329
Views
1
CrossRef citations to date
0
Altmetric
Review

In vitro data for fire pollutants: contribution of studies using human cell models towards firefighters’ occupational

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abreu, A., C. Costa, E. Silva, S. Pinho, S. Morais, M. Do Carmo Pereira, A. Fernandes, V. Moraesde Andrade, J. P. Teixeira, and S. Costa. 2017. Wood smoke exposure of Portuguese wildland firefighters: DNA and oxidative damage evaluation. J. Toxicol. Environ. Health Part A 80 (13–15):596–604. doi:10.1080/15287394.2017.1286896.
  • Adetona, A. M., O. Adetona, R. M. Gogal, J. Diaz-Sanchez, S. L. Rathbun, and L. P. Naeher. 2017. Impact of work task-related acute occupational smoke exposures on select proinflammatory immune parameters in wildland firefighters. J. Occup. Environ. Med. 59 (7):679–90. doi:10.1097/JOM.0000000000001053.
  • Adetona, O., J. J. Zhang, D. B. Hall, J. S. Wang, J. E. Vena, and L. P. Naeher. 2013. Occupational exposure to woodsmoke and oxidative stress in wildland firefighters. Sci. Total Environ. 449:269–75. doi:10.1016/j.scitotenv.2013.01.075.
  • Atwi, K., S. N. Wilson, A. Mondal, R. C. Edenfield, K. M. S. Crow, O. El Hajj, C. Perrie, C. K. Glenn, C. A. Easley, H. Handa, et al. 2022. Differential response of human lung epithelial cells to particulate matter in fresh and photochemically aged biomass-burning smoke. Atmos. Environ. 271:118929. doi:10.1016/j.atmosenv.2021.118929.
  • Barros, B., M. Oliveira, and S. Morais. 2021a. Firefighters’ occupational exposure: Contribution from biomarkers of effect to assess health risks. Environ Int 156:106704. doi:10.1016/j.envint.2021.106704.
  • Barros, B., M. Oliveira, and S. Morais. 2021b. Urinary biohazard markers in firefighters. Adv. Clin. Chem. 105:243–319.
  • Barros, B., M. Oliveira, and S. Morais. 2023. Biomonitoring of firefighting forces: A review on biomarkers of exposure to health-relevant pollutants released from fires. J Toxicol EnvironHealth B 26 (3):1–45. doi:10.1080/10937404.2023.2172119.
  • Barros, A. B., F. Rodrigues, B. Sarmento, C. Delerue-Matos, S. Morais, and M. Oliveira. 2022. Chapter 4 - Firefighters´ dermal exposure to fire emissions: Levels of exposure and potential health risks. In Essential guide to occupational exposure, ed. F. Rodrigues, S. Morais, and O. M, 194. New York, USA: Nova Science Publishers. ISBN: 978-1-68507-819-5.
  • Bassi, G., M. A. Grimaudo, S. Panseri, and M. Montesi. 2021. Advanced multi-dimensional cellular models as emerging reality to reproduce in vitro the human body complexity. Int J Mol Sci 22 (3):1195. doi:10.3390/ijms22031195.
  • Baxter, C. S., J. D. Hoffman, M. J. Knipp, T. Reponen, and E. N. Haynes. 2014. Exposure of firefighters to particulates and polycyclic aromatic hydrocarbons. J Occup Environ Hyg 11 (7):D85–91. doi:10.1080/15459624.2014.890286.
  • Bergström, C. E., A. Eklund, M. Sköld, and G. Tornling. 1997. Bronchoalveolar lavage findings in firefighters. Am. J. Ind. Med. 32 (4):332–36. doi:10.1002/(SICI)1097-0274(199710)32:4<332:AID-AJIM2>3.0.CO;2-W.
  • Bessa, M. J., F. Brandão, F. Rosário, L. Moreira, A. T. Reis, V. Valdiglesias, B. Laffon, S. Fraga, and J. P. Teixeira. 2023. Assessing the in vitro toxicity of airborne (nano)particles to the human respiratory system: From basic to advanced models. J Toxicol Environl Health B 26 (2):67–96. doi:10.1080/10937404.2023.2166638.
  • Bocato, M. Z., J. P. B. Ximenez, C. Hoffmann, and F. Barbosa. 2019. An overview of the current progress, challenges and prospects of human biomonitoring and eposome studies. J Toxicol Environl Health B 22 (5–6):131–56. doi:10.1080/10937404.2019.1661588.
  • Bølling, A. K., A. I. Totlandsdal, G. Sallsten, A. Braun, R. Westerholm, C. Bergvall, J. Boman, H. J. Dahlman, M. Sehlstedt, F. Cassee, et al. 2012. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 9 (1):45. doi:10.1186/1743-8977-9-45.
  • Bui, D. P., E. A. Kukielka, E. F. Blau, L. K. Tompkins, K. L. Bing, C. Edge, R. Hardin, J. H. D/Miller, T. Boehmer, T. Boehmer, et al. 2022. The occupational health effects of responding to a natural gas pipeline explosion among emergency first responders–Lincoln County, Kentucky, 2019. Disaster Med. Public Health Prep. 16 (5):1997–2004. doi:10.1017/dmp.2021.266.
  • Burden, N., M. J. Clift, G. J. Jenkins, B. Labram, and F. Sewell. 2021. Opportunities and challenges for integrating new in vitro methodologies in hazard testing and risk assessment. Small 17 (15):2006298. doi:10.1002/smll.202006298.
  • Chen, H., J. M. Samet, P. A. Bromberg, and H. Tong. 2021. Cardiovascular health impacts of wildfire smoke exposure. Part Fibre Toxicol 18 (1):2. doi:10.1186/s12989-020-00394-8.
  • Chen, S. S., T. Q. Wang, W. C. Song, Z. J. Tang, Z. M. Cao, H. J. Chen, Y. Lian, X. Hu, W. J. Zheng, and H. Z. Lian. 2022. A novel particulate matter sampling and cell exposure strategy based on agar membrane for cytotoxicity study. Chemosphere 300:134473. doi:10.1016/j.chemosphere.2022.134473.
  • Cherry, N., J. R. Barrie, J. Beach, J. M. Galarneau, T. Mhonde, and E. Wong. 2021. Respiratory outcomes of firefighter exposures in the fort McMurray fire: A cohort study from Alberta Canada. J. Occup. Environ. Med. 63 (9):779–86. doi:10.1097/JOM.0000000000002286.
  • Chu, C., H. Zhang, S. Cui, B. Han, L. Zhou, N. Zhang, X. Su, Y. Niu, W. Chen, R. Chen, et al. 2019. Ambient PM2.5 caused depressive-like responses through Nrf2/NLRP3 signaling pathway modulating inflammation. J. Hazard. Mater. 369:180–90. doi:10.1016/j.jhazmat.2019.02.026.
  • Cunniff, B., J. E. Druso, and J. L. van der Velden. 2021. Lung organoids: Advances in generation and 3D- visualization. Histochem. Cell Biol. 155 (2):301–08. doi:10.1007/s00418-020-01955-w.
  • Danielsen, P. H., P. Moller, K. A. Jensen, A. K. Sharma, H. Wallin, R. Bossi, H. Autrup, L. Molhave, J. L. Ravanat, J. J. Briede, et al. 2011. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem. Res. Toxicol. 24 (2):168–84. doi:10.1021/tx100407m.
  • Demers, P. A., D. M. DeMarini, K. W. Fent, D. C. Glass, J. Hansen, O. Adetona, M. H. G. Andersen, L. E. Beane Freeman, A. J. Caban-Martinez, R. D. Daniels, et al. 2022. Carcinogenicity of occupational exposure as a firefighter. Lancet Oncol. 23 (8):985–86. doi:10.1016/S1470-2045(22)00390-4.
  • de Oliveira Alves, N., S. de Souza Hacon, M. F. de Oliveira Galvao, M. Simoes Peixotoc, P. Artaxo, P. de Castro Vasconcellos, and S. R. de Medeiros. 2014. Genetic damage of organic matter in the Brazilian Amazon: A comparative study between intense and moderate biomass burning. Environ. Res. 130:51–58. doi:10.1016/j.envres.2013.12.011.
  • Dilger, M., J. Orasche, R. Zimmermann, S. D. H-R/Paur, C. Weiss, and C. Weiss. 2016. Toxicity of wood smoke particles in human A549 lung epithelial cells: The role of PAHs, soot and zinc. Arch. Toxicol. 90:3029–44. doi:10.1007/s00204-016-1659-1.
  • Dong, T. T. T., A. L. Hinwood, A. C. Callan, G. Zosky, and W. D. Stock. 2017. In vitro assessment of the toxicity of bushfire emissions: A review. Sci. Total Environ. 603-604:268–78. doi:10.1016/j.scitotenv.2017.06.062.
  • Eatough, D. J., N. Bhardwaj, P. M. Cropper, R. A. Cary, and J. C. Hansen. 2022. Formation of secondary material from gaseous precursors in wood smoke. J. Air Waste Manage. Assoc. 72 (11):1231–40. doi:10.1080/10962247.2022.2126554.
  • Fabian, T., J. L. Borgerson, S. I. Kerber, P. D. Gandhi, C. S. Baxter, C. S. Ross, J. E. Lockey, and J. M. Dalton. 2010. Firefighter exposure to smoke particulates, Vol. 2007. USA: Underwriters Laboratories.
  • Fent, K. W., B. Alexander, J. Roberts, S. Robertson, C. Toennis, D. Sammons, S. Bertke, S. Kerber, D. Smith, and G. Horn. 2017. Contamination of firefighter personal protective equipment and skin and the effectiveness of decontamination procedures. J Occup Environ Hyg 14 (10):801–14. doi:10.1080/15459624.2017.1334904.
  • Fent, K. W., J. Eisenberg, J. Snawder, D. Sammons, J. D. Pleil, M. A. Stiegel, C. Mueller, G. P. Horn, and J. Dalton. 2014. Systemic exposure to PAHs and benzene in firefighters suppressing controlled structure fires. Ann. Occup. Hyg. 58 (7):830–45. doi:10.1093/annhyg/meu036.
  • Fent, K. W., and D. E. Evans. 2011. Assessing the risk to firefighters from chemical vapors and gases during vehicle fire suppression. J Environ Monit 13 (3):536–43. doi:10.1039/c0em00591f.
  • Finlay, S. E., A. Moffat, R. Gazzard, D. Baker, and V. Murray. 2012. Health impacts of wildfires. PLoS Curr 4:e4f959951cce2c. doi:10.1371/4f959951cce2c.
  • Gauggel, S. 2012. Characterization of biologically available wood combustion particles in cell culture medium. ALTEX 29 (2):183–200. doi:10.14573/altex.2012.2.183.
  • Gea, M., S. Bonetta, D. Marangon, F. A. Pitasi, C. Armato, G. Gilli, F. Bert, M. Fontana, and T. Schiliro. 2021. In vitro effects of particulate matter associated with a wildland fire in the North-West of Italy. Int J Environ Res Public Health 18 (20):10812. doi:10.3390/ijerph182010812.
  • Gianniou, N., P. Katsaounou, E. Dima, C. E. Giannakopoulou, M. Kardara, V. Saltagianni, R. Trigidou, A. Kokkini, P. Bakakos, E. Markozannes, et al. 2016. Prolonged occupational exposure leads to allergic airway sensitization and chronic airway and systemic inflammation in professional firefighters. Respir Med 118:7–14. doi:10.1016/j.rmed.2016.07.006.
  • Goodrich, J. M., M. M. Calkins, A. J. Caban-Martinez, T. Stueckle, C. Grant, A. M. Calafat, A. Nematollahi, A. M. Jung, J. M. Graber, T. Jenkins, et al. 2021. Per- and polyfluoroalkyl substances, epigenetic age and DNA methylation: A cross-sectional study of firefighters. Epigenomics 13 (20):1619–36. doi:10.2217/epi-2021-0225.
  • Grashow, R., V. Bessonneau, R. R. Gerona, A. Wang, J. Trowbridge, T. Lin, H. Buren, R. A. Rudel, and R. Morello-Frosch. 2020. Integrating exposure knowledge and serum suspect screening as a new approach to biomonitoring: An application in firefighters and office workers. Environ. Sci. Technol. 54 (7):4344–55. doi:10.1021/acs.est.9b04579.
  • Graudejus, O., R. D. Ponce Wong, N. Varghese, S. Wagner, and B. Morrison. 2018. Bridging the gap between in vivo and in vitro research: Reproducing in vitro the mechanical and electrical environment of cells in vivo. MEA Meeting 2018, 11th International Meeting on Substrate Integrated Microelectrode Arrays, Reutlingen, Germany.
  • Hahm, J. Y., J. Park, E.S. Jang, and S. Wook Chi. 2022. 8-oxoguanine: From oxidative damage to epigenetic and epitranscriptional modification. Exp. Mol. Med. 54 (10):1626–42. doi:10.1038/s12276-022-00822-z.
  • Hamra, G. B. N. G., F. Cohen, A. Laden, J. M. Raaschou-Nielsen, O. Samet, F. Vineis, T. Saldiva, P. Forastiere, P. Yorfuji, D. Loomis, et al. 2014. Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environ. Health Perspect. 122 (9):906–11. doi:10.1289/ehp/1408092.
  • Han, B., Q. Liu, X. Su, L. Zhou, B. Zhang, H. Kang, J. Ning, C. Li, B. Zhao, Y. Niu, et al. 2022. The role of PP2A/NLRP3 signaling pathway in ambient particulate matter 2.5 induced lung injury. Chemosphere 307:135794. doi:10.1016/j.chemosphere.2022.135794.
  • Hickey, C., C. Gordon, K. Galdanes, M. Blaustein, L. Horton, S. Chillrud, J. Ross, L. Yinon, L. C. Chen, and T. Gordon. 2020. Toxicity of particles emitted by fireworks. Part Fibre Toxicol 17 (1):28. doi:10.1186/s12989-020-00360-4.
  • Hime, N. J., G. B. Marks, and C. T. Cowie. 2018. A comparison of the health effects of ambient particulate matter air pollution from five emission sources. Int J Environ Res Public Health 15:1206. 1206. doi:10.3390/ijerph15061206.
  • IARC. 2010. Monographs on the evaluation of the carcinogenic risks to humans: Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Lyon, France: IARC.
  • Jagiello, K., and K. Ciura. 2022. In vitro to in vivo extrapolation to support the development of the next generation risk assessment (NGRA) strategy for nanomaterials. Nanoscale 14 (18):6735–42. doi:10.1039/D2NR00664B.
  • Jung, A. M., J. Zhou, S. C. Beitel, S. R. Littau, J. J. Gulotta, D. D. Wallentine, P. K. Moore, and J. L. Burgess. 2021. Longitudinal evaluation of whole blood miRNA expression in firefighters. J Expo Sci Environ Epidemiol 31 (5):900–12. doi:10.1038/s41370-021-00306-8.
  • Karlsson, H. L., A. G. Ljungman, J. Lindbom, and L. Moller. 2006. Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway. Toxicol. Lett. 165 (3):203–11. doi:10.1016/j.toxlet.2006.04.003.
  • Knorr, W., F. Dentener, J. F. Lamarque, L. Jiang, and A. Arneth. 2017. Wildfire air pollution hazard during the 21st century. Atmos. Chem. Phys 17 (14):9223–36. doi:10.5194/acp-17-9223-2017.
  • Kocbach, A., J. I. Herseth, M. Låg, M. Refsnes, and P. E. Schwarze. 2008a. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures. Toxicol. Appl. Pharmacol. 232 (2):317–26. doi:10.1016/j.taap.2008.07.002.
  • Kocbach, A., E. Namork, and P. E. Schwarze. 2008b. Pro-inflammatory potential of wood smoke and traffic-derived particles in a monocytic cell line. Toxicology 247 (2–3):123–32. doi:10.1016/j.tox.2008.02.014.
  • Krupina, K., A. Goginashvili, and D. W. Cleveland. 2021. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70:91–99. doi:10.1016/j.ceb.2021.01.004.
  • Kurmi, O. P., S. Semple, P. Simkhada, W. C. Smith, and J. G. Ayres. 2010. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: A systematic review and meta-analysis. Thorax 65 (3):221–28. doi:10.1136/thx.2009.124644.
  • Låg, M., J. Øvrevik, M. Refsnes, and J. A. Holme. 2020. Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir. Res. 21 (1):299. doi:10.1186/s12931-020-01563-1.
  • Lee, C. T., I. B. Ventura, E. K. Phillips, A. Leahy, R. Jablonski, S. Monter, J. H. Chung, R. Vij, A. Adegunsoye, and M. E. Stek. 2022. Interstitial lung disease in firefighters: An emerging occupational hazard. Front Med 9:864658. doi:10.3389/fmed.2022.864658.
  • Lestari, F., A. J. Hayes, A. R. Green, and B. Markovic. 2005. In vitro cytotoxicity of selected chemicals commonly produced during fire combustion using human cell lines. Toxicol in Vitro 19 (5):653–63. doi:10.1016/j.tiv.2005.03.002.
  • Liu, P. L., Y. L. Chen, Y. H. Chen, S. J. Lin, and Y. R. Kou. 2005. Wood smoke extract induces oxidative stress-mediated caspase-independent apoptosis in human lung endothelial cells: Role of AIF and EndoG. Am. J. Physiol. Lung Cell Mol. Physiol. 289 (5):L739–49. doi:10.1152/ajplung.00099.2005.
  • Loomis, D., Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, R. Baan, H. Mattock, and K. Straif. 2013. The carcinogenicity of outdoor air pollution. Lancet Oncol. 14 (13):1262–63. doi:10.1016/S1470-2045(13)70487-X.
  • Luzhna, L., P. Kathiria, and O. Kovalchuk. 2013. Micronuclei in genotoxicity assessment: From genetics to epigenetics and beyond. Front Genet 4:131. doi:10.3389/fgene.2013.00131.
  • Martin, W. K., S. Padilla, Y. H. Kim, D. L. Hunter, M. D. Hays, D. M. DeMarini, M. /. S. Hazari, M. I. Gilmour, and A. K. Farraj. 2021. Zebrafish irritant responses to wildland fire-related biomass smoke influenced by fuel type, combustion phase and byproduct chemistry. J. Toxicol. Environ. Health Part A 84 (16):674–88. doi:10.1080/15287394.2021.1925608.
  • McCrary, M. W., D. Bousalis, S. Mobini, Y. H. Song, and C. E. Schmidt. 2020. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomater 111:1–19. doi:10.1016/j.actbio.2020.05.031.
  • Miyake, T., and M. Shimada. 2022. 3D organoid culture using skin keratinocytes derived from human induced pluripotent stem cells. Meth Mol Biol 2454:285–95.
  • Naeher, L. P., M. Brauer, M. Lipsett, J. T. Zelikoff, C. D. Simpson, J. Q. Koenig, and K. R. Smith. 2007. Woodsmoke health effects: A review. Inhal Toxicol 19 (1):67–106. doi:10.1080/08958370600985875.
  • Nakayama Wong, L. S., H. H. Aung, M. W. Lame, T. C. Wegesser, and D. W. Wilson. 2011. Fine particulate matter from urban ambient and wildfire sources from California’s San Joaquin valley initiate differential inflammatory, oxidative stress, and xenobiotic responses in human bronchial epithelial cells. Toxicol in Vitro 25 (8):1895–905. doi:10.1016/j.tiv.2011.06.001.
  • Navarro, K. M., M. T. Kleinman, C. E. Mackay, T. E. Reinhardt, J. R. Balmes, G. A. Broyles, D. O. R, L. P. Naher, and J. W. Domitrovich. 2019. Wildfire firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality. Environ. Res. 173:462–68. doi:10.1016/j.envres.2019.03.060.
  • Oliveira, M., S. Costa, J. Vaz, A. Fernandes, K. Slezakova, C. Delerue-Matos, J. P. Teixeira, M. Carmo Pereira, and S. Morais. 2020a. Firefighters exposure to fire emissions: Impact on levels of biomarkers of exposure to polycyclic aromatic hydrocarbons and genotoxic/oxidative-effects. J. Hazard. Mater. 383:121179. doi:10.1016/j.jhazmat.2019.121179.
  • Oliveira, M., C. Delerue-Matos, M. C. Pereira, and S. Morais. 2020b. Environmental particulate matter levels during 2017 large forest fires and megafires in the center region of Portugal: A public health concern? Int J Environ Res Public Health 17 (3):1032. doi:10.3390/ijerph17031032.
  • Oliveira, M., K. Slezakova, M. J. Alves, A. Fernandes, J. P. Teixeira, C. Delerue-Matos, M. D. C. Pereira, and S. Morais. 2017b. Polycyclic aromatic hydrocarbons at fire stations: Firefighters’ exposure monitoring and biomonitoring, and assessment of the contribution to total internal dose. J. Hazard. Mater. 323:184–94. doi:10.1016/j.jhazmat.2016.03.012.
  • Oliveira, M., K. Slezakova, C. Delerue-Matos, M. C. Pereira, and S. Morais. 2016. Assessment of air quality in preschool environments (3-5 years old children) with emphasis on elemental composition of PM10 and PM2.5. Environ. Pollut. 214:430–39. doi:10.1016/j.envpol.2016.04.046.
  • Oliveira, M., K. Slezakova, C. Delerue-Matos, M. C. Pereira, and S. Morais. 2019. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environ Int 124:180–204. doi:10.1016/j.envint.2018.12.052.
  • Oliveira, M., K. Slezakova, A. Fernandes, J. P. Teixeira, C. Delerue-Matos, M. D. C. Pereira, and S. Morais. 2017a. Occupational exposure of firefighters to polycyclic aromatic hydrocarbons in non-fire work environments. Sci. Total Environ. 592:277–87. doi:10.1016/j.scitotenv.2017.03.081.
  • Oliveira, M., K. Slezakova, C. P. Magalhaes, A. Fernandes, J. P. Teixeira, C. Delerue-Matos, M. Do Carmo Pereira, and S. Morais. 2017c. Individual and cumulative impacts of fire emissions and tobacco consumption on wildland firefighters’ total exposure to polycyclic aromatic hydrocarbons. J. Hazard. Mater. 334:10–20. doi:10.1016/j.jhazmat.2017.03.057.
  • Orozco-Levi, M., J. Garcia-Aymerich, J. Villar, A. Ramírez-Sarmiento, J. M. Antó, and J. Gea. 2006. Wood smoke exposure and risk of chronic obstructive pulmonary disease. Eur. Respir. J. 27 (3):542–46. doi:10.1183/09031936.06.00052705.
  • Osmitz, T. G., W. Droege, G. Hendriks, and M. Blais. 2022. Evaluation of potential toxicity of smoke from controlled burns of furnished rooms – effect of flame retardancy. J. Toxicol. Environ. Health Part A 85 (19):783–97. doi:10.1080/15287394.2022.2087812.
  • Park, J. S., R. W. Voss, S. McNeel, N. Wu, T. Guo, Y. Wang, L. Israel, R. Das, and M. Petreas. 2015. High exposure of California firefighters to polybrominated diphenyl ethers. Environ. Sci. Technol. 49 (5):2948–58. doi:10.1021/es5055918.
  • Pavagadhi, S., R. Betha, S. Venkatesan, R. Balasubramanian, and M. P. Hande. 2013. Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode. Environ Sci Pollut Res Int 20 (4):2569–78. doi:10.1007/s11356-012-1157-9.
  • Payne, J. P., S. J. Kemp, A. Dewar, P. Goldstraw, M. Kendall, L. C. Chen, and T. D. Tetley. 2004. Effects of airborne world trade center dust on cytokine release by primary human lung cells in vitro. J. Occup. Environ. Med. 46 (5):420–27. doi:10.1097/01.jom.0000126021.25149.64.
  • Pedersen, J. E., K. Ugelvig Petersen, N. E. Ebbehøj, J. P. Bonde, and J. Hansen. 2018. Risk of asthma and chronic obstructive pulmonary disease in a large historical cohort of Danish firefighters. Occup Environ Med 75 (12):871–76. doi:10.1136/oemed-2018-105234.
  • Pinkerton, L., S. J. Bertke, J. Yiin, M. Dahm, T. Kubale, T. Hales, M. Purdue, J. J. Beaumont, and R. Daniels. 2020. Mortality in a cohort of US firefighters from San Francisco, Chicago and Philadelphia: An update. Occup Environ Med 77:84–93. doi:10.1136/oemed-2019-105962.
  • Ramos, A. A., T. Almeida, B. Lima, and E. Rocha. 2019. Cytotoxic activity of the seaweed compound fucosterol, alone and in combination with 5-fluorouracil in colon cells using 2D and 3D culturing. J Toxicol Environl Health A 82:537–49. doi:10.1080/15287394.2019.1634378.
  • Ré, A., A. T. Rocha, I. Campos, J. J. Keizer, F. J. M. Goncalves, H. Oliveira, J. L. Pereira, and N. Abrantes. 2021. Cytotoxic effects of wildfire ashes: In-vitro responses of skin cells. Environ. Pollut. 285:117279. doi:10.1016/j.envpol.2021.117279.
  • Romeo, D., B. Salieri, R. Hischier, B. Nowack, and P. Wick. 2020. An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environ Int 137:105505. doi:10.1016/j.envint.2020.105505.
  • Sakolish, C. M., M. B. Esch, J. J. Hickman, M. L. Shuler, and G. J. Mahler. 2016. Modeling barrier tissues in vitro: Methods, achievements, and challenges. EBioMedicine 5:30–39. doi:10.1016/j.ebiom.2016.02.023.
  • Sangeeta, B., D. A. Jaywant, S. Shafina, A. Jyotirmoi, and B. Soumya. 2021. Two-dimensional and three-dimensional cell culture and their applications. In Cell culture, ed. Z. Xianquan, 1–25. Rijeka: IntechOpen.
  • Santibáñez-Andrade, M., R. Morales-Bárcenas, R. Quintana-Belmares, Y. Sánchez-Pérez, and C. M. García Cuellar. 2021. Particulate matter PM10 destabilizes mitotic spindle through downregulation of SETD2 function in A549 lung cancer cells. Spanish J Environ Mutagen Genom 25:37–37. doi:10.1016/j.chemosphere.2022.133900.
  • Shaw, S. D., M. L. Berger, J. H. Harris, S. H. Yun, Q. Wu, C. Liao, A. Blum, A. Stefani, and K. Kannan. 2013. Persistent organic pollutants including polychlorinated and polybrominated dibenzo-p-dioxins and dibenzofurans in firefighters from Northern California. Chemosphere 91:1386–94. doi:10.1016/j.chemosphere.2012.12.070.
  • Shirley, M., A. A. Stec, and T. Richard Hull. 2014. The effect of gas phase flame retardants on fire effluent toxicity. Polym. Degrad. Stab. 106:36–46. doi:10.1016/j.polymdegradstab.2013.09.013.
  • Sidwell, A., S. C. Cole, and C. Roprer. 2022. A comparison of fine particulate matter (PM 2.5) in vivo exposure studies incorporating chemical analysis. J. Toxicol. Environ. Health B 25 (8):422–44. doi:10.1080/10937404.2022.2142345.
  • Sood, A., H. Petersen, C. M. Blanchette, P. Meek, M. A. Picchi, S. A. Belinsky, and Y. Tesfaigzi. 2010. Wood smoke exposure and gene promoter methylation are associated with increased risk for COPD in smokers. Am. J. Respir. Crit. Care Med. 182 (9):1098–104. doi:10.1164/rccm.201002-0222OC.
  • Soteriades, E. S., D. L. Smith, A. J. Tsismenakis, D. M. Baur, and S. N. Kales. 2011. Cardiovascular disease in US firefighters: A systematic review. Cardiol Rev 19 (4):202–15. doi:10.1097/CRD.0b013e318215c105.
  • Sousa, G., J. Teixeira, C. Delerue-Matos, B. Sarmento, S. Morais, X. Wang, F. Rodrigues, and M. Oliveira. 2022. Exposure to PAHs during firefighting activities: A review on skin levels, in vitro/in vivo bioavailability, and health risks. Int J Environl Res Public Health 19:12677. doi:10.3390/ijerph191912677.
  • Stec, A. A., and T. R. Hull. 2010. Fire Toxicity. Preston, UK: Elsevier. ISBN: 978-1-84569-502-6.
  • Teixeira, J., C. Delerue-Matos, F. Rodrigues, S. Morais, and M. Oliveira. 2023. Emissions from vehicle fires: A literature review of levels of exposure during firefighting activities. In Occupational and environmental safety and health IV, 489–500. Cham, Switzerland: Springer Nature Switzerland. ISBN: 978-3-031-12546-1. doi:10.1007/978-3-031-12547-8_39.
  • Umbreit, N. T., C. -Z. Zhang, D. L. L, L. J. Blaine, A. M. Cheng, R. Tourdot, L. Sun, H. F. Almubarak, K. Judge, T. J. Mitchell, et al. 2020. Mechanisms generating cancer genome complexity from a single cell division error. Science 368 (6488):eaba0712. doi:10.1126/science.aba0712.
  • Viana, M., A. Salmatonidis, S. Bezantakos, C. Ribalta, N. Moreno, P. Córdoba, F. R. Cassee, J. Boere, S. Fraga, J. P. Teixeira, et al. 2021. Characterizing the chemical profile of incidental ultrafine particles for toxicity assessment using an aerosol concentrator. Ann Work Expo Health 65 (8):966–78. doi:10.1093/annweh/wxab011.
  • Vicente, E. D., C. A. Alves, V. Martins, S. M. Almeida, and M. Lazaridis. 2021. Lung-deposited dose of particulate matter from residential exposure to smoke from wood burning. Environ Sci Pollut Res Int 28 (46):65385–98. doi:10.1007/s11356-021-15215-4.
  • Wang, H., P. C. Brown, E. C. Y. Chow, L. Ewart, S. S. Ferguson, S. Fitzpatrick, B. J. Freedman, G. L. Guo, W. Hedrich, S. Heyward, et al. 2021. 3D cell culture models: Pharacokinetics, safety assessment and regulatory consideration. Clin Transl Sci 14:1659–80. doi:10.1111/cts.13066.
  • Xiao, H. 2016. In Vivo Nanotoxicity Assays in Animal Models. Toxicol Nanomater, 151–98. ISBN: 9783527337972. doi:10.1002/9783527689125.
  • Yang, L., W. -C. Wang, S. -C. -C. Lung, Z. Sun, C. Chen, J. -K. Chen, Q. Zou, Y. -H. Lin, and C. -H. Lin. 2017. Polycyclic aromatic hydrocarbons are associated with increase risk of chronic obstructive pulmonary disease during haze events in China. Sci. Total Environ. 574:1649–58. doi:10.1016/j.scitotenv.2016.08.211.
  • Yang, X., T. Zhang, X. Zhang, C. Chu, and S. Sang. 2022. Global burden of lung cancer attributable to ambient fine particulate matter pollution in 204 countries and territories, 1990-2019. Environ. Res. 204:112023. doi:10.1016/j.envres.2021.112023.
  • Zelikoff, J. T., L. C. Chen, M. D. Cohen, and R. B. Schlesinger. 2002. The toxicology of inhaled woodsmoke. J. Toxicol. Environ. Health B 5 (3):269–82. doi:10.1080/10937400290070062.
  • Zhang, Q., J. Zhan, K. Zhou, H. Lu, W. Zeng, A. A. Stec, T. R. Hull, Y. Hu, and Z. Gui. 2015. The influence of carbon nanotubes on the combustion toxicity of PP/intumescent flame retardant composites. Polym. Degrad. Stab 115:38–44. doi:10.1016/j.polymdegradstab.2015.02.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.