. Investigation of ultrafine particle emissions of desktop 3D printers in the clean room. Procedia Engineering 121:506–12. doi:10.1016/j.proeng.2015.08.1099.
  • Zisook, R. E., B. D. Simmons, M. Vater, A. Perez, E. P. Donovan, D. J. Paustenbach, and W. D. Cyrs. 2020. Emissions associated with operations of four different additive manufacturing or 3D printing technologies. J Occup Environ Hyg 17 (10):464–79. doi:10.1080/15459624.2020.1798012.
  • Zontek, T. L., B. R. Ogle, J. T. Jankovic, and S. M. Hollenbeck. 2017. An exposure assessment of desktop 3D printing. Journal of Chemical Health and Safety 24 (2):15–25. doi:10.1016/j.jchas.2016.05.008.
  • Zontek, T. L., S. Hollenbeck, J. Jankovic, and B. R. Ogle. 2019. Modeling particle emissions from three-dimensional printing with acrylonitrile-butadiene-styrene polymer filament. Environ. Sci. Technol. 53 (16):9656–63. doi:10.1021/acs.est.9b02818.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.