1,037
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Physicochemical Properties of Zein-Based Films by Electrophoretic Deposition Using Indium Tin Oxide Electrodes: Vertical and Horizontal Electric Fields

, &
Pages 945-957 | Received 11 Jan 2015, Accepted 11 Apr 2015, Published online: 25 Jan 2016

REFERENCES

  • Feng, T.; Ye, R. Rheological Behavior of Biopolymer Systems, Handbook of Biopolymer-Based Materials: From Blends and Composites to Gels and Complex Networks 2013, 22, 673–698.
  • Ye, R; Pyo, S.-H.; Hayes, D.G. Lipase-Catalyzed Synthesis of Saccharide–Fatty Acid Esters Using Suspensions of Saccharide Crystals in Solvent-Free Media. Journal of the American Oil Chemists’ Society 2010, 87, 281–293.
  • Ye, R.; Hayes, D.G. Optimization of the Solvent-Free Lipase-Catalyzed Synthesis of Fructose-Oleic Acid Ester Through Programming of Water Removal. Journal of the American Oil Chemists’ Society 2011, 88, 1351–1359.
  • Ye, R.; Hayes, D.G. Lipase-Catalyzed Synthesis of Saccharide-Fatty Acid Esters Utilizing Solvent-Free Suspensions: Effect of Acyl Donors and Acceptors, and Enzyme Activity Retention. Journal of the American Oil Chemists’ Society 2012, 89, 455–463.
  • Ye, R.; Hayes, D.G. Solvent-Free Lipase-Catalysed Synthesis of Saccharide-Fatty Acid Esters: Closed-Loop Bioreactor System with in Situ Formation of Metastable Suspensions. Biocatalysis and Biotransformation 2012, 30, 209–216.
  • Hayes, D.G.; Mannam, V.K.; Ye, R.; Zhao, H.; Ortega, S.; Montiel, M.C. Modification of Oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid Via Lipase-Catalyzed Esterification. Polymers 2012, 4, 1037–1055.
  • Zhao, H.; Liu, J.; Lv, F.; Ye, R.; Bie, X.; Zhang, C.; Lu, Z. Enzymatic Synthesis of Lard-Based Ascorbyl Esters in a Packed-Bed Reactor: Optimization by Response Surface Methodology and Evaluation of Antioxidant Properties. LWT–Food Science and Technology 2014, 57, 393–399.
  • Wang, Y.; Liu, A.; Ye, R.; Wang, W.; Li, X. Transglutaminase-Induced Crosslinking of Gelatin-Calcium Carbonate Composite Films. Food Chemistry 2015, 1, 414–422.
  • Chen, Y.; Ye, R.; Liu, J. Effects of Different Concentrations of Ethanol and Isopropanol on Physicochemical Properties of Zein-Based Films. Industrial Crops and Products 2014, 53, 140–147.
  • Ye, R.; Harte, F. Casein Maps: Effect of Ethanol, pH, Temperature, and Cacl2 on the Particle Size of Reconstituted Casein Micelles. Journal of Dairy Science 2013, 96, 799–805.
  • Chen, Y.; Ye, R.; Liu, J. Understanding of Dispersion and Aggregation of Suspensions of Zein Nanoparticles in Aqueous Alcohol Solutions after Thermal Treatment. Industrial Crops and Products 2013, 50, 764–770.
  • Chen, Y.; Ye, R.; Li, X.; Wang, J. Preparation and Characterization of Extruded Thermoplastic Zein–Poly (Propylene Carbonate) Film. Industrial Crops and Products 2013, 49, 81–87.
  • Romero, A.; Cordobés, F.; Guerrero, A.; Puppo, M.C. Influence of Protein Concentration on the Properties of Crayfish Protein Isolated Gels. International Journal of Food Properties 2014, 17, 249–260.
  • Feng, T.; Ye, R.; Zhuang, H.; Rong, Z.; Fang, Z.; Wang, Y.; Gu, Z.; Jin, Z. Physicochemical Properties and Sensory Evaluation of Mesona Blumes Gum/Rice Starch Mixed Gels As Fat-Substitutes in Chinese Cantonese-Style Sausage. Food Research International 2013, 50, 85–93.
  • Feng, T.; Ye, R.; Zhuang, H.; Fang, Z.; Chen, H. Thermal Behavior and Gelling Interactions of Mesona Blumes Gum and Rice Starch Mixture. Carbohydrate Polymers 2012, 90, 667–674.
  • Feng, T.; Su, Q.; Zhuang, H.; Ye, R.; Gu, Z.; Jin, Z. Ghost Structures, Pasting, Rheological, and Textural Properties Between Mesona Blumes Gum and Various Starches. Journal of Food Quality 2014, 37, 73–82.
  • Zhang, W.; Zhang, J.; Xia, W. Effect of Ball-Milling Treatment on Physicochemical and Structural Properties of Chitosan. International Journal of Food Properties 2014, 17, 26–37.
  • Shukla, R.; Cheryan, M. Zein: The Industrial Protein from Corn. Industrial Crops and Products 2001, 13, 171–192.
  • Lawton, J.W. Zein: A history of Processing and Use. Cereal Chemistry 2002, 79, 1–18.
  • Argos, P.; Pedersen, K.; Marks, M.; Larkins, B. A Structural Model for Maize Zein Proteins. Journal of Biological Chemistry 1982, 257, 9984–9990.
  • Lai, H.M.; Geil, P.; Padua, G. X‐Ray Diffraction Characterization of the Structure of Zein–Oleic Acid Films. Journal of Applied Polymer Science 1999, 71, 1267–1281.
  • Biswas, A.; Selling, G.W.; Woods, K.K.; Evans, K. Surface Modification of Zein Films. Industrial Crops and Products 2009, 30, 168–171.
  • Ozcalik, O.; Tihminlioglu, F. Barrier Properties of Corn Zein Nanocomposite Coated Polypropylene Films for Food Packaging Applications. Journal of Food Engineering 2013, 114, 505–513.
  • Panchapakesan, C.; Sozer, N.; Dogan, H.; Huang, Q.; Kokini, J.L. Effect of Different Fractions of Zein on the Mechanical and Phase Properties of Zein Films at Nano-Scale. Journal of Cereal Science 2012, 55, 174–182.
  • Yoshino, T.; Isobe, S.; Maekawa, T. Influence of Preparation Conditions on the Physical Properties of Zein Films. Journal of the American Oil Chemists’ Society 2002, 79, 345–349.
  • Güçbilmez, Ç.M.; Yemenicioğlu, A.; Arslanoğlu, A. Antimicrobial and Antioxidant Activity of Edible Zein Films Incorporated with Lysozyme, Albumin Proteins, and Disodium EDTA. Food Research International 2007, 40, 80–91.
  • Del Nobile, M.; Conte, A.; Incoronato, A.; Panza, O. Antimicrobial Efficacy and Release Kinetics of Thymol from Zein Films. Journal of Food Engineering 2008, 89, 57–63.
  • Scramin, J.A.; de Britto, D.; Forato, L.A.; Bernardes‐Filho, R.; Colnago, L.A.; Assis, O.B. Characterisation of Zein–Oleic Acid Films and Applications in Fruit Coating. International Journal of Food Science and Technology 2011, 46, 2145–2152.
  • Verreck, G.; Six, K.; Van den Mooter, G.; Baert, L.; Peeters, J.; Brewster, M.E. Characterization of Solid Dispersions of Itraconazole and Hydroxypropylmethylcellulose Prepared by Melt Extrusion—Part I, International Journal of Pharmaceutics 2003, 251, 165–174.
  • Maniruzzaman, M.; Boateng, J.S.; Snowden, M.J.; Douroumis, D. A Review of Hot-Melt Extrusion: Process Technology to Pharmaceutical Products. International Scholarly Research Notices 2012, 2012, 1–9.
  • Chen, Y.; Ye, R.; Yin, L.; Zhang, N. Novel Blasting Extrusion Processing Improved the Physicochemical Properties of Soluble Dietary Fiber from Soybean Residue and in Vivo Evaluation. Journal of Food Engineering 2014, 120, 1–8.
  • Yum, J.-H.; Kim, S.-S.; Kim, D.-Y.; Sung, Y.-E. Electrophoretically Deposited Tio 2 Photo-Electrodes for Use in Flexible Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry 2005, 173, 1–6.
  • Miyasaka, T.; Kijitori, Y.; Murakami, T.N.; Kimura, M.; Uegusa, S. Efficient Nonsintering Type Dye-Sensitized Photocells Based on Electrophoretically Deposited TiO2 Layers. Chemistry Letters 2002, 7, 1250–1251.
  • Shane, M.J.; Talbot, J.B.; Schreiber, R.D.; Ross, C.L.; Sluzky, E.; Hesse, K. Electrophoretic Deposition of Phosphors: I. Conductivity and Zeta Potential Measurements. Journal of Colloid and Interface Science 1994, 165, 325–333.
  • Russ, B.E.; Talbot, J.B. A study of the Adhesion of Electrophoretically Deposited Phosphors. Journal of the Electrochemical Society 1998, 145, 1245–1252.
  • Ferrari, B.; Moreno, R.; Sarkar, P.; Nicholson, P. Electrophoretic Deposition of Mgo from Organic Suspensions. Journal of the European Ceramic Society 2000, 20, 99–106.
  • Seuss, S.; Boccaccini, A.R. Electrophoretic Deposition of Biological Macromolecules, Drugs, and Cells. Biomacromolecules 2013, 14, 3355–3369.
  • Minami, T. Transparent Conducting Oxide Semiconductors for Transparent Electrodes. Semiconductor Science and Technology 2005, 20, S35.
  • Wang, Y.; Padua, G.W. Formation of Zein Microphases in Ethanol-Water. Langmuir 2010, 26, 12897–12901.
  • Kim, S.; Xu, J. Aggregate Formation of Zein and Its Structural Inversion in Aqueous Ethanol. Journal Of Cereal Science 2008, 47, 1–5.
  • Souza, B.; Cerqueira, M.; Martins, J.; Casariego, A.; Teixeira, J.; Vicente, A. Influence of Electric Fields on the Structure of Chitosan Edible Coatings. Food Hydrocolloids 2010, 24, 330–335.
  • Garcia, M.; Pinotti, A.; Martino, M.; Zaritzky, N. Electrically Treated Composite FILMS Based on Chitosan and Methylcellulose Blends. Food Hydrocolloids 2009, 23, 722–728.
  • Sothornvit, R.; Hong, S.-I.; An, D.J.; Rhim, J.-W. Effect of Clay Content on the Physical and Antimicrobial Properties of Whey Protein Isolate/Organo-Clay Composite Films. LWT–Food Science and Technology 2010, 43, 279–284.
  • Zolfi, M.; Khodaiyan, F.; Mousavi, M.; Hashemi, M. The Improvement of Characteristics of Biodegradable Films Made from Kefiran–Whey Protein by Nanoparticle Incorporation. Carbohydrate Polymers 2014, 109, 118–125.
  • Chen, Q.; de Larraya, U.P.; Garmendia, N.; Lasheras-Zubiate, M.; Cordero-Arias, L.; Virtanen, S.; Boccaccini, A.R. Electrophoretic Deposition of Cellulose Nanocrystals (Cns) and Cns/Alginate Nanocomposite Coatings and Free Standing Membranes. Colloids and Surfaces B: Biointerfaces 2014, 118, 41–48.
  • Ghanbarzadeh, B.; Oromiehi, A. Thermal and Mechanical Behavior of Laminated Protein Films. Journal of Food Engineering 2009, 90, 517–524.
  • Sessa, D.J.; Mohamed, A.; Byars, J.A.; Hamaker, S.A.; Selling, G.W. Properties of Films From Corn Zein Reacted with Glutaraldehyde. Journal of Applied Polymer Science 2007, 105, 2877–2883.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.