313
Views
0
CrossRef citations to date
0
Altmetric
Review

Identification of effective control technologies for additive manufacturing

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aluri, M., B. Monami, B. S. Raj, and R. S. Mamilla. 2021. Review on particle emissions during fused deposition modeling of acrylonitrile butadiene styrene and polylactic acid polymers. Mater. Today Proc. 44: 1375–83. doi: 10.1016/j.matpr.2020.11.521.
  • Azimi, P., D. Zhao, C. Pouzet, N. E. Crain, and B. Stephens. 2016. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ. Sci. Technol. 50:1260–68. doi:10.1021/acs.est.5b04983.
  • Azzougagh, M. N., F. X. Keller, E. Cabrol, M. Cici, and J. Pourchez. 2021. Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy. J. Occup. Environ. Hyg 18:223–36. doi:10.1080/15459624.2021.1909055.
  • Bau, S., D. Rousset, R. Payet, and F. X. Keller. 2020. Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles. J. Occup. Environ. Hyg 17:59–72. doi:10.1080/15459624.2019.1696969.
  • Cao, M., F. Gu, C. Rao, J. Fu, and P. Zhao. 2019. Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5. Sci. Total Environ 666:1011–21. doi:10.1016/j.scitotenv.2019.02.207.
  • Cao, L. N. Y., and D. Y. H. Pui. 2020. Real-time measurements of the particle geometric surface area by the weighted-sum method on a university campus. Aerosol Air Qual. Res. 20:1569–81. doi:10.4209/aaqr.2019.12.0621.
  • Chan, F. L., R. House, I. Kudla, J. C. Lipszyc, N. Rajaram, and S. M. Tarlo. 2018. Health survey of employees regularly using 3D printers. Occup. Med (Lond) 68:211–14. doi:10.1093/occmed/kqy042.
  • Chan, F. L., C.-Y. Hon, S. M. Tarlo, N. Rajaram, and R. House. 2020. Emissions and health risks from the use of 3D printers in occupational settings. J. Toxicol. Environ. Health Part A . 83:279–87. doi:10.1080/15287394.2020.1751758.
  • Chang, T. Y., L. J. Lee, J. D. Wang, R. H. Shie, and C. C. Chan. 2004. Occupational risk assessment on allergic contact dermatitis in a resin model making process. J Occup Health 46:148–52. doi:10.1539/joh.46.148.
  • Chen, R., H. Yin, I. S. Cole, S. Shen, X. Zhou, Y. Wang, and S. Tang. 2020. Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: A review. Chemosphere 259:127452. doi:10.1080/15287394.2020.1751758.
  • Cheng, Y. L., L. C. Zhang, F. Chen, and Y. H. Tseng. 2018. Particle emissions of material-extrusion-type desktop 3D printing: The effects of infill. Int. J. Precis. Eng. Manuf. Green Technol. 5:487–97. doi:10.1007/s40684-018-0052-3.
  • Creytens, K., L. Gilissen, S. Huygens, and A. Goossens. 2017. A new application for epoxy resins resulting in occupational allergic contact dermatitis: The three-dimensional printing industry. Contact. Derm. 77:349–51. doi:10.1111/cod.12840.
  • Davis, A. Y., Q. Zhang, J. P. S. Wong, R. J. Weber, and M. S. Black. 2019. Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Build. Environ. 160:106209. doi:10.1016/j.buildenv.2019.106209.
  • De Almeida, M. M. F., H. H. W. Henning, P. F. Da Costa, J. Malda, S. Le Gac, F. Bray, M. B. M. Van Duursen, J. F. Brouwers, C. H. A. Van De Lest, I. Bertijn, et al. 2018. Potential health and environmental risks of three-dimensional engineered polymers. Environ. Sci. Technol. Lett. 5:80–85. doi:10.1021/acs.estlett.7b00495.
  • Deng, Y., S. J. Cao, A. Chen, and Y. Guo. 2016. The impact of manufacturing parameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction. Build. Environ. 104:311–19. doi:10.1016/j.buildenv.2016.05.021.
  • Ding, S., and B. F. Ng. 2021. Particle emission levels in the user operating environment of powder, ink and filament-based 3D printers. Rapid Prototyping J. 27:1124–32. doi:10.1108/RPJ-02-2020-0039.
  • Du Preez, S., A. Johnson, R. F. LeBouf, S. J. L. Linde, A. B. Stefaniak, and J. Du Plessis. 2018. Exposures during industrial 3-D printing and post-processing tasks. Rapid Prototyping J. 24:865–71. doi:10.1108/RPJ-03-2017-0050.
  • Dugheri, S., G. Cappelli, L. Trevisani, S. Kemble, F. Paone, M. Rigacci, E. Bucaletti, S. Squillaci, N. Mucci, and G. Arcangeli. 2022. A qualitative and quantitative occupational exposure risk assessment to hazardous substances during powder-bed fusion processes in metal-additive manufacturing. AGRIS. 8:32. oai:mdpi.com: 1660-4601/19/9/4996.
  • Dunn, K. L., D. Hammond, K. Menchaca, G. Roth, and K. H. Dunn. 2020. Reducing ultrafine particulate emission from multiple 3D printers in an office environment using a prototype engineering control. J. Nanopart. Res 22:112. doi:10.1007/s11051-020-04844-4.
  • Farcas, M. T., A. B. Stefaniak, A. K. Knepp, L. Bowers, W. K. Mandler, M. Kashon, S. R. Jackson, T. A. Stueckle, J. D. Sisler, S. A. Friend, et al. 2019. Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) filaments three-dimensional (3-D) printer emissions-induced cell toxicity. Toxicol. Lett. 317:1–12. doi:10.1016/j.toxlet.2019.09.013.
  • Farcas, M. T., W. McKinney, C. Qi, K. W. Mandler, L. Battelli, S. A. Friend, A. B. Stefaniak, M. Jackson, M. Orandle, A. Winn, et al. 2020. Pulmonary and systemic toxicity in rats following inhalation exposure of 3-D printer emissions from acrylonitrile butadiene styrene (ABS) filament. Inhal Toxicol 32:403–18. doi:10.1080/08958378.2020.1834034.
  • Ford, S. 2014. Additive manufacturing technology: Potential implications for U.S. manufacturing competitiveness. J. Int. Commer. Econ. Policy 6:40–74.
  • Graff, P., B. Ståhlbom, E. Nordenberg, A. Graichen, P. Johansson, and H. Karlsson. 2017. Evaluating measuring techniques for occupational exposure during additive manufacturing of metals: A pilot study. J. Ind. Ecol. 21:S120–S129. doi:10.1111/jiec.12498.
  • Gu, J., M. Wensing, E. Uhde, and T. Salthammer. 2019. Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environ. Int 123:476–85. doi:10.1016/j.envint.2018.12.014.
  • Gumperlein, I., E. Fischer, G. Dietrich-Gumperlein, S. Karrasch, D. Nowak, R. A. Jorres, and R. Schierl. 2018. Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: An experimental exposure study in human volunteers. Indoor Air 28:611–23. doi:10.1111/ina.12458.
  • Han, M., J. Zhao, and L. Li. 2021. Emissions of volatile organic compounds from 4D printing and associated control strategies towards workplace safety. Proceedings of ASME 2021: 16th International Manufacturing Science and Engineering Conference. doi: 10.1115/MSEC2021-63540.
  • Hayes, A. C., J. Osio-Norgaard, S. Miller, G. L. Whiting, and M. E. Vance. 2021. Air pollutant emissions from multi jet fusion, material-jetting, and digital light synthesis commercial 3D printers in a service bureau. Build. Environ. 202:108008. doi:10.1016/j.buildenv.2021.108008.
  • House, R., N. Rajaram, and S. M. Tarlo. 2017. Case report of asthma associated with 3D printing. Occup. Med (Lond) 67:652–54. doi:10.1093/occmed/kqx129.
  • HSE. 2019. Measuring and controlling emissions from polymer filament desktop 3D printers. Buxton, UK: Health and Safety Executive.
  • ISO/ASTM. 2015. 52900: Additive manufacturing — General principles — Terminology. Geneva, Switzerland: ISO.
  • Jiang, Q., Y. Xu, M. Chen, Q. Meng, and C. Zhang. 2021. Modification of the wood-plastic composite for enhancement of formaldehyde clearance and the 3D printing application. J. Appl. Polym. Sci. 138:49683. doi:10.1002/app.49683.
  • Karayannis, P., F. Petrakli, A. Gkika, and E. P. Koumoulos. 2019. 3D-printed lab-on-a-chip diagnostic systems-developing a safe-by-design manufacturing approach. Micromachines 10:825. doi:10.3390/mi10120825.
  • Katz, E. F., J. D. Goetz, C. Wang, J. L. Hart, B. Terranova, M. L. Taheri, M. S. Waring, and P. F. DeCarlo. 2020. Chemical and physical characterization of 3D printer aerosol emissions with and without a filter attachment. Environ. Sci. Technol. 54:947–54. doi:10.1021/acs.est.9b04012.
  • Khaki, S., E. Duffy, A. F. Smeaton, and A. Morrin. 2021. Monitoring of particulate matter emissions from 3d printing activity in the home setting. Sensors 21:3247. doi:10.3390/s21093247.
  • Kumar, P., A. Robins, S. Vardoulakis, and R. Britter. 2010. A review of the characteristics of nanoparticles in urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ. 44:5035–52. doi:10.1016/j.atmosenv.2010.08.016.
  • Kwon, O., C. Yoon, S. Ham, J. Park, J. Lee, D. Yoo, and Y. Kim. 2017. Characterization and control of nanoparticle emission during 3D printing. Environ. Sci. Technol. 51:10357–68. doi:10.1021/acs.est.7b01454.
  • Leso, V., M. L. Ercolano, I. Mazzotta, M. Romano, F. Cannavacciuolo, and I. Iavicoli. 2021. Three-dimensional (3D) printing: Implications for risk assessment and management in occupational settings. Ann. Work Exposures Health 65:617–34. doi:10.1093/annweh/wxaa146.
  • Lewinski, N. A., L. E. Secondo, and J. K. Ferri. 2019. On-site three-dimensional printer aerosol hazard assessment: Pilot study of a portable in vitro exposure cassette. Process Saf. Prog 38:e12030. doi:10.1002/prs.12030.
  • Lim, J. X. Y., and Q. C. Pham. 2021. Automated post-processing of 3D-printed parts: Artificial powdering for deep classification and localisation. Virtual. Phys. Prototyp 16:333–46. doi:10.1080/17452759.2021.1927762.
  • López De Ipiña, J. M., C. Vaquero, A. Egizabal, A. Patelli, and L. Moroni. 2021. Safe-by-design strategies applied to scaffold hybrid manufacturing. Journal of Physics: Conference Series, Grenoble, France, 1953: 012009. doi: 10.1088/1742-6596/1953/1/012009.
  • MacCuspie, R. I., W. C. Hill, D. R. Hall, A. Korchevskiy, C. D. Strode, A. J. Kennedy, M. L. Ballentine, T. Rycroft, and M. S. Hull. 2021. Prevention through design: Insights from computational fluid dynamics modeling to predict exposure to ultrafine particles from 3D printing. J. Toxicol. Environ. Health Part A . 84:458–74. doi:10.1080/15287394.2021.1886210.
  • Macdonald, N. P., F. Zhu, C. J. Hall, J. Reboud, P. S. Crosier, E. E. Patton, D. Wlodkowic, and J. M. Cooper. 2016. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab. Chip 16:291–97. doi:10.1039/c5lc01374g.
  • Mendes, L., A. Kangas, K. Kukko, B. Mølgaard, A. Säämänen, T. Kanerva, I. Flores Ituarte, M. Huhtiniemi, H. Stockmann-Juvala, J. Partanen, et al. 2017. Characterization of emissions from a desktop 3D printer. J. Ind. Ecol. 21 (Suppl1):S94–S106. doi:10.1111/jiec.12569.
  • Minetola, P., M. S. Khandpur, L. Iuliano, F. Calignano, M. Galati, and L. Fontana. 2022. In-situ monitoring for open low-cost 3D printing. In Lecture notes in mechanical engineering, ed. R. K. Argawal, 49–56. Singapore: Springer Nature Singapore Pte Ltd. doi:10.1007/978-981-16-3934-0_7.
  • Mylläri, V., S. Hartikainen, V. Poliakova, R. Anderson, I. Jönkkäri, P. Pasanen, M. Andersson, and J. Vuorinen. 2016. Detergent impurity effect on recycled HDPE: Properties after repetitive processing. J. Appl. Polym. Sci. 133:43766–43766. doi:10.1022/app.43766.
  • NIOSH. Hierarchy of Controls 2015 [cited September 22, 2021. Available from https://www.cdc.gov/niosh/topics/hierarchy/default.html.
  • Oberbek, P., P. Kozikowski, K. Czarnecka, P. Sobiech, S. Jakubiak, and T. Jankowski. 2019. Inhalation exposure to various nanoparticles in work environment—contextual information and results of measurements. J. Nanopart. Res 21:222. doi:10.1007/s11051-019-4651-x.
  • Oddone, E., R. Pernetti, M. L. Fiorentino, E. Grignani, D. Tamborini, G. Alaimo, F. Auricchio, B. Previtali, and M. Imbriani. 2021. Particle measurements of metal additive manufacturing to assess working occupational exposures: A comparative analysis of selective laser melting, laser metal deposition and hybrid laser metal deposition. Ind. Health. Advpub. doi:10.2486/indhealth.2021-0114.
  • Oskui, S. M., G. Diamante, C. Liao, W. Shi, J. Gan, D. Schlenk, and W. H. Grover. 2016. Assessing and reducing the toxicity of 3D-printed parts. Environ. Sci. Technol. Lett. 3:1–6. doi:10.1021/acs.estlett.5b00249.
  • Petretta, M., G. Desando, B. Grigolo, and L. Roseti. 2019. 3D printing of musculoskeletal tissues: Impact on safety and health at work. J. Toxicol. Environ. Health Part A . 82:891–912. doi:10.1080/15287394.2019.1663458.
  • Popov, V. K., A. V. Evseev, A. L. Ivanov, V. V. Roginski, A. I. Volozhin, and S. M. Howdle. 2004. Laser stereolithography and supercritical fluid processing for custom-designed implant fabrication. J Mater Sci Mater Med 15:123–28. doi:10.1023/B:JMSM.0000011812.08185.2a.
  • Potter, P. M., S. R. Al-Abed, D. Lay, and S. M. Lomnicki. 2019. VOC emissions and formation mechanisms from carbon nanotube composites during 3Dprinting. Environ. Sci. Technol. 53:4364–70. doi:10.1021/acs.est.9b00765.
  • Runstrom Eden, G., H. Tinnerberg, L. Rosell, R. Moller, A. C. Almstrand, and A. Bredberg. 2022. Exploring methods for surveillance of occupational exposure from additive manufacturing in four different industrial facilities. Ann. Work Exposures Health 66:163–77. doi:10.1093/annweh/wxab070.
  • Secondo, L. E., H. I. Adawi, J. Cuddehe, K. Hopson, A. Schumacher, L. Mendoza, C. Cartin, and N. A. Lewinski. 2020. Comparative analysis of ventilation efficiency on ultrafine particle removal in university makerspaces. Atmos. Environ. 224:117321. doi:10.1016/j.atmosenv.2020.117321.
  • Simon, T. R., W. J. Lee, B. E. Spurgeon, B. E. Boor, and F. Zhao. 2018. An experimental study on the energy consumption and emission profile of fused deposition modeling process. Procedia Manuf. 26:920–28. doi:10.1016/j.promfg.2018.07.119.
  • Singh, A. V., R. S. Maharjan, H. Jungnickel, H. Romanowski, Y. U. Hachenberger, P. Reichardt, F. Bierkandt, K. Siewert, A. Gadicherla, P. Laux, et al. 2021. Evaluating particle emissions and toxicity of 3D pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain. Chem. Eng. 9:11724–37. doi:10.1021/acssuschemeng.1c02589.
  • Stefaniak, A. B., R. F. LeBouf, M. G. Duling, J. Yi, A. B. Abukabda, C. R. McBride, and T. R. Nurkiewicz. 2017a. Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction. Toxicol. Appl. Pharmacol 335:1–5. doi:10.1016/j.taap.2017.09.016.
  • Stefaniak, A. B., R. F. LeBouf, J. Yi, J. E. Ham, T. R. Nurkewicz, D. E. Schwegler-Berry, B. T. Chen, J. R. Wells, M. G. Duling, R. B. Lawrence, et al. 2017b. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional printer. J. Occup. Environ. Hyg 14:540–50. doi:10.1080/15459624.2017.1302589.
  • Stefaniak, A. B., A. R. Johnson, S. du Preez, D. R. Hammond, J. R. Wells, J. E. Ham, R. F. LeBouf, S. B. Martin, Jr., M. G. Duling, L. N. Bowers, et al. 2019a. Insights into emissions and exposures from use of industrial-scale additive manufacturing machines. Saf Health Work 10:229–36. doi:10.1016/j.shaw.2018.10.003.
  • Stefaniak, A. B., A. R. Johnson, S. du Preez, D. R. Hammond, J. R. Wells, J. E. Ham, R. F. LeBouf, K. W. Menchaca, M. G. D. S. B. Martin Jr, L. N. Bowers, et al. 2019b. Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printers. J. Chem. Health Saf. 26:19–30. doi:10.1016/j.jchas.2018.11.001.
  • Stefaniak, A. B., S. Du Preez, and J. L. Du Plessis. 2021a. Additive manufacturing for occupational hygiene: A comprehensive review of processes, emissions, and exposures. J. Toxicol. Environ. Health B 24:173–222. doi:10.1080/10937404.2021.1936319.
  • Stefaniak, A. B., L. N. Bowers, G. Cottrell, E. Erdem, A. K. Knepp, S. B. Martin, Jr., J. Pretty, M. G. Duling, E. D. Arnold, Z. Wilson, et al. 2021b. Use of 3-dimensional printers in educational settings: The need for awareness of the effects of printer temperature and filament type on contaminant releases. ACS Chem. Health Saf. 28:444–56. doi:10.1021/acs.chas.1c00041.
  • Stefaniak, A. B., L. Bowers, S. B. Martin, J., . D. Hammond, J. E. Ham, J. R. Wells, A. R. Fortner, A. K. Knepp, S. du Preez, J. Pretty, et al. 2021c. Large format additive manufacturing and machining using High melt temperature polymers. Part I: Real-time particulate and gas-phase eissions. ACS Chem. Health Saf. 28:190–200. doi:10.1021/acs.chas.0c00128.
  • Stefaniak, A. B., L. N. Bowers, G. Cottrell, E. Erdem, A. K. Knepp, S. B. Martin, Jr., J. Pretty, M. G. Duling, E. D. Arnold, Z. Wilson, et al. 2022. Towards sustainable additive manufacturing: The need for awareness of particle and vapor releases during polymer recycling, making filament, and fused filament fabrication 3-D printing. Resour. Conserv. Recycl. 176:105911. doi:10.1016/j.resconrec.2021.105911.
  • Stephens, B., P. Azimi, Z. El Orch, and T. Ramos. 2013. Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79:334–39. doi:10.1016/j.atmosenv.2013.06.050.
  • Väisänen, A. J. K., L. Alonen, S. Ylönen, I. Lyijynen, and M. Hyttinen. 2021. The impact of thermal reprocessing of 3D printable polymers on their mechanical performance and airborne pollutant profiles. J. Polym. Res 28:436. doi:10.1007/s10965-021-02723-7.
  • Väisänen, A., L. Alonen, S. Ylönen, and M. Hyttinen. 2022. Organic compound and particle emissions of additive manufacturing with photopolymer resins and chemical outgassing of manufactured resin products. J. Toxicol. Environ. Health Part A . 85:198–216. doi:10.1080/15287394.2021.1998814.
  • Vallabani, N. V. S., A. Alijagic, A. Persson, I. Odnevall, E. Sarndahl, and H. L. Karlsson. 2022. Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models. Toxicology 467:153100. doi:10.1016/j.tox.2022.153100.
  • Viitanen, A. K., S. Uuksulainen, A. J. Koivisto, K. Hämeri, and T. Kauppinen. 2017. Workplace measurements of ultrafine particles - A literature review. Ann. Work Exposures Health 61:749–58. doi:10.1093/annweh/wxx049.
  • Viitanen, A. K., K. Kallonen, K. Kukko, T. Kanerva, E. Saukko, T. Hussein, K. Hämeri, and A. Säämänen. 2021. Technical control of nanoparticle emissions from desktop 3D printing. Indoor Air 31:1061–71. doi:10.1111/ina.12791.
  • Westphal, E., and H. Seitz. 2021. A machine learning method for defect detection and visualization in selective laser sintering based on convolutional neural networks. Addit. Manuf. 41:101965. doi:10.1016/j.addma.2021.102535.
  • Wilkins, D. F., M. J. Traum, and J. G. Wilkins-Earley. 2020. Teaching space-borne recycling to middle school students via 3d printing – Managing classroom air quality. AIAA Scitech 1:1–14. doi:10.2514/6.2020-0330.
  • Wojnowski, W., K. Kalinowska, J. Gębicki, and B. Zabiegała. 2020. Monitoring the BTEX volatiles during 3D printing with acrylonitrile butadiene styrene (ABS) using electronic nose and proton transfer reaction mass spectrometry. Sensors (Basel) 20:5531. doi:10.3390/s20195531.
  • Wojtyła, S., K. Śpiewak, and T. Baran. 2020. Synthesis, characterization and activity of doped graphitic carbon nitride materials towards photocatalytic oxidation of volatile organic pollutants emitted from 3D printer. J. Photochem. Photobiol. A Chem 391:112355. doi:10.1016/j.jphotochem.2020.112355.
  • Yang, Y., and L. Li. 2018. Total volatile organic compound emission evaluation and control for stereolithography additive manufacturing process. J. Clean. Prod. 170:1268–78. doi:10.1016/j.jclepro.2017.09.193.
  • Yi, J., R. F. LeBouf, M. G. Duling, T. R. Nurkiewicz, B. T. Chen, D. Schwegler-Berry, M. A. Virji, and A. B. Stefaniak. 2016. Emission of particulate matter from a desktop three-dimensional (3-D) printer. J. Toxicol. Environ. Health Part A . 79:453–65. doi:10.1080/15287394.2016.1166467.
  • Zhang, Y., W. Jarosinski, Y.-G. Jung, and J. Zhang. 2018. Additive manufacturing processes and equipment. In Additive manufacturing, ed. J. Zhang, and Y.-G. Jung, 39–51. Oxford: Butterworth-Heinemann.
  • Zhang, Q., M. Pardo, Y. Rudich, I. Kaplan-Ashiri, J. P. S. Wong, A. Y. Davis, M. S. Black, and R. J. Weber. 2019. Chemical composition and toxicity of particles emitted from a consumer-level 3D printer using various materials. Environ. Sci. Technol. 53:12054–61. doi:10.1021/acs.est.9b04168.
  • Zhou, Y., X. Kong, A. Chen, and S. Cao. 2015. Investigation of ultrafine particle emissions of desktop 3D printers in the clean room. Procedia Eng. 121:506–12. doi:10.1016/j.proeng.2015.08.1099.
  • Zontek, T. L., B. R. Ogle, J. T. Jankovic, and S. M. Hollenbeck. 2017. An exposure assessment of desktop 3D printing. J. Chem. Health Saf. 24:15–25. doi:10.1016/j.jchas.2016.05.008.
  • Zontek, T. L., N. Scotto, and S. Hollenbeck. 2021. Controls for university fabrication laboratories - Best practices for health and safety. J. Chem. Health Saf. 28:119–28. doi:10.1021/acs.chas.0c00093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.