4,216
Views
4
CrossRef citations to date
0
Altmetric
Review

Pulmonary effects of e-liquid flavors: a systematic review

, , , &

References

  • Aguilar, P. R., A. P. Michelson, and W. Isakow. 2016. Obliterative bronchiolitis. Transplantation 100:272–83. doi:10.1097/TP.0000000000000892.
  • Aherrera, A., P. Olmedo, M. Grau-Perez, S. Tanda, W. Goessler, S. Jarmul, R. Chen, J. E. Cohen, A. M. Rule, and A. Navas-Acien. 2017. The association of e-cigarette use with exposure to nickel and chromium: A preliminary study of non-invasive biomarkers. Environ. Res 159:313–20. doi:10.1016/j.envres.2017.08.014.
  • Allen, J. G., S. S. Flanigan, M. LeBlanc, J. Vallarino, P. MacNaughton, J. H. Stewart, and D. C. Christiani. 2016. Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes. Environ. Health Perspect. 124 (6):733–39. doi:10.1289/ehp.1510185.
  • Arman, S., and S. İşisağ Üçüncü. 2020. Cardiac toxicity of acrolein exposure in embryonic zebrafish (Danio rerio). Environ. Sci. Pollut. Res 27 (18):22423–33. doi:10.1007/s11356-020-08853-7.
  • Asaduzzaman Khan, M., M. Tania, D. Zhang, and H. Chen. 2010. Antioxidant enzymes and cancer. Chin. J. Cancer Res. 22 (2):87–92. doi:10.1007/s11670-010-0087-7.
  • ASH. 2020. E-cigarette use decreases as evidence as evidence shows they increase smokers’ chances of quitting. https://ash.org.uk/media-centre/news/press-releases/e-cigarette-use-decreases-as-evidence-shows-they-increase-smokers-chances-of-quitting
  • ASH. 2021. Use of e-cigarettes (vapes) among adults in Great Britain. https://ash.org.uk/uploads/Use-of-e-cigarettes-vapes-among-adults-in-Great-Britain-2021.pdf
  • ASH. 2022. Fears of growth in children vaping disposables backed up by new national survey. https://ash.org.uk/uploads/Use-of-e-cigarettes-among-young-people-in-Great-Britain-2022.pdf?v=1661866458
  • Azzopardi, D., K. Patel, T. Jaunky, S. Santopietro, O. M. Camacho, J. McAughey, and M. Gaça. 2016. Electronic cigarette aerosol induces significantly less cytotoxicity than tobacco smoke. Toxicol. Mech. Meth 26 (6):477–91. doi:10.1080/15376516.2016.1217112.
  • Badea, M., O. P. Luzardo, A. González-Antuña, M. Zumbado, L. Rogozea, L. Floroian, D. Alexandrescu, M. Moga, L. Gaman, M. Radoi 2018. Body burden of toxic metals and rare earth elements in non-smokers, cigarette smokers and electronic cigarette users. Environ. Res 166:269–75. doi:10.1016/j.envres.2018.06.007.
  • Bahl, V., S. Lin, N. Xu, B. Davis, Y. Wang, and P. Talbot. 2012. Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models. Reprod. Toxicol 34 (4):529–37. doi:10.1016/j.reprotox.2012.08.001.
  • Behar, R. Z., B. Davis, Y. Wang, V. Bahl, S. Lin, and P. Talbot. 2014. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol. in Vitro 28 (2):198–208. doi:10.1016/j.tiv.2013.10.006.
  • Behar, R. Z., W. Luo, K. J. McWhirter, J. F. Pankow, and P. Talbot. 2018a. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Sci. Rep 8 (1):8288. doi:10.1038/s41598-018-25575-6.
  • Behar, R. Z., Y. Wang, and P. Talbot. 2018b. Comparing the cytotoxicity of electronic cigarette fluids, aerosols and solvents. Tob. Control 27 (3):325–33. doi:10.1136/tobaccocontrol-2016-053472.
  • Bekki, K., S. Uchiyama, K. Ohta, Y. Inaba, H. Nakagome, and N. Kunugita. 2014. Carbonyl compounds generated from electronic cigarettes. Int. J. Environ. Res. Public Health 11 (11):11192–200. doi:10.3390/ijerph111111192.
  • Bengalli, R., E. Ferri, M. Labra, and P. Mantecca. 2017. Lung toxicity of condensed aerosol from E-CIG liquids: Influence of the flavor and the in vitro model used. Int. J. Environ. Res Public Health 14 (10):1254. doi:10.3390/ijerph14101254.
  • Berkelhamer, S. K., J. M. Helman, S. F. Gugino, N. J. Leigh, S. Lakshminrusimha, and M. L. Goniewicz. 2019. In vitro consequences of electronic-cigarette flavoring exposure on the immature lung. Int J Environ Res Public Health 16 (19):3635. doi:10.3390/ijerph16193635.
  • Bhatnagar, A. 2016. E-Cigarettes and cardiovascular disease risk: Evaluation of evidence, policy implications, and recommendations. Curr. Cardiovasc. Risk Rep 10 (7):24. doi:10.1007/s12170-016-0505-6.
  • Blanc-Lapierre, A., J.-F. Sauvé, and M.-E. Parent. 2018. Occupational exposure to benzene, toluene, xylene and styrene and risk of prostate cancer in a population-based study. Occup. Environ. Med 75 (8):562–72. doi:10.1136/oemed-2018-105058.
  • Bracken-Clarke, D., D. Kapoor, A. M. Baird, P. J. Buchanan, K. Gately, S. Cuffe, and S. P. Finn. 2021. Vaping and lung cancer-A review of current data and recommendations. Lung Cancer 153:11–20. doi:10.1016/j.lungcan.2020.12.030.
  • Buist, A. S., W. M. Vollmer, and M. A. McBurnie. 2008. Worldwide burden of COPD in high- and low-income countries. Part I. The burden of obstructive lung disease (BOLD) initiative. Int. J. Tuberc. Lung Dis 12 (7):703–08.
  • Burgwardt, S., A. Huskic, G. Schwartz, D. P. Mason, L. Tapias, and E. Podgaetz. 2020. Spontaneous pneumomediastinum secondary to electronic cigarette use. Baylor Univ Med Center Proc 33 (2):229–30. doi:10.1080/08998280.2020.1717407.
  • Bush, L. P., M. Cui, H. Shi, H. R. Burton, F. Fannin, L. Lei, and N. Dye. 2001. Formation of tobacco-specific nitrosamines in air-cured tobacco. Rec. Adv. Tob. Sci 27:23–46.
  • Cervellati, F., X. M. Muresan, C. Sticozzi, R. Gambari, G. Montagner, H. J. Forman, C. Torricelli, E. Maioli, and G. Valacchi. 2014. Comparative effects between electronic and cigarette smoke in human keratinocytes and epithelial lung cells. Toxicology in Vitro 28 (5):999–1005. doi:10.1016/j.tiv.2014.04.012.
  • Chapman, D. G., D. T. Casey, J. L. Ather, M. Aliyeva, N. Daphtary, K. G. Lahue, J. L. van der Velden, Y. M. W. Janssen-Heininger, and C. G. Irvin. 2019. The effect of flavored e-cigarettes on murine allergic airways disease. Sci. Rep 9 (1):13671. doi:10.1038/s41598-019-50223-y.
  • Chernyavsky, A. I., I. B. Shchepotin, V. Galitovkiy, and S. A. Grando. 2015. Mechanisms of tumor-promoting activities of nicotine in lung cancer: Synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors. BMC Cancer 15 (1):152. doi:10.1186/s12885-015-1158-4.
  • Chung-man Ho, J., S. Zheng, S. A. Comhair, C. Farver, and S. C. Erzurum. 2001. Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res. 61 (23):8578–85.
  • Chun, L. F., F. Moazed, C. S. Calfee, M. A. Matthay, and J. E. Gotts. 2017. Pulmonary toxicity of e-cigarettes. Am. J. Physiol Lung Cell. Mol. Physiol 313 (2):L193–L206. doi:10.1152/ajplung.00071.2017.
  • Clapp, P. W., K. S. Lavrich, C. A. van Heusden, E. R. Lazarowski, J. L. Carson, and I. Jaspers. 2019. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am. J. Physiol Lung Cell. Mol. Physiol 316 (3):L470–L486. doi:10.1152/ajplung.00304.2018.
  • Clapp, P. W., E. A. Pawlak, J. T. Lackey, J. E. Keating, S. L. Reeber, G. L. Glish, and I. Jaspers. 2017. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am. J. Physiol Lung Cell. Mol. Physiol 313 (2):L278–L292. doi:10.1152/ajplung.00452.2016.
  • CORESTA. 2015. E-cigarette task force technical report, 2014 electronic cigarette aerosol parameters study. https://www.coresta.org/2014-electronic-cigarette-aerosol-parameters-study-29232.html
  • Czekala, L., L. Simms, M. Stevenson, E. Trelles-Sticken, P. Walker, and T. Walele. 2019. High content screening in NHBE cells shows significantly reduced biological activity of flavoured e-liquids, when compared to cigarette smoke condensate. Toxicol. in Vitro 58:86–96. doi:10.1016/j.tiv.2019.03.018.
  • Dani, J. A. 2015. Neuronal and nicotinic acteylcholine receptor structure and function and response to nicotine. Int. Rev. Neurobiol. 124:3–19.
  • Dasgupta, P. 2006. Nicotine induces cell proliferation by β-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J. Clin Invest 116 (8):2208–17. doi:10.1172/JCI28164.
  • DeJarnett, N. D. J. C., D. W. Riggs, J. A. Myers, T. E. O’Toole, S. Wagner, S. Wagner, S. Wagner, A. Chugh, K. S. Ramos, S. Srivastava 2014. Acrolein exposure is associated with increased cardiovascular disease risk. J. Am. Heart Association 3 (4):e000934. doi:10.1161/JAHA.114.000934.
  • Del Olmo, A., J. Calzada, and M. Nuñez. 2017. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Crit Rev. Food Sci. Nutri 57 (14):3084–103. doi:10.1080/10408398.2015.1087964.
  • Doll, R., R. Peto, J. Boreham, and I. Sutherland. 2005. Mortality from cancer in relation to smoking: 50 years observations on British doctors. Br. J. Cancer 92 (3):426–29. doi:10.1038/sj.bjc.6602359.
  • Duell, A. K., J. F. Pankow, and D. H. Peyton. 2020. Nicotine in tobacco product aerosols: ‘It’s déjà vu all over again. Tob. Control 29 (6):656–62. doi:10.1136/tobaccocontrol-2019-055275.
  • El-Zayadi, A.-R. 2006. Heavy smoking and liver. World J. Gastroenterol. 12 (38):6098–101. doi:10.3748/wjg.v12.i38.6098.
  • Etter, J.-F., E. Zäther, and S. Svensson. 2013. Analysis of refill liquids for electronic cigarettes: E-liquids. Addiction 108 (9):1671–79. doi:10.1111/add.12235.
  • Farsalinos, K., G. Gillman, K. Poulas, and V. Voudris. 2015. Tobacco-specific nitrosamines in electronic cigarettes: Comparison between liquid and aerosol levels. Int. J. Environ. Res. Public Health 12 (8):9046–53. doi:10.3390/ijerph120809046.
  • Farsalinos, K., G. Romagna, D. Tsiapras, S. Kyrzopoulos, A. Spyrou, and V. Voudris. 2013. Impact of flavour variability on electronic cigarette use experience: An internet survey. Int. J. Environ. Res. Public Health 10 (12):7272–82. doi:10.3390/ijerph10127272.
  • FDA. 2012. Reporting harmful and potentially harmful constituents in tobacco products and tobacco smoke under section 904(a)(3) of the Federal food, drug, and cosmetic act. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reporting-harmful-and-potentially-harmful-constituents-tobacco-products-and-tobacco-smoke-under
  • Fedan, J. S., J. A. Dowdy, K. B. Fedan, and A. F. Hubbs. 2006. Popcorn worker’s lung: In vitro exposure to diacetyl, an ingredient in microwave popcorn butter flavoring, increases reactivity to methacholine. Toxicol. Appl. Pharmacol 215 (1):17–22. doi:10.1016/j.taap.2006.02.001.
  • Feron, V. J., H. P. Til, F. de Vrijer, R. A. Woutersen, F. R. Cassee, and P. J. van Bladeren. 1991. Aldehydes: Occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat. Res 259 (3–4):363–85. doi:10.1016/0165-1218(91)90128-9.
  • Fetterman, J. L., R. M. Weisbrod, B. Feng, R. Bastin, S. T. Tuttle, M. Holbrook, G. Baker, R. M. Robertson, D. J. Conklin, A. Bhatnagar, et al. 2018. Flavorings in tobacco products induce endothelial cell dysfunction. Arterioscler. Thromb. Vasc. Biol. 38 (7):1607–15. doi:10.1161/ATVBAHA.118.311156.
  • Frost-Pineda, K., Q. Liang, J. Liu, L. Rimmer, Y. Jin, S. Feng, S. Kapur, P. Mendes, H. Roethig, and M. Sarkar. 2011. Biomarkers of potential harm among adult smokers and nonsmokers in the total exposure study. Nicotine Tob. Res 13 (3):182–93. doi:10.1093/ntr/ntq235.
  • Gallucci, G., A. Tartarone, R. Lerose, A. V. Lalinga, and A. M. Capobianco. 2020. Cardiovascular risk of smoking and benefits of smoking cessation. J. Thorac. Dis 12 (7):3866–76. doi:10.21037/jtd.2020.02.47.
  • Ganguly, K., A. Nordström, T. A. Thimraj, M. Rahman, M. Ramström, S. I. Sompa, E. Z. Lin, F. O’Brien, J. Koelmel, L. Ernstgård 2020. Addressing the challenges of E-cigarette safety profiling by assessment of pulmonary toxicological response in bronchial and alveolar mucosa models. Sci. Rep 10 (1):20460. doi:10.1038/s41598-020-77452-w.
  • Gerloff, J., I. K. Sundar, R. Freter, E. R. Sekera, A. E. Friedman, R. Robinson, T. Pagano, and I. Rahman. 2017. Inflammatory response and barrier dysfunction by different e-cigarette flavoring chemicals identified by gas chromatography–mass spectrometry in e-liquids and e-vapors on human lung epithelial cells and fibroblasts. Applied in vitro Toxicology 3 (1):28–40. doi:10.1089/aivt.2016.0030.
  • Glynos, C., S.-I. Bibli, P. Katsaounou, A. Pavlidou, C. Magkou, V. Karavana, S. Topouzis, I. Kalomenidis, S. Zakynthinos, and A. Papapetropoulos. 2018. Comparison of the effects of e-cigarette vapor with cigarette smoke on lung function and inflammation in mice. Am. J. Physiol Lung Cell. Mol. Physiol 315 (5):L662–L672. doi:10.1152/ajplung.00389.2017.
  • Goniewicz, M. L., J. Knysak, M. Gawron, L. Kosmider, A. Sobczak, J. Kurek, A. Prokopowicz, M. Jablonska-Czapla, C. Rosik-Dulewska, C. Havel 2014a. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 23 (2):133–39. doi:10.1136/tobaccocontrol-2012-050859.
  • Goniewicz, M. L., D. M. Smith, K. C. Edwards, B. C. Blount, K. L. Caldwell, J. Feng, L. Wang 2018. Comparison of nicotine and toxicant exposure in users of electronic cigarettes and combustible cigarettes. J. Am. Medical Association Netw Open 1:e185937. doi:10.1001/jamanetworkopen.2018.5937.
  • Havermans, A., N. Mallock, E. Zervas, S. Caillé-Garnier, T. Mansuy, C. Michel, J. Pennings 2022. Review of industry reports on EU priority tobacco additives Part A: Main outcomes and conclusions. Tob. Prev. Cessation 8:1–18. doi:10.18332/tpc/151529.
  • Hiemstra, P. S., and R. Bals. 2016. Basic science of electronic cigarettes: Assessment in cell culture and in vivo models. Respir. Res. 17 (1):127. doi:10.1186/s12931-016-0447-z.
  • Hoffmann, D., and I. Hoffmann. 1997. The changing cigarette, 1950-1995. J Toxicol Environ Health 50 (4):307–64. doi:10.1080/009841097160393.
  • Hsueh, Y.-M., C.-Y. Lee, S.-N. Chien, W.-J. Chen, H.-S. Shiue, S.-R. Huang, M.-L. Lin, S.-C. Mu, and R.-L. Hsieh. 2017. Association of blood heavy metals with developmental delays and health status in children. Sci Rep 7 (1):43608. doi:10.1038/srep43608.
  • Improgo, M. R., A. R. Tapper, and P. D. Gardner. 2011. Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer. Biochem. Pharmacol 82 (8):1015–21. doi:10.1016/j.bcp.2011.05.020.
  • Jain, R. B. 2019. Concentrations of cadmium, lead, and mercury in blood among US cigarettes, cigars, electronic cigarettes, and dual cigarette-e-cigarette users. Environ. Pollut 251:970–74. doi:10.1016/j.envpol.2019.05.041.
  • Jaishankar, M., T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda. 2014. Toxicity, mechanism, and health effects of some heavy metals. Interdiscip. Toxicol 7 (2):60–72. doi:10.2478/intox-2014-0009.
  • Kavvalakis, M. P., P. D. Stivaktakis, M. N. Tzatzarakis, D. Kouretas, J. Liesivuori, A. K. Alegakis, D. Vynias, and A. M. Tsatsakis. 2015. Multicomponent analysis of replacement liquids of electronic cigarettes using chromatographic techniques. J Anal Toxicol 39 (4):262–69. doi:10.1093/jat/bkv002.
  • Kerasioti, E., A. S. Veskoukis, Z. Skaperda, A. Zacharias, K. Poulas, G. Lazopoulos, and D. Kouretas. 2020. The flavoring and not the nicotine content is a decisive factor for the effects of refill liquids of electronic cigarette on the redox status of endothelial cells. Toxicology Reports 7:1095–102. doi:10.1016/j.toxrep.2020.08.029.
  • Khalil, A. A., M. J. Jameson, W. C. Broaddus, P. S. Lin, and T. D. Chung. 2013. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation. Brain Tumor Pathol 30 (2):73–83. doi:10.1007/s10014-012-0101-5.
  • Khlystov, A., and V. Samburova. 2016. Flavoring compounds dominate toxic aldehyde production during E-cigarette vaping. Environ. Sci. Technol 50 (23):13080–85. doi:10.1021/acs.est.6b05145.
  • Kim, -Y.-Y., M.-K. Kim, and H.-S. Shin. 2022. Determination of volatile organic compounds(VOCs) levels from various smoking cessation aids by using gas chromatography-mass spectrometry methodology. J. Toxicol. Environ. Health Part A 85 (3):110–20. doi:10.1080/15287394.2021.1979436.
  • Kim, H.-J., and H.-S. Shin. 2013. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography–tandem mass spectrometry. J Chromatog A 1291:48–55. doi:10.1016/j.chroma.2013.03.035.
  • Kim, S. A., S. Smith, C. Beauchamp, Y. Song, M. Chiang, A. Giuseppetti, S. Frukhtbeyn, I. Shaffer, J. Wilhide, D. Routkevitch, et al. 2018. Cariogenic potential of sweet flavors in electronic-cigarette liquids. PLoS ONE. 13(9):e0203717. doi:10.1371/journal.pone.0203717.
  • Knezevich, A., J. Muzic, D. K. Hatsukami, S. S. Hecht, and I. Stepanov. 2013. Nornicotine nitrosation in saliva and its relation to endogenous synthesis of N’-nitrosonornicotine in humans. Nicotine Tob. Res 15 (2):591–95. doi:10.1093/ntr/nts172.
  • Krüsemann, E. J. Z., S. Boesveldt, K. de Graaf, and R. Talhout. 2019. An e-liquid flavor wheel: A shared vocabulary based on systematically reviewing e-liquid flavor classifications in literature. Nicotine Tob. Res 21 (10):1310–19. doi:10.1093/ntr/nty101.
  • Lamb, T., T. Muthumalage, and I. Rahman. 2020. Pod-based menthol and tobacco flavored e-cigarettes cause mitochondrial dysfunction in lung epithelial cells. Toxicol. Lett 333:303–11. doi:10.1016/j.toxlet.2020.08.003.
  • Laugesen, M. 2008. Safety Report on the Ruyan® e-cigarette cartridge and inhaled aerosol. http://www.healthnz.co.nz/RuyanCartridgeReport30-Oct-08.pdf
  • Lechasseur, A., S. Altmejd, N. Turgeon, G. Buonanno, L. Morawska, D. Brunet, C. Duchaine, and M. C. Morissette. 2019. Variations in coil temperature/power and e-liquid constituents change size and lung deposition of particles emitted by an electronic cigarette. Physiological Reports 7 (10):e14093. doi:10.14814/phy2.14093.
  • Lee, H.-J., H.-Y. Guo, S.-K. Lee, B.-H. Jeon, C.-D. Jun, S.-K. Lee, M.-H. Park, and E.-C. Kim. 2005. Effects of nicotine on proliferation, cell cycle, and differentiation in immortalized and malignant oral keratinocytes. J. Oral Pathol. Med 34 (7):436–43. doi:10.1111/j.1600-0714.2005.00342.x.
  • Leigh, N. J., R. I. Lawton, P. A. Hershberger, and M. L. Goniewicz. 2016. Flavourings significantly affect inhalation toxicity of aerosol generated from electronic nicotine delivery systems (ENDS). Tob. Control 25 (Suppl 2):ii81. doi:10.1136/tobaccocontrol-2016-053205.
  • Lerner, C. A., I. K. Sundar, H. Yao, J. Gerloff, D. J. Ossip, S. McIntosh, R. Robinson, I. Rahman, and M. F. Khan. 2015. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS ONE 10 (2):e0116732. doi:10.1371/journal.pone.0116732.
  • Leslie, L. J., P. Vasanthi Bathrinarayanan, P. Jackson, J. A. Mabiala Ma Muanda, R. Pallett, C. J. P. Stillman, and L. J. Marshall. 2017. A comparative study of electronic cigarette vapor extracts on airway-related cell lines in vitro. Inhal. Toxicol 29 (3):126–36. doi:10.1080/08958378.2017.1318193.
  • Liao, Q., R. Du, R. Ma, X. Liu, Y. Zhang, Z. Zhang, P. Ji, M. Xiao, Y. Cui, X. Xing 2022. Association between exposure to a mixture of benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) and small airways function: A cross-sectional study. Environ. Res 212:113488. doi:10.1016/j.envres.2022.113488.
  • Lin, A.-H., M.-H. Liu, H.-K. Ko, D.-W. Perng, T.-S. Lee, and Y. R. Kou. 2018. Menthol cigarette smoke induces more severe lung inflammation than non-menthol cigarette smoke does in mice with subchronic exposure – Role of trpm8. Front. Physiol 9:1817. doi:10.3389/fphys.2018.01817.
  • Lucas, J. H., T. Muthumalage, Q. Wang, M. R. Friedman, A. E. Friedman, and I. Rahman. 2020. E-Liquid containing a mixture of coconut, vanilla, and cookie flavors causes cellular senescence and dysregulated repair in pulmonary fibroblasts: Implications on premature aging. Front. Physiol 11:924. doi:10.3389/fphys.2020.00924.
  • Marczylo, T. 2020. How bad are e‐cigarettes? What can we learn from animal exposure models? J. Physiol 598 (22):5073–89. doi:10.1113/JP278366.
  • Margham, J., K. McAdam, M. Forster, C. Liu, C. Wright, D. Mariner, and C. Proctor. 2016. Chemical composition of aerosol from an e-cigarette: A quantitative comparison with cigarette smoke. Chem. Res. Toxicol 29 (10):1662–78. doi:10.1021/acs.chemrestox.6b00188.
  • McGraw, M. D., S.-Y. Kim, C. Reed, E. Hernady, I. Rahman, T. J. Mariani, and J. N. Finkelstein. 2020. Airway basal cell injury after acute diacetyl (2,3-butanedione) vapor exposure. Toxicol. Lett. 325:25–33. doi:10.1016/j.toxlet.2020.02.012.
  • McNeill, A. D., L. S. Brose, R. Calder, L. Bauld, and D. J. Robson. 2018. Evidence review of e-cigarettes and heated tobacco products 2018 : A report commissioned by public health England.
  • Micera, A., B. O. Balzamino, A. D. Zazzo, F. Biamonte, G. Sica, and S. Bonini. 2016. Toll-like receptors and tissue remodeling: The pro/cons recent findings: TLRs and tissue remodeling. J. Cell. Physiol 231 (3):531–44. doi:10.1002/jcp.25124.
  • Mishra, A., P. Chaturvedi, S. Datta, S. Sinukumar, P. Joshi, and A. Garg. 2015. Harmful effects of nicotine. Indian J. Med. Paediatr. Oncol 36 (1):24–31. doi:10.4103/0971-5851.151771.
  • Moazed, F., and C. S. Calfee. 2017. The canary in the coal mine is coughing: Electronic cigarettes and respiratory symptoms in adolescents. Am. J. Respir. Crit. Care Med 195 (8):974–76. doi:10.1164/rccm.201611-2259ED.
  • Mravec, B., M. Tibensky, L. Horvathova, and P. Babal. 2020. E-cigarettes and cancer risk. Cancer Prev Res (Phila) 13 (2):137–44. doi:10.1158/1940-6207.CAPR-19-0346.
  • Muthumalage, T., T. Lamb, M. R. Friedman, and I. Rahman. 2019. E-cigarette flavored pods induce inflammation, epithelial barrier dysfunction, and DNA damage in lung epithelial cells and monocytes. Sci. Rep 9 (1):19035. doi:10.1038/s41598-019-51643-6.
  • Muthumalage, T., M. Prinz, K. O. Ansah, J. Gerloff, I. K. Sundar, and I. Rahman. 2018. Inflammatory and oxidative responses induced by exposure to commonly used e-cigarette flavoring chemicals and flavored e-liquids without nicotine. Front. Physiol 8:1130. doi:10.3389/fphys.2017.01130.
  • National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health, 2014. The health consequences of smoking—50 years of progress. a report of the surgeon general. Centers for Disease Control and Prevention (US).
  • Neczypor, E. W., T. A. Saldaña, M. J. Mears, D. M. Aslaner, Y.-N. H. Escobar, M. W. Gorr, and L. E. Wold. 2022. E-cigarette aerosol reduces left ventricular function in adolescent mice. Circulation 145 (11):868–70. doi:10.1161/CIRCULATIONAHA.121.057613.
  • Noël, A., S. Hansen, A. Zaman, Z. Perveen, R. Pinkston, E. Hossain, R. Xiao, and A. Penn. 2020a. In utero exposures to electronic-cigarette aerosols impair the Wnt signaling during mouse lung development. Am. J. Physiol Lung Cell. Mol. Physiol 318 (4):L705–L722. doi:10.1152/ajplung.00408.2019.
  • Noël, A., E. Hossain, Z. Perveen, H. Zaman, and A. L. Penn. 2020b. Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air–liquid interface. Respir. Res 21 (1):305. doi:10.1186/s12931-020-01571-1.
  • O’Farrell, H. E., R. Brown, Z. Brown, B. Milijevi, Z. D. Ristovski, R. V. Bowman, K. M. Fong, A. Vaughan, and I. A. Yang. 2021. E-cigarettes induce toxicity comparable to tobacco cigarettes in airway epithelium from patients with COPD. Toxicol. in Vitro 75:105204. doi:10.1016/j.tiv.2021.105204.
  • Ogunwale, M. A., M. Li, M. V. Ramakrishnam Raju, Y. Chen, M. H. Nantz, D. J. Conklin, and X.-A. Fu. 2017. Aldehyde detection in electronic cigarette aerosols. Am. Chem Soc Omega 2:1207–14. doi:10.1021/acsomega.6b00489.
  • Omaiye, E. E., K. J. McWhirter, W. Luo, J. F. Pankow, and P. Talbot. 2019b. High-Nicotine electronic cigarette products: Toxicity of JUUL fluids and aerosols correlates strongly with nicotine and some flavor chemical concentrations. Chem. Res. Toxicol. 32 (6):1058–69. doi:10.1021/acs.chemrestox.8b00381.
  • Omaiye, E. E., K. J. McWhirter, W. Luo, P. A. Tierney, J. F. Pankow, and P. Talbot. 2019. High concentrations of flavor chemicals are present in electronic cigarette refill fluids. Sci. Rep 9 (1):2468. doi:10.1038/s41598-019-39550-2.
  • Ooi, B. G., D. Dutta, K. Kazipeta, and N. S. Chong. 2019. Influence of the e-cigarette emission profile by the ratio of glycerol to propylene glycol in e-liquid composition. ACS Omega 4 (8):13338–48. doi:10.1021/acsomega.9b01504.
  • Paradowska-Gorycka, A. 2015. U1-RNP and Toll-like receptors in the pathogenesis of mixed connective tissue disease Part II. Endosomal TLRs and their biological significance in the pathogenesis of mixed connective tissue disease. Reumatologia 53:143–51. doi:10.5114/reum.2015.53136.
  • Park, H.-R., M. O'Sullivan, J. Vallarino, M. Shumyatcher, B. E. Himes, J.-A. Park, D. C. Christiani, J. Allen, and L. Quan. 2019. Transcriptomic response of primary human airway epithelial cells to flavoring chemicals in electronic cigarettes. Sci Rep 9. doi:10.1038/s41598-018-37913-9.
  • Pereira, E. J., L. Sim, H. S. Driver, C. M. Parker, and M. F. Fitzpatrick. 2013. The effect of inhaled menthol on upper airway resistance in humans: A randomized controlled crossover study. Can. Respir. J 20 (1):e1–e4. doi:10.1155/2013/383019.
  • Ping Wu, J. 2019. Nicotine is insufficient as a carcinogen, it’s functions as a tumor promoter on purpose. Am. J. Biomed. Sci. Res 5 (1):47–48. doi:10.34297/AJBSR.2019.05.000872.
  • Pinkston, R., H. Zaman, E. Hossain, A. L. Penn, and A. Noël. 2020. Cell-specific toxicity of short-term JUUL aerosol exposure to human bronchial epithelial cells and murine macrophages exposed at the air–liquid interface. Respir. Res 21 (1):269. doi:10.1186/s12931-020-01539-1.
  • Roe, F. J. C., and D. Wood. 1992. Review: Acetaldehyde and formaldehyde: Is there a cancer risk for man? Indoor Environ 1:8–15. doi:10.1177/1420326X9200100103.
  • Rose, C. S. 2017. Early detection, clinical diagnosis, and management of lung disease from exposure to diacetyl. Toxicology 388:9–14. doi:10.1016/j.tox.2017.03.019.
  • Rowell, T. R., J. E. Keating, B. T. Zorn, G. L. Glish, S. B. Shears, and R. Tarran. 2020. Flavored e-liquids increase cytoplasmic Ca 2+ levels in airway epithelia. American Journal of Physiology-Lung Cellular and Molecular Physiology 318 (2):L226–L241. doi:10.1152/ajplung.00123.2019.
  • Rowell, T. R., S. L. Reeber, S. L. Lee, R. A. Harris, R. C. Nethery, A. H. Herring, G. L. Glish, and R. Tarran. 2017. Flavored e-cigarette liquids reduce proliferation and viability in the CALU3 airway epithelial cell line. Am. J. Physiol Lung Cell. Mol. Physiol 313 (1):L52–L66. doi:10.1152/ajplung.00392.2016.
  • Sabnis, A. S., M. Shadid, G. S. Yost, and C. A. Reilly. 2008. Human lung epithelial cells express a functional cold-sensing TRPM8 variant. Am. J. Respir. Cell Mol. Biol 39 (4):466–74. doi:10.1165/rcmb.2007-0440OC.
  • Sassano, M. F., E. S. Davis, J. E. Keating, B. T. Zorn, T. K. Kochar, M. C. Wolfgang, G. L. Glish, R. Tarran, and C. Khosla. 2018. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol. 16 (3):e2003904. doi:10.1371/journal.pbio.2003904.
  • Schick, S. F., B. C. Blount, P. Jacob, N. A. Saliba, J. T. Bernert, A. El Hellani, P. Jatlow 2017. Biomarkers of exposure to new and emerging tobacco delivery products. Am. J. Physiol. Lung Cell. Mol. Physiol 313 (3):L425–L452. doi:10.1152/ajplung.00343.2016.
  • Schober, W., K. Szendrei, W. Matzen, H. Osiander-Fuchs, D. Heitmann, T. Schettgen, R. A. Jörres, and H. Fromme. 2014. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. Int. J. Hyg. Environ. Health 217 (6):628–37. doi:10.1016/j.ijheh.2013.11.003.
  • Schweitzer, R. J., T. A. Wills, and J. D. Behner. 2017. E-cigarette use and indicators of cardiovascular disease risk. Curr. Epidemiol. Rep 4 (3):248–57. doi:10.1007/s40471-017-0118-8.
  • Shahsavar, A., M. Gajhede, J. S. Kastrup, and T. Balle. 2016. Structural studies of nicotinic acetylcholine receptors: Using acetylcholine-binding protein as a structural surrogate. Basic Clin. Pharmacol. Toxicol 118 (6):399–407. doi:10.1111/bcpt.12528.
  • Sherwood, C. L., and S. Boitano. 2016. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine. Respir. Res. 17 (1):57. doi:10.1186/s12931-016-0369-9.
  • Skjesol, A., M. Yurchenko, K. Bösl, C. Gravastrand, K. E. Nilsen, L. Melsæther Grøvdal, F. Agliano, Patane, F., Lentini, G., Kim, H. et al . 2019. The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathog. 15 (3):e1007684. doi:10.1371/journal.ppat.1007684.
  • Son, Y.-O. 2020. Molecular mechanisms of nickel-induced carcinogenesis. Endocr Metab Immune Disord Drug Targets 20 (7):1015–923. doi:10.2174/1871530319666191125112728.
  • Son, Y., V. Mishin, J. D. Laskin, G. Mainelis, O. A. Wackowski, C. Delnevo, S. Schwander, A. Khlystov, V. Samburova, and Q. Meng. 2019. Hydroxyl radicals in e-cigarette vapor and e-vapor oxidative potentials under different vaping patterns. Chem. Res. Toxicol. 32 (6):1087–95. doi:10.1021/acs.chemrestox.8b00400.
  • Stefaniak, A. B., R. F. LeBouf, A. C. Ranpara, and S. S. Leonard. 2021. Toxicology of flavoring- and cannabis-containing e-liquids used in electronic delivery systems. Pharmacol. Ther. 224:107838. doi:10.1016/j.pharmthera.2021.107838.
  • Sundar, I. K., F. Javed, G. E. Romanos, and I. Rahman. 2016. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts. Oncotarget 7 (47):77196–204. doi:10.18632/oncotarget.12857.
  • Sun, Y., L. W. Oberley, J. H. Elwell, and E. Sierra-Rivera. 1989. Antioxidant enzyme activities in normal and transformed mouse liver cells. Int. J. Cancer 44 (6):1028–33. doi:10.1002/ijc.2910440615.
  • Szafran, B. N., R. Pinkston, Z. Perveen, M. K. Ross, T. Morgan, D. B. Paulsen, A. L. Penn, B. L. F. Kaplan, and A. Noël. 2020. Electronic-cigarette vehicles and flavoring affect lung function and immune responses in a murine model. Int. J. Mol. Sci 21 (17):6022. doi:10.3390/ijms21176022.
  • Talih, S., Z. Balhas, T. Eissenberg, R. Salman, N. Karaoghlanian, A. El Hellani, R. Baalbaki, N. Saliba, and A. Shihadeh. 2015. Effects of user puff topography, device voltage, and liquid nicotine concentration on electronic cigarette nicotine yield: Measurements and model predictions. Nicotine Tob. Res 17 (2):150–57. doi:10.1093/ntr/ntu174.
  • Tierney, P. A., C. D. Karpinski, J. E. Brown, W. Luo, and J. F. Pankow. 2016. Flavour chemicals in electronic cigarette fluids. Tob. Control 25 (e1):e10–e15. doi:10.1136/tobaccocontrol-2014-052175.
  • U.S. Food and Drug Administration. 2009. Summary of results: Laboratory analysis of electronic cigarettes conducted by FDA. http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm173146.htm
  • van Rooy, F. G. B. G. J., J. M. Rooyackers, M. Prokop, R. Houba, L. A. M. Smit, and D. J. J. Heederik. 2007. Bronchiolitis obliterans syndrome in chemical workers producing diacetyl for food flavorings. Am. J. Respir. Crit. Care Med 176 (5):498–504. doi:10.1164/rccm.200611-1620OC.
  • Vestbo, J., S. S. Hurd, A. G. Agustí, P. W. Jones, C. Vogelmeier, A. Anzueto, P. J. Barnes, L. M. Fabbri, F. J. Martinez, M. Nishimura 2013. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med 187 (4):347–65. doi:10.1164/rccm.201204-0596PP.
  • Victoria, S., M. Hein, E. Harrahy, and T. C. King-Heiden. 2022. Potency matters: Impacts of embryonic exposure to nAChR agonists thiamethoxam and nicotine on hatching success, growth and neurobehavior in larval zebrafish. J. Toxicol. Environ. Health Part A 85 (18):767–82. doi:10.1080/15287394.2022.2081641.
  • Voos, N., M. J. Goniewicz, and T. Eissenberg. 2019. What is the nicotine delivery profile of electronic cigarettes. Expert Opin Drug Deliv 16 (11):1193–203. doi:10.1080/17425247.2019.1665647.
  • Wadgave, U., and L. Nagesh. 2016. Nicotine replacement therapy: An overview. Int. J. Health Sci. (Qassim) 10 (3):425–35.
  • Waldum, H. L., O. G. Nilsen, T. Nilsen, H. Rørvik, U. Syversen, A. K. Sandvik, O. A. Haugen, S. H. Torp, and E. Brenna. 1996. Long-term effects of inhaled nicotine. Life Sci. 58 (16):1339–46. doi:10.1016/0024-3205(96)00100-2.
  • Wang, Q., I. K. Sundar, D. Li, J. H. Lucas, T. Muthumalage, S. R. McDonough, and I. Rahman. 2020. E-cigarette-induced pulmonary inflammation and dysregulated repair are mediated by nAChR α7 receptor: Role of nAChR α7 in SARS-CoV-2 Covid-19 ACE2 receptor regulation. Respir. Res 21 (1):154. doi:10.1186/s12931-020-01396-y.
  • Wang, J., H. Yang, H. Shi, J. Zhou, R. Bai, M. Zhang, and T. Jin. 2017. Nitrate and nitrite promote formation of tobacco-specific nitrosamines via nitrogen oxides intermediates during postcured storage under warm temperature. J. Chem. 2017:1–11. doi:10.1155/2017/6135215.
  • Wang, M., Y. Zhang, M. Xu, H. Zhang, Y. Chen, K. F. Chung, I. M. Adcock, and F. Li. 2019. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic. Biol. Med 134:229–38. doi:10.1016/j.freeradbiomed.2019.01.004.
  • Warden, H., H. Richardson, L. Richardson, J. Siemiatycki, and V. Ho. 2018. Associations between occupational exposure to benzene, toluene and xylene and risk of lung cancer in Montréal. Occup. Environ. Med 75:696–702. doi:10.1136/oemed-2017-104987.
  • Ween, M. P., R. Hamon, M. G. Macowan, L. Thredgold, P. N. Reynolds, and S. J. Hodge. 2020b. Effects of e‐cigarette e‐liquid components on bronchial epithelial cells: Demonstration of dysfunctional efferocytosis. Respirology 25 (6):620–28. doi:10.1111/resp.13696.
  • Ween, M. P., A. Moshensky, L. L. Thredgold, N. A. Bastian, R. Hamon, A. Badiei, P. T. Nguyen, K. Herewane, H. Jersmann, C. M. Bojanowski 2020a. E-cigarettes and health risks: More to the flavour than just the name. Am. J. Physiol Lung Cell. Mol. Physiol 320 (4):L600–L614. doi:10.1152/ajplung.00370.2020.
  • Wen, J., J.-H. Fu, W. Zhang, and M. Guo. 2011. Lung carcinoma signaling pathways activated by smoking. Chin. J. Cancer 30 (8):551–58. doi:10.5732/cjc.011.10059.
  • Werley, M. S., D. J. Kirkpatrick, M. J. Oldham, A. M. Jerome, T. B. Langston, P. D. Lilly, D. C. Smith, and W. J. McKinney. 2016. Toxicological assessment of a prototype e-cigarette device and three flavor formulations: A 90-day inhalation study in rats. Inhal. Toxicol 28 (1):22–38. doi:10.3109/08958378.2015.1130758.
  • Wickham, R. J. 2020. The biological impact of menthol on tobacco dependence. Nicotine Tob. Res 22 (10):1676–84. doi:10.1093/ntr/ntz239.
  • Woodall, M., J. Jacob, K. K. Kalsi, V. Schroeder, E. Davis, B. Kenyon, I. Khan, J. P. Garnett, R. Tarran, and D. L. Baines. 2020. E-cigarette constituents propylene glycol and vegetable glycerin decrease glucose uptake and its metabolism in airway epithelial cells in vitro. Am. J. Physiol Lung Cell. Mol. Physiol 319 (6):L957–L967. doi:10.1152/ajplung.00123.2020.
  • World Health Organization. 2019. WHO report on the global tobacco epidemic 2019: Offer help to quit tobacco use. https://www.who.int/publications/i/item/9789241516204
  • Youn, H. S., J. K. Lee, Y. J. Choi, S. I. Saitoh, K. Miyake, D. H. Hwang, and J. Y. Lee. 2008. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem. Pharmacol 75 (2):494–502. doi:10.1016/j.bcp.2007.08.033.
  • Zahedi, A., R. Phandthong, A. Chaili, G. Remark, and P. Talbot. 2018. Epithelial-to-mesenchymal transition of A549 lung cancer cells exposed to electronic cigarettes. Lung Cancer 122:224–33. doi:10.1016/j.lungcan.2018.06.010.
  • Zhu, S.-H., J. Y. Sun, E. Bonnevie, S. E. Cummins, A. Gamst, L. Yin, and M. Lee. 2014. Four hundred and sixty brands of e-cigarettes and counting: Implications for product regulation. Tob. Control 23 (suppl 3):iii3–iii9. doi:10.1136/tobaccocontrol-2014-051670.
  • Ziebarth, D. 1997. N-nitrosation of medicinal drugs catalysed by bacteria from human saliva and gastro-intestinal tract, including Helicobacter pylori. Carcinogenesis 18 (2):383–89. doi:10.1093/carcin/18.2.383.