2,243
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Comparative Spectroscopic Studies on Curcumin Stabilization by Association to Bovine Serum Albumin and Casein: A Perspective on Drug-Delivery Application

, , , , , & show all
Pages 638-659 | Received 18 May 2013, Accepted 05 Oct 2013, Published online: 31 Dec 2014

REFERENCES

  • Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research 2003, 23 (1A), 363–398.
  • Sahu, A.; Kasoju, N.; Bora, U. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 2008, 9 (10), 2905–2912.
  • Aggarwal, B.B.; Bhatt, I.D.; Ichikawa, H.; Ahn, K.S.; Sethi, G.; Sandur, S.K.; Sundaram, C.; Seeram, N.; Shishodia, S. Curcumin: Biological and medicinal properties. In: Turmeric: The Genus Curcuma. Taylor and Francis Press: London, United Kingdom, 2007.
  • Leung, M.H.; Kee, T.W. Effective stabilization of curcumin by association to plasma proteins: Human serum albumin and fibrinogen. Langmuir 2009, 25 (10), 5773–5777.
  • Hsu, C.H.; Cheng, A.L. Clinical studies with curcumin. Advances in Experimental Medicine and Biology 2007, 595, 471–480.
  • Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; Yu, H.S.; Jee, S.H.; Chen, G.S.; Chen, T.M.; Chen, C.A.; Lai, M.K.; Pu, Y.S.; Pan, M.H.; Wang, Y.J.; Tsai, C.C.; Hsieh, C.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research 2001, 21 (4B), 2895–2900.
  • Wang, Y.J.; Pan, M.H.; Cheng, A.L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis 1997, 15 (12), 1867–1876.
  • Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorganic & Medicinal Chemistry 2009, 17 (6), 2623–2631.
  • Canamares, M.V.; Garcia-Ramos, J.V.; Sanchez-Cortes, S. Degradation of curcumin dye in aqueous solution and on ag nanoparticles studied by ultraviolet-visible absorption and surface-enhanced Raman spectroscopy. Applied Spectroscopy 2006, 60 (12), 1386–1391.
  • Mohanty, C.; Sahoo, S.K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 2010, 31 (25), 6597–6611.
  • Kunwar, A.; Barik, A.; Pandey, R.; Priyadarsini, K.I. Transport of liposomal and albumin loaded curcumin to living cells: An absorption and fluorescence spectroscopic study. Biochim. Biophys. Acta 2006, 1760 (10), 1513–1520.
  • Peters, Jr., T., Serum albumin. Advances in Protein Chemistry 1985, 37, 161–245.
  • Zamboni, W.C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clinical Cancer Research 2005, 11 (23), 8230–8234.
  • Portnaya, I.; Cogan, U.; Livney, Y.D.; Ramon, O.; Shimoni, K.; Rosenberg, M.; Danino, D. Micellization of bovine beta-casein studied by isothermal titration microcalorimetry and cryogenic transmission electron microscopy. Journal of Agricultural and Food Chemistry 2006, 54 (15), 5555–5561.
  • Mohammadi, F.; Bordbar, A.K.; Divsalar, A.; Mohammadi, K.; Saboury, A.A. Analysis of binding interaction of curcumin and diacetylcurcumin with human and bovine serum albumin using fluorescence and circular dichroism spectroscopy. Protein Journal 2009, 28 (3–4), 189–196.
  • Mitra, S.P. Binding and stability of curcumin in presence of bovine serum albumin. Journal of Surface Science and Technology 2007, 23, 91–110.
  • Esmaili, M.; Ghaffari, S.M.; Moosavi-Movahedi, Z.; Atri, M.S.; Sharifizadeh, A.; Farhadi, M.; Yousefi, R.; Chobert, J.M.; Haertlé, T.; Moosavi-Movahedi, A.A. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin: Food industry application. LWT–Food Science and Technology 2011, 44, 2166–2172.
  • Kulmyrzaev, A.A.; Levieux, D.; Dufour, E. Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins. Journal of Agricultural and Food Chemistry 2005, 53 (3), 502–507.
  • Tayyab, S.; Haq, S.K.; Sabeeha; Aziz, M.A.; Khan, M.M.; Muzammil, S. Effect of lysine modification on the conformation and indomethacin binding properties of human serum albumin. International Journal of Biological Macromolecules 1999, 26 (2–3), 173–180.
  • Lawal, O.S.; Adebowale, K.O. The acylated protein derivatives of Canavalia ensiformis (jack bean): A study of functional characteristics. LWT–Food Science and Technology 2006, 39, 918–929.
  • Fenaille, F.; Guy, P.A.; Tabet, J.C. Study of protein modification by 4-hydroxy-2-nonenal and other short chain aldehydes analyzed by electrospray ionization tandem mass spectrometry. Journal of the American Society for Mass Spectrometry 2003, 14 (3), 215–226.
  • Snyder, S.L.; Sobocinski, P.Z. An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Analytical Biochemistry 1975, 64 (1), 284–288.
  • Cardamone, M.; Puri, N.K. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochemical Journal 1992, 282 (Pt 2), 589–593.
  • Lakowicz, J.R. Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum: New York, 1999.
  • Khodarahmi, R.; Karimi, S.A.; Ashrafi Kooshk, M.R.; Ghadami, S.A.; Ghobadi, S.; Amani, M. Comparative spectroscopic studies on drug binding characteristics and protein surface hydrophobicity of native and modified forms of bovine serum albumin: Possible relevance to change in protein structure/function upon non-enzymatic glycation. Spectrochimica Acta A Molecular and Biomolecular Spectroscopy 2012, 89, 177–186.
  • Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research. 2003, 31 (13), 3381–3385.
  • Froimowitz, M. HyperChem: A software package for computational chemistry and molecular modeling. Biotechniques 1993, 14 (6), 1010–1013.
  • Ghadami, S.A.; Khodarahmi, R.; Ghobadi, S.; Ghasemi, M.; Pirmoradi, S. Amyloid fibril formation by native and modified bovine beta-lactoglobulins proceeds through unfolded form of proteins: A comparative study. Biophysical Chemistry 2011, 159 (2–3), 311–320.
  • Goodsell, D.S.; Olson, A.J. Automated docking of substrates to proteins by simulated annealing. Proteins 1990, 8 (3), 195–202.
  • Wishart, D.S. DrugBank and its relevance to pharmacogenomics. Pharmacogenomics 2008, 9 (8), 1155–1162.
  • Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998, 19 (14), 1639–1662.
  • Can, T.; Chen, C.I.; Wang, Y.F. Efficient molecular surface generation using level-set methods. Journal of Molecular Graphics and Modelling 2006, 25 (4), 442–454.
  • Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry 2004, 25 (13), 1605–1612.
  • Leung, M.H.M.; Colangelo, H.; Kee, T.W. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir 2008, 24, 5672–5675.
  • Jarho, P.; Urtti, A.; Jarvinen, T. Hydroxypropyl-beta-cyclodextrin increases the aqueous solubility and stability of pilocarpine prodrugs. Pharmaceutical Research 1995, 12 (9), 1371–1375.
  • Samanta, U.; Bahadur, R.P.; Chakrabarti, P. Quantifying the accessible surface area of protein residues in their local environment. Protein Engineering 2002, 15 (8), 659–667.
  • Möller, M.; Denicola, A. Study of protein-ligand binding by fluorescence. Biochemistry and Molecular Biology Education 2002, 30, 309–312.
  • Sahoo, B.K.; Ghosh, K.S.; Dasgupta, S. Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studies. Biopolymers 2009, 91 (2), 108–119.
  • Chen, T.; Cao, H.; Zhu, S.; Lu, Y.; Shang, Y.; Wang, M.; Tang, Y.; Zhu, L. Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding. Spectrochimica Acta A Molecular and Biomolecular Spectroscopy 2011, 81 (1), 645–652.
  • Mikusinska-Planner, A.; Surma, M. X-ray diffraction study of human serum. Spectrochimica Acta A Molecular and Biomolecular Spectroscopy 2000, 56A (9), 1835–1841.
  • Sudlow, G.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Molecular Pharmacology 1976, 12 (6), 1052–1061.
  • Brunmark, P.; Harriman, S.; Skipper, P.L.; Wishnok, J.S.; Amin, S.; Tannenbaum, S.R. Identification of subdomain IB in human serum albumin as a major binding site for polycyclic aromatic hydrocarbon epoxides. Chemical Research in Toxicology 1997, 10 (8), 880–886.
  • Ascenzi, P.; Bocedi, A.; Notari, S.; Menegatti, E.; Fasano, M. Heme impairs allosterically drug binding to human serum albumin Sudlow’s site I. Biochemical and Biophysical Research Communications 2005, 334 (2), 481–486.
  • Kudva, A.K.; Manoj, M.N.; Swamy, B.M.; Ramadoss, C.S. Complexation of amphotericin B and curcumin with serum albumins: Solubility and effect on erythrocyte membrane damage. Journal of Experimental Pharmacology 2011, 3, 1–6.
  • Gonzalez, G. Determination of distances between chromophores in proteins. A resonance-energy transfer experiment. Biochemical Education 1994, 22, 150–151.
  • Cui, F.L.; Fan, J.; Li, J.P.; Hu, Z.D. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spectroscopy. Bioorganic & Medicinal Chemistry 2004, 12 (1), 151–157.
  • Barik, A.; Mishra, B.; Kunwar, A.; Priyadarsini, K.I. Interaction of curcumin with humanserum albumin: Thermodynamic properties, fluorescence energy transfer and denaturation effects. Chemical Physics Letters 2007, 436, 239–243.
  • Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20 (11), 3096–3102.
  • Hua, T.Y.; Liua, C.L.; Chena, J.Y.; Hu, M.L. Curcumin ameliorates methylglyoxal-induced alterations of cellular morphology and hyperpermeability in human umbilical vein endothelial cells. Journal of Functional Foods 2013, 5, 745–754.
  • Blasius, R.; Duvoix, A.; Morceau, F.; Schnekenburger, M.; Delhalle, S.; Henry, E.; Diederich, M. Curcumin stability and its effect on glutathione S-transferase P1-1 mRNA expression in K562 cells. Annals of the New York Academy of Sciences 2004, 1030, 442–448.
  • Ima, K.; Ravia, A.; Kumara, D.; Kuttanb, R.; Maliakela, B. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. Journal of Functional Foods 2012, 4 (1), 348–357.
  • Nishikawa, H.; Jinsyo, T.; Kitani, S. Anti-inflammatory and anti-oxidative effect of curcumin in connective tissue type mast cell. Journal of Functional Foods 2013, 5, 763–772.
  • Sadiq Butt, M.; Sultan, M.T. Selected functional foods for potential in disease treatment and their regulatory issues. Journal of Functional Foods, 2013 16 (2), 397–415.
  • Tlili, N.; Elfalleh, W.; Hannachi, H.; Yahia, Y.; Khaldi, A.; Ferchichi, A.; Nasri, N. Screening of natural antioxidants from selected medicinal plants. Journal of Functional Foods 2013, 16 (5), 1117–1126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.