286
Views
8
CrossRef citations to date
0
Altmetric
Review

A comparison of fine particulate matter (PM2.5) in vivo exposure studies incorporating chemical analysis

, &

References

  • Abdel-Shafy, H. I., and M. S. M. Mansour. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25 (1):107–23. doi:10.1016/j.ejpe.2015.03.011.
  • Achilleos, S., M.-A. Kioumourtzoglou, C.-D. Wu, J. D. Schwartz, P. Koutrakis, and S. I. Papatheodorou. 2017. Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ Int 109:89–100. doi:10.1016/j.envint.2017.09.010.
  • Alessandrini, E. R., M. Stafoggia, A. Faustini, G. Berti, C. Canova, A. De Togni, K. Di Biagio, B. Gherardi, S. Giannini, P. Lauriola, et al. 2016. Association between short-term exposure to pm 2.5 and pm 10 and mortality in susceptible subgroups: a multisite case-crossover analysis of individual effect modifiers. Am. J. Epidemiol. 184(10):744–54. doi:10.1093/aje/kww078.
  • Amatullah, H., M. L. North, U. S. Akhtar, N. Rastogi, B. Urch, F. S. Silverman, C.-W. Chow, G. J. Evans, and J. A. Scott. 2012. Comparative cardiopulmonary effects of size-fractionated airborne particulate matter. Inhal Toxicol 24 (3):161–71. doi:10.3109/08958378.2011.650235.
  • Amil, N., M. T. Latif, M. F. Khan, and M. Mohamad. 2016. Seasonal variability of PM2.5 composition and sources in the KlangValley urban-industrial environment. Atmospheric Chemistry and Physics 16 (8):5357–81. doi:10.5194/acp-16-5357-2016.
  • Astort, F., M. Sittner, S. A. Ferraro, N. S. Orona, G. A. Maglione, D. R. Tasat, and D. R. Tasat. 2014. Pulmonary inflammation and cell death in mice after acute exposure to air particulate matter from an industrial region of Buenos Aires. Arch. Environ. Contam. Toxicol. 67 (1):87–96. doi:10.1007/s00244-013-9975-4.
  • Aztatzi-Aguilar, O. G., M. Uribe-Ramírez, J. A. Arias-Montaño, O. Barbier, and A. De Vizcaya-Ruiz. 2015. Acute and subchronic exposure to air particulate matter induces expression of angiotensin and bradykinin-related genes in the lungs and heart: Angiotensin-II type-I receptor as a molecular target of particulate matter exposure. Part Fibre Toxicol 12 (1):17. doi:10.1186/s12989-015-0094-4.
  • Bell, M. L., F. Dominici, K. Ebisu, S. L. Zeger, and J. M. Samet. 2007. Spatial and Temporal Variation in PM 2.5 Chemical Composition in the United States for Health Effects Studies. Environ. Health Perspect. 115 (7):989–95. doi:10.1289/ehp.9621.
  • Bennett, B. A., E. W. Spannhake, A. M. Rule, P. N. Breysse, and C. G. Tankersley. 2018. The acute effects of age and particulate matter exposure on heart rate and heart rate variability in mice. Cardiovasc. Toxicol. 18 (6):507–19. doi:10.1007/s12012-018-9461-3.
  • Blum, J. L., L.-C. Chen, and J. T. Zelikoff. 2017. Exposure to ambient particulate matter during specific gestational periods produces adverse obstetric consequences in mice. Environ. Health Perspect. 125 (7):077020. doi:10.1289/EHP1029.
  • Cao, X., C. Yan, D. Liu, J. Peng, J. Chen, Y. Zhou, C. Long, D.-W. He, T. Lin, L.-J. Shen, et al. 2015. Fine particulate matter leads to reproductive impairment in male rats by overexpressing phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Toxicol. Lett. 237(3):181–90. doi:10.1016/j.toxlet.2015.06.015.
  • Castañeda, A. R., K. J. Bein, S. Smiley-Jewell, and K. E. Pinkerton. 2017. Fine particulate matter (PM 2.5) enhances allergic sensitization in BALB/ c mice. J. Toxicol. Environ. Health Part A 80 (4):197–207. doi:10.1080/15287394.2016.1222920.
  • Cesari, D., G. E. De Benedetto, P. Bonasoni, M. Busetto, A. Dinoi, E. Merico, D. Chirizzi, et al. 2018. Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in southern Italy. Science of the Total Environment 612:202–13. doi:10.1016/j.scitotenv.2017.08.230.
  • Chen, L.-C., J.-S. Hwang, R. Lall, G. Thurston, and M. Lippmann. 2010. Alteration of cardiac function in ApoE −/− mice by subchronic urban and regional inhalation exposure to concentrated ambient PM 2.5. Inhal Toxicol 22 (7):580–92. doi:10.3109/08958371003596579.
  • Chen, L. C., and M. Lippmann. 2009. Effects of metals within ambient air particulate matter (PM) on human health. Inhal Toxicol 21 (1):1–31. doi:10.1080/08958370802105405.
  • Chen, R., L. Qiao, H. Li, Y. Zhao, Y. Zhang, W. Xu, C. Wang, H. Wang, Z. Zhao, X. Xu, et al. 2015. Fine particulate matter constituents, nitric oxide synthase DNA methylation and exhaled nitric oxide. Environ. Sci. Technol. 49(19):11859–65. doi:10.1021/acs.est.5b02527.
  • Chuang, H.-C., K.-F. Ho, -J.-J. Cao, K.-J. Chuang, S. S. H. Ho, P.-H. Feng, L. Tian, C.-H. Lee, Y.-M. Han, C.-N. Lee, et al. 2015. Effects of non-protein-type amino acids of fine particulate matter on e-cadherin and inflammatory responses in mice. Toxicol. Lett. 237(3):174–80. doi:10.1016/j.toxlet.2015.06.013.
  • Chuang, H.-C., R.-H. Shie, C.-H. Lee, C.-P. Chio, T.-H. Yuan, J.-H. Lee, and -C.-C. Chan. 2020. Associations of soluble metals and lung and liver toxicity in mice induced by fine particulate matter originating from a petrochemical complex. Environmental Science and Pollution Research 27:34442–52. doi:10.1007/s11356-020-09644-w.
  • Chung, M.-C., M.-H. Tsai, D. E. Que, S. J. Bongo, W.-L. Hsu, L. L. Tayo, H.-R. Chao, Y.-H. Lin, S.-L. Lin, -Y.-Y. Gou, et al. 2019. Fine particulate matter-induced toxic effects in an animal model of Caenorhabditis elegans. Aerosol Air Qual. Res. 19(5):1068–78. doi:10.4209/aaqr.2019.03.0127.
  • Clark, N. A., P. A. Demers, C. J. Karr, M. Koehoorn, C. Lencar, L. Tamburic, and M. Brauer. 2010. Effect of early life exposure to air pollution on development of childhood asthma. Environ. Health Perspect. 118 (2):284–90. doi:10.1289/ehp.0900916.
  • deSouza, P., D. Braun, R. M. Parks, J. Schwartz, F. Dominici, and M.-A. Kioumourtzoglou. 2021. Nationwide study of short-term exposure to fine particulate matter and cardiovascular hospitalizations among Medicaid enrollees. Epidemiology 32 (1):6–13. doi:10.1097/EDE.0000000000001265.
  • Du, X., S. Jiang, X. Zeng, J. Zhang, K. Pan, L. Song, J. Zhou, et al. 2019. Fine particulate matter-induced cardiovascular injury is associated with NLRP3 inflammasome activation in Apo E-/- mice. Ecotoxicol. Environ. Saf. 174:92–99. doi:10.1016/j.ecoenv.2019.02.064.
  • Dulskiene, V. 2003. Environmental pollution with lead and myocardial infarction morbidity. Medicina (Kaunas, Lithuania) 39 (9):884–88.
  • Eeftens, M., G. Hoek, O. Gruzieva, A. Moelter, R. Agius, R. Beelen, B. Brunekreef, A. Custovic, J. Cyrys, E. Fuertes, et al. 2014. Elemental composition of particulate matter and the association with lung function. Epidemiology. 25(5):648–57. doi:10.1097/EDE.0000000000000136.
  • Emam, B., A. Shahsavani, F. Khodagholi, S. M. Zarandi, P. K. Hopke, M. Hadei, H. Behbahani, and M. Yarahmadi. 2020. Effects of PM2.5 and gases exposure during prenatal and early-life on autism–like phenotypes in male rat offspring. Part Fibre Toxicol 17 (1):8. doi:10.1186/s12989-020-0336-y.
  • EPA. 2009. Integrated Science Assessment for Particulate Matter. https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=216546.
  • EPA. 2019a. How Does PM Affect Human Health? | Air Quality Planning Unit | Ground-Level Ozone | New England |. In 2. Washington D.C.: US EPA. Overviews & Factsheets. https://www3.epa.gov/region1/airquality/pm-human-health.html.
  • EPA. 2019b. Integrated Science Assessment for Particulate Matter. 2. www.epa.gov/isa.
  • European Commission. 2021. Standards - Air Quality - Environment -. Brussels: European Commission. https://ec.europa.eu/environment/air/quality/standards.htm.
  • Falcon-Rodriguez, C. I., A. De Vizcaya-Ruiz, I. A. Rosas-Pérez, Á. R. Osornio-Vargas, and P. Segura-Medina. 2017. Inhalation of concentrated PM 2.5 from Mexico City acts as an adjuvant in a Guinea pig model of allergic asthma. Environ. Pollut. 228:474–83. doi:10.1016/j.envpol.2017.05.050.
  • Farraj, A. K., L. Walsh, N. Haykal-Coates, F. Malik, J. McGee, D. Winsett, R. Duvall, et al. 2015. Cardiac effects of seasonal ambient particulate matter and ozone co-exposure in rats. Part Fibre Toxicol 12:12. doi:10.1186/s12989-015-0087-3.
  • Feng, S., E. Duan, X. Shi, H. Zhang, H. Li, Y. Zhao, L. Chao, X. Zhong, W. Zhang, R. Li, et al. 2019. Hydrogen ameliorates lung injury in a rat model of subacute exposure to concentrated ambient PM2.5 via aryl hydrocarbon receptor. Int. Immunopharmacol. 77:105939. doi:10.1016/j.intimp.2019.105939.
  • Fu, P., L. Bai, Z. Cai, R. Li, and K. K. L. Yung. 2020. Fine particulate matter aggravates intestinal and brain injury and affects bacterial community structure of intestine and feces in Alzheimer’s disease transgenic mice. Ecotoxicol. Environ. Saf. 192:110325. doi:10.1016/j.ecoenv.2020.110325.
  • Garcia, G. R., P. D. Noyes, and R. L. Tanguay. 2016. Advancements in zebrafish applications for 21st century toxicology. Pharmacol. Ther. 161:11–21. doi:10.1016/j.pharmthera.2016.03.009.
  • Gehring, U., A. H. Wijga, G. Hoek, T. Bellander, D. Berdel, I. Brüske, E. Fuertes, et al. 2015. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: A population-based birth cohort study. Lancet. Respiratory Medicine 3:933–42. doi:10.1016/S2213-2600(15)00426-9.
  • Ghio, A. J., M. S. Carraway, and M. C. Madden. 2012. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. Journal of Toxicology and Environmental Health, Part B 15 (1):1–21. doi:10.1080/10937404.2012.632359.
  • Hartman, J. H., S. J. Widmayer, C. M. Bergemann, D. E. King, K. S. Morton, R. F. Romersi, L. E. Jameson, M. C. K. Leung, E. C. Andersen, S. Taubert, et al. 2021. Xenobiotic metabolism and transport in Caenorhabditis elegans. Journal of Toxicology and Environmental Health, Part B 24 (2):51–94. doi:10.1080/10937404.2021.1884921.
  • He, M., T. Ichinose, M. Kobayashi, K. Arashidani, S. Yoshida, M. Nishikawa, H. Takano, G. Sun, and T. Shibamoto. 2016. Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs. Toxicol. Appl. Pharmacol. 297:41–55. doi:10.1016/j.taap.2016.02.017.
  • Horzmann, K. A., and J. L. Freeman. 2018. Making waves: New developments in toxicology with the zebrafish. Toxicological Sciences 163 (1):5–12. doi:10.1093/toxsci/kfy044.
  • Hou, T., J. Liao, C. Zhang, C. Sun, X. Li, and G. Wang. 2018. Elevated expression of MiR-146, MiR-139 and MiR-340 involved in regulating Th1/Th2 balance with acute exposure of fine particulate matter in mice. Int. Immunopharmacol. 54:68–77. doi:10.1016/j.intimp.2017.10.003.
  • Huang, K.-L., S.-Y. Liu, C. C. K. Chou, Y.-H. Lee, and T.-J. Cheng. 2017. The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice. Ed. Bernhard Ryffel. PLOS ONE 12:e0173158. doi:10.1371/journal.pone.0173158.
  • Huang, J., Q. Liu, and X. Guo. 2019. Encyclopedia of Environmental Health. Oxford: Elsevier. 655–62. https://www.sciencedirect.com/science/article/pii/B9780124095489109911.
  • Hwang, M., S. Han, J.-W. Seo, K.-J. Jeon, and H. S. Lee. 2021. Traffic-related particulate matter aggravates ocular allergic inflammation by mediating dendritic cell maturation. J. Toxicol. Environ. Health Part A 84 (16):661–73. doi:10.1080/15287394.2021.1922111.
  • Jedrychowski, W., F. Perera, J. Jankowski, V. Rauh, E. Flak, K. L. Caldwell, R. L. Jones, A. Pac, and I. Lisowska-Miszczyk. 2008. Prenatal low-level lead exposure and developmental delay of infants at age 6 months (Krakow inner city study). Int J Hyg Environ Health 211 (3–4):345–51. doi:10.1016/j.ijheh.2007.07.023.
  • Kelly, F. J., and J. C. Fussell. 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60:504–26.
  • Kim, K.-H., S. A. Jahan, E. Kabir, and R. J. C. Brown. 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHS) and their human health effects. Environ Int 60:71–80. doi:10.1016/j.scitotenv.2018.11.016.
  • Kim, Y., H. Tong, M. Daniels, E. Boykin, Q. Krantz, J. McGee, M. Hays, K. Kovalcik, J. A. Dye, and M. Gilmour. 2014. Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices. Part Fibre Toxicol 11 (1):29. doi:10.1186/1743-8977-11-29.
  • Kirrane, E. F., T. J. Luben, A. Benson, E. O. Owens, J. D. Sacks, S. J. Dutton, M. Madden, and J. L. Nichols. 2019. A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. Environ Int 127:305–16. doi:10.1016/j.envint.2019.02.027.
  • Klocke, C., J. L. Allen, M. Sobolewski, M. Mayer-Pröschel, J. L. Blum, D. Lauterstein, J. T. Zelikoff, and D. A. Cory-Slechta. 2017. Neuropathological consequences of gestational exposure to concentrated ambient fine and ultrafine particles in the mouse. Toxicological Sciences 156 (2):492–508. doi:10.1093/toxsci/kfx010.
  • Ku, T., Y. Zhang, X. Ji, G. Li, and N. Sang. 2017. PM2.5-bound metal metabolic distribution and coupled lipid abnormality at different developmental windows. Environ. Pollut. 228:354–62. doi:10.1016/j.envpol.2017.05.040.
  • Lee, S.-H., P.-H. Lee, H.-J. Liang, C.-H. Tang, T.-F. Chen, T.-J. Cheng, and C.-Y. Lin. 2020. Brain lipid profiles in the spontaneously hypertensive rat after subchronic real-world exposure to ambient fine particulate matter. Science of the Total Environment 707:135603. doi:10.1016/j.scitotenv.2019.135603.
  • Leung, M. C. K., P. L. Williams, A. Benedetto, C. Au, K. J. Helmcke, M. Aschner, and J. N. Meyer. 2008. Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicological Sciences 106 (1):5–28. doi:10.1093/toxsci/kfn121.
  • Liao, B.-Q., C.-B. Liu, S.-J. Xie, Y. Liu, Y.-B. Deng, S.-W. He, X.-P. Fu, et al. 2020. Effects of fine particulate matter (PM2.5) on ovarian function and embryo quality in mice. Environ Int 135:105338. doi:10.1016/j.envint.2019.105338.
  • Li, K., L. Li, B. Cui, Z. Gai, Q. Li, S. Wang, J. Yan, B. Lin, L. Tian, H. Liu, et al. 2018. Early postnatal exposure to airborne fine particulate matter induces autism-like phenotypes in male rats. Toxicological Sciences. 162(1):189–99. doi:10.1093/toxsci/kfx240.
  • Lippmann, M., J.-S. Hwang, P. Maciejczyk, and L.-C. Chen. 2005. PM Source Apportionment for Short-Term Cardiac Function Changes in ApoE −/− Mice. Environ. Health Perspect. 113 (11):1575–79. doi:10.1289/ehp.8091.
  • Liu, X., X. Jin, R. Su, and Z. Li. 2017. The reproductive toxicology of male SD rats after PM2.5 exposure mediated by the stimulation of endoplasmic reticulum stress. Chemosphere 189:547–55. doi:10.1016/j.chemosphere.2017.09.082.
  • Liu, X., X. Qian, J. Xing, J. Wang, Y. Sun, Q. Wang, and H. Li. 2018. Particulate matter triggers depressive-like response associated with modulation of inflammatory cytokine homeostasis and brain-derived neurotrophic factor signaling pathway in mice. Toxicological Sciences 164 (1):278–88. doi:10.1093/toxsci/kfy086.
  • Liu, B., S.-D. Wu, L.-J. Shen, T.-X. Zhao, Y. Wei, X.-L. Tang, C. Long, Y. Zhou, D.-W. He, T. Lin, et al. 2019. Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ros-mediated MAPK signaling pathway. Ecotoxicol. Environ. Saf. 167:161–68. doi:10.1016/j.ecoenv.2018.09.118.
  • Ljubimova, J. Y., M. T. Kleinman, N. M. Karabalin, S. Inoue, B. Konda, P. Gangalum, J. L. Markman, A. V. Ljubimov, and K. L. Black. 2013. Gene expression changes in rat brain after short and long exposures to particulate matter in Los Angeles basin air: Comparison with human brain tumors. Experimental and Toxicologic Pathology 65 (7–8):1063–71. doi:10.1016/j.etp.2013.04.002.
  • Ma, M., S. Li, H. Jin, Y. Zhang, J. Xu, D. Chen, C. Kuimin, Z. Yuan, and C. Xiao. 2015. Characteristics and oxidative stress on rats and traffic policemen of ambient fine particulate matter from Shenyang. Science of the Total Environment 526:110–15. doi:10.1016/j.scitotenv.2015.04.075.
  • Navas, A., E. Guallar, E. K. Silbergeld, and S. J. Rothenberg. 2007. Lead exposure and cardiovascular disease—A systematic review. Environ. Health Perspect. 115 (3):472–82. doi:10.1289/ehp.9785.
  • Nelin, T. D., A. M. Joseph, M. W. Gorr, and L. E. Wold. 2012. Direct and indirect effects of pm on the cardiovascular system. Toxicol. Lett. 208 (3):293–99. doi:10.1016/j.toxlet.2011.11.008.
  • Niu, Y., R. Chen, Y. Xia, J. Cai, Z. Ying, Z. Lin, C. Liu, et al. 2018. Fine particulate matter constituents and stress hormones in the hypothalamus–pituitary–adrenal axis. Environ Int 119:186–92. doi:10.1016/j.envint.2018.06.027.
  • Ostro, B., B. Malig, R. Broadwin, R. Basu, E. B. Gold, J. T. Bromberger, C. Derby, et al. 2014. Chronic PM2.5 exposure and inflammation: Determining sensitive subgroups in mid-life women. Environ. Res. 132:168–75. doi:10.1016/j.envres.2014.03.042.
  • Pardo, M., F. Xu, X. Qiu, T. Zhu, and Y. Rudich. 2018. Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver. Science of the Total Environment 626:147–55. doi:10.1016/j.scitotenv.2018.01.017.
  • Pei, Y., R. Jiang, Y. Zou, Y. Wang, S. Zhang, G. Wang, J. Zhao, and W. Song. 2016. Effects of fine particulate matter (PM2.5) on systemic oxidative stress and cardiac function in ApoE−/− mice. Int J Environ Res Public Health 13 (5):484. doi:10.3390/ijerph13050484.
  • Pires, A., E. N. de Melo, T. Mauad, P. H. Nascimento Saldiva, and H. M. de Siqueira Bueno. 2011. Pre- and postnatal exposure to ambient levels of urban particulate matter (PM 2.5) affects mice spermatogenesis. Inhal Toxicol 23 (4):237–45. doi:10.3109/08958378.2011.563508.
  • Plummer, L. E., W. Ham, M. J. Kleeman, A. Wexler, and K. E. Pinkerton. 2012. Influence of season and location on pulmonary response to California’s San Joaquin Valley airborne particulate matter. Journal of Toxicology and Environmental Health A 75 (5):253–71. doi:10.1080/15287394.2012.640102.
  • Ribeiro, J. D. P., A. C. Kalb, P. P. Campos, A. R. H. D. L. Cruz, P. E. Martinez, A. Gioda, M. M. de Souza, and C. R. Gioda. 2016. Toxicological effects of particulate matter (PM2.5) on rats: Bioaccumulation, antioxidant alterations, lipid damage, and ABC transporter activity. Chemosphere 163:569–77. doi:10.1016/j.chemosphere.2016.07.094.
  • Riva, D. R., C. B. Magalhães, A. A. Lopes, T. Lanças, T. Mauad, O. Malm, S. S. Valença, P. H. Saldiva, D. S. Faffe, and W. A. Zin. 2011. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol 23 (5):257–67. doi:10.3109/08958378.2011.566290.
  • Rohr, A. C., A. Kamal, M. Morishita, B. Mukherjee, G. J. Keeler, J. R. Harkema, and J. G. Wagner. 2011a. Altered heart rate variability in spontaneously hypertensive rats is associated with specific particulate matter components in Detroit, Michigan. Environ. Health Perspect. 119 (4):474–80.
  • Roper, C., L. G. Chubb, L. Cambal, B. Tunno, J. E. Clougherty, and S. E. Mischler. 2015. Characterization of ambient and extracted PM 2.5 collected on filters for toxicology applications. Inhal Toxicol 27 (13):673–81. doi:10.3109/08958378.2015.1092185.
  • Roper, C., A. Perez, D. Barrett, P. Hystad, S. L. Massey Simonich, and R. L. Tanguay. 2020. Workflow for comparison of chemical and biological metrics of filter collected PM2.5. Atmos. Environ. 226:117379. doi:10.1016/j.atmosenv.2020.117379.
  • Saldiva, P. H. N., R. W. Clarke, B. A. Coull, R. C. Stearns, J. Lawrence, G. G. K. Murthy, E. Diaz, P. Koutrakis, H. Suh, A. Tsuda, et al. 2002. Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am. J. Respir. Crit. Care Med. 165(12):1610–17. doi:10.1164/rccm.2106102.
  • Sancini, G., F. Farina, C. Battaglia, I. Cifola, E. Mangano, P. Mantecca, M. Camatini, and P. Palestini. 2014. Health risk assessment for air pollutants: Alterations in lung and cardiac gene expression in mice exposed to milano winter fine particulate matter (PM2.5). In PLoS ONE, ed. R. A, Vol. 9, e109685. San Francisco, CA: PLOS ONE.
  • Sawyer, K., S. Mundandhara, A. J. Ghio, and M. C. Madden. 2009. The effects of ambient particulate matter on human alveolar macrophage oxidative and inflammatory responses. Journal of Toxicology and Environmental Health, Part A 73 (1):41–57. doi:10.1080/15287390903248901.
  • Schikowski, T., D. Sugiri, U. Ranft, U. Gehring, J. Heinrich, H.-E. Wichmann, and U. Krämer. 2005. Long-term air pollution exposure and living close to busy roads are associated with COPD in women. Respir. Res. 6 (1):152. doi:10.1186/1465-9921-6-152.
  • Seagrave, J., J. D. McDonald, E. Bedrick, E. S. Edgerton, A. P. Gigliotti, J. J. Jansen, L. Ke, L. P. Naeher, S. K. Seilkop, M. Zheng, et al. 2006. Lung toxicity of ambient particulate matter from Southeastern U.S. sites with different contributing sources: Relationships between composition and effects. Environ. Health Perspect. 114(9):1387–93. doi:10.1289/ehp.9234.
  • Shaffer, F., and J. P. Ginsberg. 2017. An overview of heart rate variability metrics and norms. Frontiers in Public Health 5.
  • Shi, J., R. Chen, C. Yang, Z. Lin, J. Cai, Y. Xia, C. Wang, H. Li, N. Johnson, X. Xu, et al. 2016. Association between fine particulate matter chemical constituents and airway inflammation: A panel study among healthy adults in China. Environ. Res. 150:264–68. doi:10.1016/j.envres.2016.06.022.
  • Shkirkova, K. K. L.-F., K. Lamorie-Foote, M. Connor, A. Patel, G. Barisano, H. Baertsch, Q. Liu, T. E. Morgan, C. Sioutas, and Mack. 2020. Effects of ambient particulate matter on vascular tissue: A review. Journal of Toxicology and Environmental Health, Part B 23 (7):319–50. doi:10.1080/10937404.2020.1822971.
  • Snow, S. J., A. De Vizcaya-Ruiz, A. Osornio-Vargas, R. F. Thomas, M. C. Schladweiler, J. McGee, and U. P. Kodavanti. 2014. The effect of composition, size, and solubility on acute pulmonary injury in rats following exposure to Mexico City ambient particulate matter samples. Journal of Toxicology and Environmental Health, Part A 77 (19):1164–82. doi:10.1080/15287394.2014.917445.
  • Stein, P., and Y. Pu. 2012. Heart rate variability in congestive heart failure. In Heart Rate Variability (HRV) Signal Analysis, ed. Markad Kamath, M. Watanabe, and A. Upton, 303–24. Boca Raton, FL: CRC Press. http://www.crcnetbase.com/doi/10.1201/b12756-21
  • Sun, L., Z. Lin, K. Liao, Z. Xi, and D. Wang. 2015. Adverse effects of coal combustion related fine particulate matter (PM 2.5) on nematode Caenorhabditis elegans. Science of the Total Environment 512-513:251–60. doi:10.1016/j.scitotenv.2015.01.058.
  • Sun, X., H. Wei, D. E. Young, K. J. Bein, S. M. Smiley-Jewell, Q. Zhang, C. C. B. Fulgar, A. R. Castañeda, A. K. Pham, W. Li, et al. 2017. Differential pulmonary effects of wintertime California and China particulate matter in healthy young mice. Toxicol. Lett. 278:1–8. doi:10.1016/j.toxlet.2017.07.853.
  • Tong, H., W.-Y. Cheng, J. M. Samet, M. I. Gilmour, and R. B. Devlin. 2010. Differential cardiopulmonary effects of size-fractionated ambient particulate matter in mice. Cardiovasc. Toxicol. 10 (4):259–67. doi:10.1007/s12012-010-9082-y.
  • Tsai, -S.-S., Y.-W. Chiu, Y.-H. Weng, and C.-Y. Yang. 2022. Association between fine particulate air pollution and the risk of death from lung cancer in Taiwan. Journal of Toxicology and Environmental Health, Part A 85 (10):431–38. doi:10.1080/15287394.2022.2040672.
  • Tsai, M.-Y., G. Hoek, M. Eeftens, K. de Hoogh, R. Beelen, T. Beregszászi, G. Cesaroni, M. Cirach, J. Cyrys, A. De Nazelle, et al. 2015. Spatial variation of PM elemental composition between and within 20 European study areas — Results of the ESCAPE Project. Environ Int 84:181–92. doi:10.1016/j.envint.2015.04.015.
  • Wagner, J. G., A. S. Kamal, M. Morishita, J. Dvonch, J. R. Harkema, and A. C. Rohr. 2014. PM2.5-induced cardiovascular dysregulation in rats is associated with elemental carbon and temperature-resolved carbon subfractions. Part Fibre Toxicol 11 (1):25. doi:10.1186/1743-8977-11-25.
  • Wang, J., Z. Guo, R. Zhang, Z. Han, Y. Huang, C. Deng, W. Dong, and G. Zhuang. 2020. Effects of N-acetylcysteine on oxidative stress and inflammation reactions in a rat model of allergic rhinitis after PM2.5 exposure. Biochem. Biophys. Res. Commun. 533 (3):275–81. doi:10.1016/j.bbrc.2020.09.022.
  • Wang, X., S. Jiang, Y. Liu, X. Du, W. Zhang, J. Zhang, and H. Shen. 2017a. Comprehensive pulmonary metabolome responses to intratracheal instillation of airborne fine particulate matter in rats. Science of the Total Environment 592:41–50. doi:10.1016/j.scitotenv.2017.03.064.
  • Wang, G., R. Jiang, Z. Zhao, and W. Song. 2013. Effects of ozone and fine particulate matter (PM2.5) on rat system inflammation and cardiac function. Toxicol. Lett. 217 (1):23–33. doi:10.1016/j.toxlet.2012.11.009.
  • Wei, Y., X.-N. Cao, X.-L. Tang, L.-J. Shen, T. Lin, D.-W. He, S.-D. Wu, and G.-H. Wei. 2018. Urban fine particulate matter (PM2.5) exposure destroys blood–testis barrier (BTB) integrity through excessive ROS-mediated autophagy. Toxicol. Mech. Methods 28 (4):302–19. doi:10.1080/15376516.2017.1410743.
  • Wilker, E. H., S. R. Preis, A. S. Beiser, P. A. Wolf, R. Au, I. Kloog, W. Li, J. Schwartz, P. Koutrakis, C. DeCarli, et al. 2015. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke. 46(5):1161–66. doi:10.1161/STROKEAHA.114.008348.
  • Wold, L. E., B. Z. Simkhovich, M. T. Kleinman, M. A. Nordlie, J. S. Dow, C. Sioutas, and R. A. Kloner. 2006. In vivo and in vitro models to test the hypothesis of particle-induced effects on cardiac function and arrhythmias. Cardiovasc. Toxicol. 6 (1):69–78. doi:10.1385/CT:6:1:69.
  • World Health Organization. 2021. Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
  • Wu, Y., H. Li, D. Xu, H. Li, Z. Chen, Y. Cheng, G. Yin, Y. Niu, C. Liu, H. Kan, et al. 2021. Associations of fine particulate matter and its constituents with airway inflammation, lung function, and buccal mucosa microbiota in children. Science of the Total Environment 773:145619. doi:10.1016/j.scitotenv.2021.145619.
  • Yang, Y., Z. Ruan, X. Wang, Y. Yang, T. G. Mason, H. Lin, and L. Tian. 2019. Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. Environ. Pollut. 247:874–82. doi:10.1016/j.envpol.2018.12.060.
  • Ying, Z., X. Xie, Y. Bai, M. Chen, X. Wang, X. Zhang, M. Morishita, Q. Sun, and S. Rajagopalan. 2015. Exposure to concentrated ambient particulate matter induces reversible increase of heart weight in spontaneously hypertensive rats. Part Fibre Toxicol 12 (1):15. doi:10.1186/s12989-015-0092-6.
  • Young, H. A., and D. Benton. 2018. Heart-rate variability: A biomarker to study the influence of nutrition on physiological and psychological Health? Behav Pharmacol 29 (2 and 3):140–51. doi:10.1097/FBP.0000000000000383.
  • Zanobetti, A., M. Franklin, P. Koutrakis, and J. Schwartz. 2009. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environmental Health 8 (1):58. doi:10.1186/1476-069X-8-58.
  • Zeger, S. L., F. Dominici, A. McDermott, and J. M. Samet. 2008. Mortality in the medicare population and chronic exposure to fine particulate air pollution in urban centers (2000–2005). Environ. Health Perspect. 116 (12):1614–19. doi:10.1289/ehp.11449.
  • Zhang, Y., J. Fang, F. Mao, Z. Ding, Q. Xiang, and W. Wang. 2020. Age- and season-specific effects of ambient particles (PM1, PM2.5, and PM10) on daily emergency department visits among two Chinese metropolitan populations. Chemosphere 246:125723. doi:10.1016/j.chemosphere.2019.125723.
  • Zhang, J., C. C. Fulgar, T. Mar, D. E. Young, Q. Zhang, K. J. Bein, L. Cui, A. Castañeda, C. F. A. Vogel, X. Sun, et al. 2018b. TH17-induced neutrophils enhance the pulmonary allergic response following BALB/c exposure to house dust mite allergen and fine particulate matter from California and China. Toxicological Sciences. 164(2):627–43. doi:10.1093/toxsci/kfy127.
  • Zhang, W., T. Lei, Z.-Q. Lin, H.-S. Zhang, D.-F. Yang, Z.-G. Xi, J.-H. Chen, and W. Wang. 2011. Pulmonary toxicity study in rats with PM10 and PM2.5: Differential responses related to scale and composition. Atmos. Environ. 45 (4):1034–41. doi:10.1016/j.atmosenv.2010.10.043.
  • Zhang, Y., S. Li, J. Li, L. Han, Q. He, R. Wang, X. Wang, and K. Liu. 2018a. Developmental toxicity induced by PM2.5 through endoplasmic reticulum stress and autophagy pathway in zebrafish embryos. Chemosphere 197:611–21. doi:10.1016/j.chemosphere.2018.01.092.
  • Zhang, H., Y. Yao, Y. Chen, C. Yue, J. Chen, J. Tong, Y. Jiang, and T. Chen. 2016. Crosstalk between AhR and Wnt/β-Catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Toxicology 355-356:31–38. doi:10.1016/j.tox.2016.05.014.
  • Zhao, Y., Z. Lin, R. Jia, G. Li, Z. Xi, and D. Wang. 2014. Transgenerational effects of traffic-related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. J. Hazard. Mater. 274:106–14. doi:10.1016/j.jhazmat.2014.03.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.