610
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Continent-based systematic review of the short-term health impacts of wildfire emissions

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abreu, A., C. Costa, E. Pinho, S. Silva, S. Morais, M. Do Carmo Pereira, A. Fernandes, V. Moraes de Andrade, J. P. Teixeira, and S. Costa. 2017. Wood smoke exposure of Portuguese wildland firefighters: DNA and oxidative damage evaluation. J. Toxicol. Environ. Health A 80 (13–15):596–604. doi:10.1080/15287394.2017.1286896.
  • Adetona, O., T. E. Reinhardt, J. Domitrovich, A. M. Adetona, M. T. Kleinman, R. D. Ottmar, P. Luke, and L. P. Naeher. 2016. Review of the health effects of wildland fire smoke on wildland firefighters and the public review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal Toxicol 28 (3):95–139. doi:10.3109/08958378.2016.1145771.
  • Aguilera, R., T. Corringham, A. Gershunov, and T. Benmarhnia. 2021. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nat. Commun 12 (1):1493. doi:10.1038/s41467-021-21708-0.
  • AIHW. 2020. Australian bushfires 2019–20: Exploring the short-term health impacts, summary - Australian Institute of Health and Welfare. Canberra, Australia: Australian Institute of Health and Welfare. https://www.preventionweb.net/publication/australian-bushfires-2019-20-exploring-short-term-health-impacts.
  • Alman, B. L., G. Pfister, H. Hao, J. Stowell, X. Hu, Y. Liu, and M. J. Strickland. 2016. The association of wildfire smoke with respiratory and cardiovascular emergency department visits in Colorado in 2012: A case crossover study. Environ. Health 15 (1):64. doi:10.1186/s12940-016-0146-8.
  • Alonso-Blanco, E., A. Castro, A. I. Calvo, V. Pont, M. Mallet, and R. Fraile. 2018. Wildfire smoke plumes transport under a subsidence inversion: Climate and health implications in a distant urban area. Sci. Total Environ 619-620:988–1002. doi:10.1016/j.scitotenv.2017.11.142.
  • Amjad, S., D. Chojecki, A. Osornio-Vargas, and M. B. Ospina. 2021. Wildfire exposure during pregnancy and the risk of adverse birth outcomes: A systematic review. Enviro. Int 156:106644. doi:10.1016/j.envint.2021.106644.
  • Andersen, M. H. G., A. T. Saber, J. E. Pedersen, P. B. Pedersen, P. A. Clausen, M. Løhr, A. Kermanizadeh, S. Loft, N. E. Ebbehøj, Å. M. Hansen, et al. 2018. Assessment of polycyclic aromatic hydrocarbon exposure, lung function, systemic inflammation, and genotoxicity in peripheral blood mononuclear cells from firefighters before and after a work shift. Environ. Mol. Mutagen 59(6):539–48. doi:10.1002/em.22193.
  • AQICN. 2023. World-Wide Air Quality Monitoring Data Coverage. The World Air Quality Project (2008-2023) (online database). https://aqicn.org/sources/
  • Augusto, S., N. Ratola, P. Tarín-Carrasco, P. Jiménez-Guerrero, M. Turco, M. Schuhmacher, S. Costa, J. P. Teixeira, and C. Costa. 2020. Population exposure to particulate-matter and related mortality due to the Portuguese wildfires in October 2017 driven by storm Ophelia. Environ Int 144:106056. doi:10.1016/j.envint.2020.106056.
  • Ballesteros-González, K., A. P. Sullivan, and R. Morales-Betancourt. 2020. Estimating the air quality and health impacts of biomass burning in Northern South America using a chemical transport model. Sci. Total Environ 739:139755. doi:10.1016/j.scitotenv.2020.139755.
  • Barros, B., M. Oliveira, and S. Morais. 2021. Firefighters’ occupational exposure: Contribution from biomarkers of effect to assess health risks. Environ. Int 156:106704. doi:10.1016/j.envint.2021.106704.
  • Barros, B., M. Oliveira, and S. Morais. 2023. Biomonitoring of firefighting forces: A review on biomarkers of exposure to health-relevant pollutants released from fires. J. Toxicol. Environ. Health B 26 (3):127–71. doi:10.1080/10937404.2023.2172119.
  • Berthiaume, A., E. Galarneau, and G. Marson. 2021. Polycyclic aromatic compounds (PACs) in the Canadian environment: Sources and emissions. Environ. Pollut. 269:116008. doi:10.1016/j.envpol.2020.116008.
  • Bessa, M. J., B. Sarmento, M. Oliveira, and F. Rodrigues. 2023. In vitro data for fire pollutants: Contribution of studies using human cell models towards firefighters’ occupational. J. Toxicol. Environ. Health B 26 (4):238–55. doi:10.1080/10937404.2023.2187909.
  • Black, C., Y. Tesfaigzi, J. A. Bassein, and L. A. Miller. 2017. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue. Environ. Toxicol. Pharmacol 55:186–95. doi:10.1016/j.etap.2017.08.022.
  • Borchers-Arriagada, N., J. A. Horsley, A. J. Palmer, G. G. Morgan, R. Tham, and F. H. Johnston. 2019. Association between fire smoke fine particulate matter and asthma-related outcomes: Systematic review and meta-analysis. Environ. Res 179:108777. doi:10.1016/j.envres.2019.108777.
  • Borchers-Arriagada, N., A. J. Palmer, D. M. J. S. Bowman, G. J. Williamson, and F. H. Johnston. 2020a. Health impacts of ambient biomass smoke in Tasmania, Australia. Int. J. Environ. Res 17 (9):3264. doi:10.3390/ijerph17093264.
  • Borchers-Arriagada, N., F. H. Johnston, A. J. Palmer, D. M. J. S. Bowman, G. G. Morgan, and B. B. Jalaludin. 2020b. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust 213 (6):282–83. doi:10.5694/mja2.50545.
  • Brown, H., X. Liu, R. Pokhrel, S. Murphy, Z. Lu, R. Saleh, T. Mielonen, H. Kokkola, T. Bergman, G. Myhre, et al. 2021. Biomass burning aerosols in most climate models are too absorbing. Nat. Commun 12(1):277. doi:10.1038/s41467-020-20482-9.
  • Bruni Zani, N., G. Lonati, M. I. Mead, M. T. Latif, and P. Crippa. 2020. Long-term satellite-based estimates of air quality and premature mortality in Equatorial Asia through deep neural networks. Environ. Res. Lett. 15 (10):104088. doi:10.1088/1748-9326/abb733.
  • Burke, M., A. Driscoll, S. Heft-Neal, J. Xue, J. Burney, and M. Wara. 2021. The changing risk and burden of wildfire in the United States. Proc. Natl. Acad. Sci. U.S.A 118 (2):e20111048118. doi:10.1073/pnas.2011048118.
  • Cascio, W. E. 2018. Wildland fire smoke and human health. Sci. Total Environ 624:586–95. doi:10.1016/j.scitotenv.2017.12.086.
  • Chen, G., Y. Guo, X. Yue, S. Tong, A. Gasparrini, M. L. Bell, B. Armstrong, J. Schwartz, J. J. K. Jaakkola, A. Zanobetti, et al. 2021. Mortality risk attributable to wildfire-related PM2.5 pollution: A global time series study in 749 locations. Lancet Planet. Health 5(9):e579–e87. doi:10.1016/S2542-5196(21)00200-X.
  • CIFFC. 2022. Canada report 2021. Winnipeg, Canada: Canadian Interagency Forest Fire Centre INC. http://www.ciffc.ca/news/canreport00.PDF.
  • Cleland, S. E., M. L. Serre, A. G. Rappold, and J. J. West. 2021. Estimating the acute health impacts of fire-originated PM 2.5 exposure during the 2017 California Wildfires: Sensitivity to choices of Inputs. Geo. Health 5 (7):e2021GH00414. doi:10.1029/2021GH000414.
  • Cochard, M., F. Ledoux, and Y. Landkocz. 2020. Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: State of the art and critical review of the in vitro studies. J. Toxicol. Environ. Health B 23 (7):293–318. doi:10.1080/10937404.2020.1816238.
  • Covey, K., F. Soper, S. Pangala, A. Bernardino, Z. Pagliaro, L. Basso, H. Cassol, P. Fearnside, D. Navarrete, S. Novoa, et al. 2021. Carbon and beyond: The biogeochemistry of climate in a rapidly changing amazon. Front. For. Glob. Change 4: 10.3389/ffgc.2021.618401.
  • Deflorio-Barker, S., J. Crooks, J. Reyes, and A. G. Rappold. 2019. Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008–2010. Environ. Health Perspect 127 (3):1–9. doi:10.1289/EHP3860.
  • De Oliveira Alves, N., A. T. Vessoni, A. Quinet, R. S. Fortunato, G. S. Kajitani, M. S. Peixoto, S. De Souza Hacon, P. Artaxo, P. Saldiva, C. F. M. Menck, et al. 2017. Biomass burning in the amazon region causes DNA damage and cell death in human lung cells. Sci. Rep 7(1):1–13. doi:10.1038/s41598-017-11024-3.
  • Dong, T. T. T., A. L. Hinwood, A. C. Callan, G. Zosky, and W. D. Stock. 2017. In vitro assessment of the toxicity of bushfire emissions: A review. Sci. Total Environ 603–604:268–78. doi:10.1016/j.scitotenv.2017.06.062.
  • Doubleday, A., J. Schulte, L. Sheppard, M. Kadlec, R. Dhammapala, J. Fox, and T. Busch Isaksen. 2020. Mortality associated with wildfire smoke exposure in Washington state, 2006–2017: A case-crossover study. Environ. Health: Glob. Access Sci. Source 19 (1):1–10. doi:10.1186/s12940-020-0559-2.
  • EC (European Commission). 2021. Forest fires in Europe, Middle East and North Africa 2020. Luxembourg: Publications Office of the European UnionEuropean Commission. doi:10.2760/216446.
  • EU (European Union). 2023. Global Fire Monitoring. Atmosphere Monitoring Service. Copernicus – Europe’s Eyes On Earth (Online Database). https://atmosphere.copernicus.eu/global-fire-monitoring
  • Fann, N., B. Alman, R. A. Broome, G. G. Morgan, F. H. Johnston, G. Pouliot, and A. G. Rappold. 2018. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci. Total Environ 610–611:802–09. doi:10.1016/j.scitotenv.2017.08.024.
  • Farugia, T. L., C. Cuni-Lopez, and A. R. White. 2021. Potential impacts of extreme heat and bushfires on dementia. J. Alzheimer’s Dis 79 (3):969–78. doi:10.3233/JAD-201388.
  • Gan, R. W., B. Ford, W. Lassman, G. Pfister, A. Vaidyanathan, E. V. Fischer, J. Volckens, J. R. Pierce, and S. Magzamen. 2017. Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions. Geo. Health 1 (3):122–36. doi:10.1002/2017GH000073.
  • Gan, R. W., J. Liu, B. Ford, K. O’Dell, A. Vaidyanathan, A. Wilson, J. Volckens, G. Pfister, E. V. Fischer, J. R. Pierce, et al. 2020. The association between wildfire smoke exposure and asthma-specific medical care utilization in Oregon during the 2013 wildfire season. J Expo Sci Environ Epidemiol 30(4):618–28. doi:10.1038/s41370-020-0210-x.
  • Gao, P., E. da Silva, L. Hou, N. D. Denslow, P. Xiang, and L. Q. Ma. 2018. Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environ. Int 119:466–77. doi:10.1016/j.envint.2018.07.017.
  • Gao, Y., W. Huang, P. Yu, R. Xu, Z. Yang, D. Gasevic, T. Ye, Y. Guo, and S. Li. 2023. Long-term impacts of non-occupational wildfire exposure on human health: A systematic review. Environ. Pollut 320:121041. doi:10.1016/j.envpol.2023.121041.
  • Graham, A. M., R. J. Pope, K. P. Pringle, S. Arnold, M. P. Chipperfield, L. A. Conibear, E. W. Butt, L. Kiely, C. Knote, and J. B. McQuaid. 2020. Impact on air quality and health due to the Saddleworth Moor Fire in Northern England. Environ. Res. Lett 15 (7):074018. doi:10.1088/1748-9326/ab8496.
  • Grzywa-Celińska, A., A. Krusiński, and J. Milanowski. 2020. ‘Smoging kills’ – Effects of air pollution on human respiratory system. Ann. Agric. Environ. Med 27 (1):1–5. doi:10.26444/aaem/110477.
  • Hahn, M. B., G. Kuiper, K. O’Dell, E. V. Fischer, and S. Magzamen. 2021. Wildfire smoke is associated with an increased risk of cardiorespiratory emergency department visits in Alaska. Geo. Health 5 (5):1–15. doi:10.1029/2020GH000349.
  • Henderson, S. B. 2020. The COVID-19 pandemic and wildfire smoke: Potentially concomitant disasters. Am. J. Epidemiol 110 (8):1140–42. doi:10.2105/AJPH.2020.305744.
  • Higgins, J. P. T., J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, and V. A. Welch, editors. 2022. Cochrane handbook for systematic reviews of interventions version 6.3 (updated February 2022). Cochrane (handbook online). https://training.cochrane.org/handbook/current
  • Hong, K. Y., G. H. King, A. Saraswat, and S. B. Henderson. 2017. Seasonal ambient particulate matter and population health outcomes among communities impacted by road dust in British Columbia, Canada. J. Air Waste Manage. Assoc 67:986–99. doi:10.1080/10962247.2017.1315348.
  • Huang, R., Y. Hu, A. G. Russell, J. A. Mulholland, and M. T. Odman. 2019. The impacts of prescribed fire on PM2.5 air quality and human health: Application to asthma-related emergency room visits in Georgia, USA. Int. J. Environ. Res 16 (13):2312. doi:10.3390/ijerph16132312.
  • Hutchinson, J. A., J. Vargo, M. Milet, N. H. F. French, M. Billmire, J. Johnson, and S. Hoshiko. 2018. The San Diego 2007 Wildfires and medical emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Med 15 (7):1–21. doi:10.1371/journal.pmed.1002601.
  • Hu, W., Y. Wang, T. Wang, Q. Ji, Q. Jia, T. Meng, S. Ma, Z. Zhang, Y. Li, R. Chen, et al. 2021. Ambient particulate matter compositions and increased oxidative stress: Exposure-response analysis among high-level exposed population. Environ. Int 147:106341. doi:10.1016/j.envint.2020.106341.
  • IARC. 2022a. Agents classified by the IARC monographs, volumes 1 – 132. International Agency for Research on Cancer (Online Database, Last Updated: 2022-09-07 10.34am (CEST)). https://monographs.iarc.who.int/list-of-classifications.
  • IARC. 2022b. Volume 132: Occupational exposure as a firefighter. Lyon, France: IARC Monographs on The Evaluation of Carcinogenic Risks to Humans (in Press). https://monographs.iarc.who.int/news-events/volume-132-occupational-exposure-as-a-firefighter/.
  • Isley, C. F., and M. P. Taylor. 2020. Atmospheric remobilization of natural and anthropogenic contaminants during wildfires. Environ. Pollut 267:115400. doi:10.1016/j.envpol.2020.115400.
  • Jaffe, D. A., S. M. O’Neill, N. K. Larkin, A. L. Holder, D. L. Peterson, J. E. Halofsky, and A. G. Rappold. 2020. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manage Assoc 70 (6):583–615. doi:10.1080/10962247.2020.1749731.
  • Jaishankar, M., T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol 7 (2):60–72. doi:10.2478/intox-2014-0009.
  • Johnson, M. M., and F. Garcia‐Menendez. 2022. Uncertainty in health impact assessments of smoke from a wildfire event. Geo. Health 6 (1):e2021GH000526. doi:10.1029/2021GH000526.
  • Jolly, M. W., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson, and D. M. J. S. Bowman. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun 6 (1):7537. doi:10.1038/ncomms8537.
  • Jones, C. G., A. G. Rappold, J. Vargo, W. E. Cascio, M. Kharrazi, B. McNally, and S. Hoshiko. 2020. Out-of-hospital cardiac arrests and wildfire-related particulate matter during 2015–2017 California Wildfires. J. Am. Heart Assoc 9 (8):e014125. doi:10.1161/JAHA.119.014125.
  • Kiser, D., G. Elhanan, W. J. Metcalf, B. Schnieder, and J. J. Grzymski. 2021. SARS-CoV-2 test positivity rate in Reno, Nevada: Association with PM2.5 during the 2020 wildfire smoke events in the Western United States. J Expo Sci. Environ. Epidemiol 31 (5):797–803. doi:10.1038/s41370-021-00366-w.
  • Knorr, W., F. Dentener, J. F. Lamarque, L. Jiang, and A. Arneth. 2017. Wildfire air pollution hazard during the 21st century. Atmos. Chem. Phys 17 (14):9223–36. doi:10.5194/acp-17-9223-2017.
  • Kochi, I., P. A. Champ, J. B. Loomis, and G. H. Donovan. 2016. Valuing morbidity effects of wildfire smoke exposure from the 2007 Southern California wildfires. J. Forest Econ 25:29–54. doi:10.1016/j.jfe.2016.07.002.
  • Kollanus, V., M. Prank, A. Gens, J. Soares, J. Vira, J. Kukkonen, M. Sofiev, R. O. Salonen, and T. Lanki. 2017. Mortality due to vegetation fire–originated PM 2.5 exposure in Europe—assessment for the years 2005 and 2008. Environ. Health Perspect 125 (1):30–37. doi:10.1289/EHP194.
  • Kondo, M. C., A. J. De Roos, L. S. White, W. E. Heilman, M. H. Mockrin, C. A. Gross-Davis, and I. Burstyn. 2019. Meta-analysis of heterogeneity in the effects of wildfire smoke exposure on respiratory health in North America. Int. J. Environ. Res 16 (6):960. doi:10.3390/ijerph16060960.
  • Kondo, M. C., C. E. Reid, M. H. Mockrin, W. E. Heilman, and D. Long. 2022. Socio-demographic and health vulnerability in prescribed-burn exposed versus unexposed counties near the National Forest System. Sci. Total Environ 806:150564. doi:10.1016/j.scitotenv.2021.150564.
  • Landguth, E. L., Z. A. Holden, J. Graham, B. Stark, E. B. Mokhtari, E. Kaleczyc, S. Anderson, S. Urbanski, M. Jolly, E. O. Semmens, et al. 2020. The delayed effect of wildfire season particulate matter on subsequent influenza season in a mountain West region of the USA. Environ. Int 139:105668. doi:10.1016/j.envint.2020.105668.
  • Leibel, S., M. Nguyen, W. Brick, J. Parker, S. Ilango, R. Aguilera, A. Gershunov, and T. Benmarhnia. 2020. Increase in pediatric respiratory visits associated with Santa Ana wind–driven wildfire smoke and PM2.5 levels in San Diego county. Ann. Am. Thorac. Soc 17:313–20. doi:10.1513/AnnalsATS.201902-150OC.
  • Liang, F., F. Liu, K. Huang, X. Yang, J. Li, Q. Xiao, J. Chen, X. Liu, J. Cao, C. Shen, et al. 2020. Long-term exposure to fine particulate matter and cardiovascular disease in China. J. Am. Coll. Cardiol 75(7):707–17. doi:10.1016/j.jacc.2019.12.031.
  • Lipner, E. M., K. O’Dell, S. J. Brey, B. Ford, J. R. Pierce, E. V. Fischer, and J. L. Crooks. 2019. The associations between clinical respiratory outcomes and ambient wildfire smoke exposure among pediatric asthma patients at National Jewish Health, 2012–2015. Geo. Health 3 (6):146–59. doi:10.1029/2018gh000142.
  • Liu, Y., E. Austin, J. Xiang, T. Gould, T. Larson, and E. Seto. 2020. Health impact assessment of PM2.5 attributable mortality from the September 2020 Washington state wildfire smoke episode. Med. Rxiv 6. doi:10.1101/2020.09.19.20197921.
  • Liu, J. C., L. J. Mickley, M. P. Sulprizio, X. Yue, R. D. Peng, F. Dominici, and M. Bell. 2016. Future respiratory hospital admissions from wildfire smoke under climate change in the Western US. Environ. Res. Lett 11 (12):124018. doi:10.1088/1748-9326/11/12/124018.
  • Liu, J. C., A. Wilson, L. J. Mickley, F. Dominici, K. Ebisu, Y. Wang, M. P. Sulprizio, R. D. Peng, X. Yue, J. Y. Son, et al. 2017a. Wildfire-specific fine particulate matter and risk of hospital admissions in urban and rural counties. Epidemiology 28(1):77–85. doi:10.1097/EDE.0000000000000556.
  • Liu, J. C., A. Wilson, L. J. Mickley, K. Ebisu, M. P. Sulprizio, Y. Wang, R. D. Peng, X. Yue, F. Dominici, and M. L. Bell. 2017b. Who among the elderly is most vulnerable to exposure to and health risks of fine particulate matter from wildfire smoke? Am. J. Epidemiol 186 (6):730–35. doi:10.1093/aje/kwx141.
  • Lyth, A., A. Spinaze, P. Watson, and F. H. Johnston. 2018. Place, human agency and community resilience – considerations for public health management of smoke from prescribed burning. Int J Justice Sustain 23 (10):975–90. doi:10.1080/13549839.2018.1508205.
  • Magzamen, S., R. W. Gan, J. Liu, K. O’Dell, B. Ford, K. Berg, K. Bol, A. Wilson, E. V. Fischer, and J. R. Pierce. 2021. Differential cardiopulmonary health impacts of local and long-range transport of wildfire smoke. Geo. Health 5 (3):1–18. doi:10.1029/2020GH000330.
  • Matz, C. J., M. Egyed, G. Xi, J. Racine, R. Pavlovic, R. Rittmaster, S. B. Henderson, and D. M. Stieb. 2020. Health Impact analysis of PM2.5 from wildfire smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ 725:138506. doi:10.1016/j.scitotenv.2020.138506.
  • McClure, C. D., and D. A. Jaffe. 2018. US particulate matter air quality improves except in wildfire-prone areas. Proc. Natl. Acad. Sci. U.S.A 115 (31):7901–06. doi:10.1073/pnas.1804353115.
  • Mickler, R. A. 2021. Carbon emissions from a temperate coastal peatland wildfire: Contributions from natural plant communities and organic soils. C. Balance Manage 16 (1):26. doi:10.1186/s13021-021-00189-0.
  • Milton, L. A., and A. R. White. 2020. The potential impact of bushfire smoke on brain health. Neurochem. Int 139:104796. doi:10.1016/j.neuint.2020.104796.
  • Miranda, A. I., V. Martins, P. Cascão, J. H. Amorim, J. Valente, C. Borrego, A. J. Ferreira, C. R. Cordeiro, D. X. Viegas, and R. Ottmar. 2012. Wildland smoke exposure values and exhaled breath indicators in firefighters. J. Toxicol. Environ. Health Part A 75 (13–15):831–43. doi:10.1080/15287394.2012.690686.
  • Møller, P., and S. Loft. 2010. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environ. Health Perspect 118 (8):1126–36. doi:10.1289/ehp.0901725.
  • Mueller, W., M. Loh, S. Vardoulakis, H. J. Johnston, S. Steinle, N. Precha, W. Kliengchuay, K. Tantrakarnapa, and J. W. Cherrie. 2020. Ambient particulate matter and biomass burning: An ecological time series study of respiratory and cardiovascular hospital visits in Northern Thailand. Environ. Health 19 (1):77. doi:10.1186/s12940-020-00629-3.
  • Muir, D. C. G., and E. Galarneau. 2021. Polycyclic aromatic compounds (PACs) in the Canadian environment: Links to global change. Environ. Pollut 273:116425. doi:10.1016/j.envpol.2021.116425.
  • Navarro, K. M., D. Schweizer, J. R. Balmes, and R. Cisneros. 2018. A Review of Community smoke exposure from wildfire compared to prescribed fire in the United States. Atmosphere 9 (5):1–11. doi:10.3390/atmos9050185.
  • Nguyen, H. D., M. Azzi, S. White, D. Salter, T. Trieu, G. Morgan, M. Rahman, S. Watt, M. Riley, L. T. C. Chang, et al. 2021. The summer 2019–2020 wildfires in East Coast Australia and their impacts on air quality and health in New South Wales, Australia. Int. J. Environ. Res 18:1–27. doi:10.3390/ijerph18073538.
  • Nguyen, H. D., T. Trieu, M. Cope, M. Azzi, and G. Morgan. 2020. Modelling Hazardous reduction burnings and bushfire emission in air quality model and their impacts on health in the greater metropolitan region of sydney. Environ. Model 25 (5):705–30. doi:10.1007/s10666-020-09705-x.
  • O’Dell, K., K. Bilsback, B. Ford, S. E. Martenies, S. Magzamen, E. V. Fischer, and J. R. Pierce. 2021. Estimated mortality and morbidity attributable to smoke plumes in the United States: Not just a Western US problem. Geo. Health 5 (9):1–17. doi:10.1029/2021GH000457.
  • Oliveira, M., C. Delerue-Matos, M. C. Pereira, and S. Morais. 2020. Environmental particulate matter levels during 2017 large forest fires and megafires in the center region of Portugal: A public health concern? Int. J. Environ. Res 17 (3):10–13. doi:10.3390/ijerph17031032.
  • Oliveira, M., K. Slezakova, C. Delerue-Matos, M. D. C. Pereira, and S. Morais. 2016. Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3-5 years old children). Environ. Pollut 208:382–94. doi:10.1016/j.envpol.2015.10.004.
  • O’Neill, S. M., M. Diao, S. Raffuse, M. Al-Hamdan, M. Barik, Y. Jia, S. Reid, Y. Zou, D. Tong, J. J. West, et al. 2021. A multi-analysis approach for estimating regional health impacts from the 2017 Northern California wildfires. J. Air Waste Manage. Assoc 71(7):791–814. doi:10.1080/10962247.2021.1891994.
  • Ontawong, A., S. Saokaew, B. Jamroendararasame, and A. Duangjai. 2020. Impact of Long-term exposure wildfire smog on respiratory health outcomes. Expert Rev Respir Med 14:527–31. doi:10.1080/17476348.2020.1740089.
  • Orr, A., C. A. L. Migliaccio, M. Buford, S. Ballou, and C. T. Migliaccio. 2020. Sustained effects on lung function in community members following exposure to hazardous PM2.5 levels from wildfire smoke. Toxics 8:1–14. doi:10.3390/toxics8030053.
  • Pastorková, A., M. Cerná, J. Smíd, and V. Vrbíková. 2004. Mutagenicity of airborne particulate matter PM10. Cent. Eur. J. Public Health 12 (Suppl):S72–S75.
  • Rappold, A. G., J. M. Reyes, G. Pouliot, W. E. Cascio, and D. Diaz-Sanchez. 2017. Community vulnerability to health impacts of wildland fire smoke exposure. Environ. Sci. Technol 51 (12):6674–82. doi:10.1021/acs.est.6b06200.
  • Reid, C. E., E. M. Considine, G. L. Watson, D. Telesca, G. G. Pfister, and M. Jerrett. 2019. Associations between respiratory health and ozone and fine particulate matter during a wildfire event. Environ. Int 129:291–98. doi:10.1016/j.envint.2019.04.033.
  • Reid, C. E., M. Jerrett, I. B. Tager, M. L. Petersen, J. K. Mann, and J. R. Balmes. 2016. Differential respiratory health effects from the 2008 Northern California wildfires: A spatiotemporal approach. Environ. Res 150:227–35. doi:10.1016/j.envres.2016.06.012.
  • Rein, G., and X. Huang. 2021. Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives. Curr. Opin. Environ. Sci. Health 24:100296. doi:10.1016/jcoesh.2021.100296.
  • Shkirkova, K., K. Lamorie-Foote, M. Connor, A. Patel, G. Barisano, H. Baertsch, Q. Liu, T. E. Morgan, C. Sioutas, and W. J. Mack. 2020. Effects of ambient particulate matter on vascular tissue: A review. J. Toxicol. Environ. Health B 23 (7):319–50. doi:10.1080/10937404.2020.1822971.
  • Sidwell, A., S. C. Smith, and C. Roper. 2022. A comparison of fine particulate matter (PM2.5) in vivo exposure studies incorporating chemical analysis. J. Toxicol. Environ. Health B 25 (8):422–44. doi:10.1080/10937404.2022.2142345.
  • Song, S., B. Chen, T. Huang, S. Ma, L. Liu, J. Luo, H. Shen, J. Wang, L. Guo, M. Wu, et al. 2023. Assessing the contribution of global wildfire biomass burning to BaP contamination in the Arctic. Environ. Sci. Ecotechnol 14:100232. doi:10.1016/j.ese.2022.100232.
  • Stec, A. A. 2017. Fire toxicity – the elephant in the room? Fire Saf. J 91:79–90. doi:10.1016/j.firesaf.2017.05.003.
  • Stowell, J. D., G. Geng, E. Saikawa, H. H. Chang, J. Fu, C. E. Yang, Q. Zhu, Y. Liu, and M. J. Strickland. 2019. Associations of wildfire smoke PM2.5 exposure with cardiorespiratory events in Colorado 2011–2014. Environ. Int 133:105151. doi:10.1016/j.envint.2019.105151.
  • Tarín-Carrasco, P., S. Augusto, L. Palacios-Penã, N. Ratola, and P. Jiménez-Guerrero. 2021. Impact of large wildfires on PM10 levels and human mortality in Portugal. Nat. Hazards Earth Sys. Sci 21:2867–80. doi:10.5194/nhess-21-2867-2021.
  • Turco, M., S. Jerez, S. Augusto, P. Tarín-Carrasco, N. Ratola, P. Jiménez-Guerrero, and R. M. Trigo. 2019. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep 9 (1):1–8. doi:10.1038/s41598-019-50281-2.
  • Turner, M. C., Z. J. Andersen, A. Baccarelli, W. R. Diver, S. M. Gapstur, C. A. Pope, D. Prada, J. Samet, G. Thurston, and A. Cohen. 2020. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J. Clin 70 (6):460–79. doi:10.3322/caac.21632.
  • USEPA. 2012. Revised air quality standards for particle pollution and updates to the air quality index (AQI). Washington D.C, USA: United States Environmental Protection Agency. https://www.epa.gov/sites/default/files/2016-04/documents/2012_aqi_factsheet.pdf.
  • USEPA. 2022. Climate change indicators: Wildfires (last updated: July 2022). Washington D.C, USA: United States Environmental Protection Agency. https://www.epa.gov/climate-indicators/climate-change-indicators-wildfires.
  • Vadrevu, K. P., K. Lasko, L. Giglio, W. Schroeder, S. Biswas, and C. Justice. 2019. Trends in vegetation fires in south and Southeast Asian countries. Sci. Rep 9 (1):7422. doi:10.1038/s41598-019-43940-x.
  • Vargas, V. M. F., F. M. R. da Silva Júnior, T. da Silva Pereira, C. S. da Silvada Silvada Silva, and M. V. Coronas. 2023. A comprehensive overview of genotoxicity and mutagenicity associated with outdoor air pollution exposure in Brazil. J. Toxicol. Environ. Health B 26 (3):172–99. doi:10.1080/10937404.2023.2175092.
  • Vicedo-Cabrera, A. M., A. Esplugues, C. Iñíguez, M. Estarlich, and F. Ballester. 2016. Health effects of the 2012 Valencia (Spain) wildfires on children in a cohort study. Environ. Geochem. Health 38 (3):703–12. doi:10.1007/s10653-015-9753-5.
  • Wallace, M. A. G., J. D. Pleil, K. D. Oliver, D. A. Whitaker, S. Mentese, K. W. Fent, and G. P. Horn. 2019. Non-targeted GC/MS analysis of exhaled breath samples: Exploring human biomarkers of exogenous exposure and endogenous response from professional firefighting activity. J. Toxicol. Environ. Health Part A 82 (4):244–60. doi:10.1080/15287394.2019.1587901.
  • Wang, L., H. Cheng, D. Wang, B. Zhao, J. Zhang, L. Cheng, P. Yao, A. Di Narzo, Y. Shen, J. Yu, et al. 2019. Airway microbiome is associated with respiratory functions and responses to ambient particulate matter exposure. Ecotoxicol. Environ. Saf 167:269–77. doi:10.1016/j.ecoenv.2018.09.079.
  • Wettstein, Z. S., S. Hoshiko, J. Fahimi, R. J. Harrison, W. E. Cascio, and A. G. Rappold. 2018. Cardiovascular and cerebrovascular emergency department visits associated with wildfire smoke exposure in California in 2015. J. Am Heart Assoc 7:e007492. doi:10.1161/JAHA.117.007492.
  • WHO. 2021. WHO global air quality guidelines: Particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva, Switzerland: World Health Organization. https://apps.who.int/iris/handle/10665/345329.
  • Wu, W., Y. Chen, Y. Cheng, Q. Tang, F. Pan, N. Tang, Z. Sun, X. Wang, S. J. London, and Y. Xia. 2022. Association between ambient particulate matter exposure and semen quality in fertile men. Environ. Health 21 (1):16. doi:10.1186/s12940-022-00831-5.
  • Xi, Y., A. V. Kshirsagar, T. J. Wade, D. B. Richardson, M. A. Brookhart, L. Wyatt, and A. G. Rappold. 2020. Mortality in US hemodialysis patients following exposure to wildfire smoke. J. Am. Soc. Nephrol 31 (8):1824–35. doi:10.1681/ASN.2019101066.
  • Yang, Q., X. Qiu, R. Li, J. Ma, K. Li, and G. Li. 2015. Polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress for a rural population from the North China Plain. Environ. Sci. Pollut. Res 22 (3):1760–69. doi:10.1007/s11356-014-3284-y.
  • Yao, J., M. Brauer, J. Wei, K. M. Mcgrail, F. H. Johnston, and S. B. Henderson. 2020. Sub-daily exposure to fine particulate matter and ambulance dispatches during wildfire seasons: A case-crossover study in British Columbia, Canada. Environ. Health Perspect 128 (6):067006. doi:10.1289/EHP5792.
  • Yao, J., J. Eyamie, and S. B. Henderson. 2016. Evaluation of a spatially resolved forest fire smoke model for population-based epidemiologic exposure assessment. J. Expo. Sci. Environ. Epidemiol 26 (3):233–40. doi:10.1038/jes.2014.67.
  • Ye, T., R. Xu, X. Yue, G. Chen, P. Yu, M. S. Z. S. Coêlho, P. H. N. Saldiva, M. J. Abramson, Y. Guo, and S. Li. 2022. Short-term exposure to wildfire-related PM2.5 increases mortality risks and burdens in Brazil. Nat. Commun 13 (1):7651. doi:10.1038/s41467-022-35326-x.
  • Youssouf, H., C. Liousse, L. Roblou, E. M. Assamoi, R. O. Salonen, C. Maesano, S. Banerjee, and I. Annesi-Maesano. 2014. Quantifying wildfires exposure for investigating health-related effects. Atmos. Environ 97:239–51. doi:10.1016/j.atmosenv.2014.07.041.
  • Yu, W., T. Ye, Y. Zhang, R. Xu, Y. Lei, Z. Chen, Z. Yang, Y. Zhang, J. Song, X. Yue, et al. 2023. Global estimates of daily ambient fine particulate matter concentrations and unequal spatiotemporal distribution of population exposure: A machine learning modelling study. Lancet Planet. Health 7(3):e209–e18. doi:10.1016/S2542-5196(23)00008-6.
  • Zhang, Y., P. J. Beggs, A. McGushin, H. Bambrick, S. Trueck, I. C. Hanigan, G. G. Morgan, H. L. Berry, M. K. Linnenluecke, F. H. Johnston, et al. 2020. The 2020 special report of the MJA–lancet countdown on health and climate change: Lessons learnt from Australia’s “Black Summer”. Med. J. Aust 213(11):490–2.e10. doi:10.5694/mja2.50869.
  • Zhang-Turpeinen, H., M. Kivimäenpää, H. Aaltonen, F. Berninger, E. Köster, K. Köster, O. Menyailo, A. Prokushkin, and J. Pumpanen. 2020. Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. Sci. Total Environ 711:134851. doi:10.1016/j.scitotenv.2019.134851.
  • Zielinska, B., and V. Samburova. 2019. Residential and non-residential biomass combustion: Impacts on air quality. Encycl. Environ. Health 5:499–507. doi:10.1016/B978-0-12-409548-9.11659-8.
  • Zu, K., G. Tao, C. Long, J. Goodman, and P. Valberg. 2016. Long-range fine particulate matter from the 2002 Quebec forest fires and daily mortality in Greater Boston and New York City. Air Qual. Atmos Health 9 (3):213–21. doi:10.1007/s11869-015-0332-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.