3,642
Views
43
CrossRef citations to date
0
Altmetric
Articles

Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese

, &
Pages 53-67 | Received 31 Aug 2015, Accepted 09 Dec 2015, Published online: 18 Aug 2016

References

  • Plackett, D.V.; Holm, V.K.; Johansen, P.; Ndoni, S.; Nielsen, P.V.; Sipilainen-Malm, T.; Södergård, A.; Verstichel, S. Characterization of L-Polylactide and L-Polylactide–Polycaprolactone Co-Polymer Films for Use in Cheese-Packaging Applications. Packaging Technology and Science 2006, 19(1), 1–24.
  • Ahmed, J.; Varshney, S.K. Polylactides—Chemistry, Properties, and Green Packaging Technology: A Review. International Journal of Food Properties 2011, 14, 37–58.
  • Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clinical Pharmacology & Therapeutics 2008, 83(5), 761–769.
  • Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides As Packaging Materials. Macromolecular Bioscience 2004, 4(9), 835–864.
  • Sinclair, R.G. The Case for Polylactic Acid As a Commodity Packaging Plastic. Journal of Macromolecular Science, Part A 1996, 33(5), 585–597.
  • Almenar, E.; Samsudin, H.; Auras, R.; Harte, J. Consumer Acceptance of Fresh Blueberries in Bio-Based Packages. Journal of the Science of Food and Agriculture 2010, 90(7), 1121–1128.
  • Jin, T.; Zhang, H. Biodegradable Polylactic Acid Polymer with Nisin for Use in Antimicrobial Food Packaging. Journal of Food Science 2008, 73(3), M127–134.
  • Ahmed, J.; Varshney, S.K.; Auras, R.; Hwang, S.W. Thermal and Rheological Properties of L-Polylactide/Polyethylene Glycol/Silicate Nanocomposites Films. Journal of Food Science 2010, 75(8), N97–N108.
  • Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety 2010, 9(5), 552–571.
  • Raquez, J.M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-Based Nanocomposites. Progress in Polymer Science 2013, 38(10–11), 1504–1542.
  • Tawakkal, I.; Cran, M.J.; Miltz, J.; Bigger, S.W. A Review of Poly(Lactic Acid)-Based Materials for Antimicrobial Packaging. Journal of Food Science 2014, 79(8), R1477–R1490.
  • Duncan, T.V. Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials, and Sensors. Journal of Colloid and Interface Science 2011, 363(1), 1–24.
  • Llorens, A.; Lloret, E.; Picouet, P.A.; Trbojevich, R.; Fernandez, A. Metallic-Based Micro and Nanocomposites in Food Contact Materials and Active Food Packaging. Trends in Food Science & Technology 2012, 24(1), 19–29.
  • Martinez-Abad, A.; Ocio, M.J.; Lagaron, J.M. Morphology, Physical Properties, Silver Release, and Antimicrobial Capacity of Ionic Silver-Loaded Poly(L-Lactide) Films of Interest in Food-Coating Applications. Journal of Applied Polymer Science 2014, 131(21). DOI: 10.1002/app.41001.
  • Erem, A.D.; Ozcan, G.; Erem, H.H.; Skrifvars, M. Antimicrobial Activity of Poly(L-Lactide Acid)/Silver Nanocomposite Fibers. Textile Research Journal 2013, 83(20), 2111–2117.
  • Doumbia, A.S.; Vezin, H.; Ferreira, M.; Campagne, C.; Devaux, E. Studies of Polylactide/Zinc Oxide Nanocomposites: Influence of Surface Treatment on Zinc Oxide Antibacterial Activities in Textile Nanocomposites. Journal of Applied Polymer Science 2015, 132(17). DOI: 10.1002/app.41776.
  • Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO Nanocomposite Films: Water Vapor Barrier Properties and Specific End-Use Characteristics. European Polymer Journal 2013, 49(11), 3471–3482.
  • Martinez-Abad, A.; Ocio, M.J.; Lagaron, J.M.; Sanchez, G. Evaluation of Silver-Infused Polylactide Films for Inactivation of Salmonella and Feline Calicivirus in Vitro and on Fresh-Cut Vegetables. International Journal of Food Microbiology 2013, 162(1), 89–94.
  • Shameli, K.; Bin Ahmad, M.; Yunus, W.; Ibrahim, N.A.; Rahman, R.A.; Jokar, M.; Darroudi, M. Silver/Poly (Lactic Acid) Nanocomposites: Preparation, Characterization, and Antibacterial Activity. International Journal of Nanomedicine 2010, 5, 573–579.
  • Tan, K.S.; Cheong, K.Y. Advances of Ag, Cu, and Ag-Cu alloy Nanoparticles Synthesized Via Chemical Reduction Route. Journal of Nanoparticle Research 2013, 15(4). DOI: 10.1007/s11051-013-1537-1.
  • Taner, M.; Sayar, N.; Yulug, I.G.; Suzer, S. Synthesis, Characterization, and Antibacterial Investigation of Silver-Copper Nanoalloys. Journal of Materials Chemistry 2011, 21(35), 13150–13154.
  • Zain, N.M.; Stapley, A.G.F.; Shama, G. Green Synthesis of Silver and Copper Nanoparticles Using Ascorbic Acid and Chitosan for Antimicrobial Applications. Carbohydrate Polymers 2014, 112, 195–202.
  • Valodkar, M.; Modi, S.; Pal, A.; Thakore, S. Synthesis and Anti-Bacterial Activity of Cu, Ag, and Cu-Ag Alloy Nanoparticles: A Green Approach. Materials Research Bulletin 2011, 46(3), 384–389.
  • Taner, M.; Sayar, N.; Yulug, I.G.; Suzer, S. Zn Prolongs the Stability of Antibacterial Silver‐Copper Nanoalloys. Biochemistry and Biophysics 2013, 1(4), 70–77.
  • Sung, S.Y.; Sin, L.T.; Tee, T.T.; Bee, S.T.; Rahmat, A.R.; Rahman, W.; Tan, A.C.; Vikhraman, M. Antimicrobial Agents for Food Packaging Applications. Trends in Food Science & Technology 2013, 33(2), 110–123.
  • Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.G. Plant Essential Oils As Active Antimicrobial Agents. Critical Reviews in Food Science and Nutrition 2014, 54(5), 625–644.
  • Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. International Journal of Food Microbiology 2004, 94(3), 223–253.
  • Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial Herb and Spice Compounds in Food. Food Control 2010, 21(9), 1199–1218.
  • Kuorwel, K.K.; Cran, M.J.; Sonneveld, K.; Miltz, J.; Bigger, S.W. Essential Oils and Their Principal Constituents As Antimicrobial Agents for Synthetic Packaging Films. Journal of Food Science 2011, 76(9), R164–R177.
  • Qin, Y.Y.; Yang, J.Y.; Xue, J. Characterization of Antimicrobial Poly(Lactic Acid)/Poly(Trimethylene Carbonate) Films with Cinnamaldehyde. Journal of Materials Science 2015, 50(3), 1150–1158.
  • Qin, Y.Y.; Liu, D.; Wu, Y.; Yuan, M.L.; Li, L.; Yang, J.Y. Effect of PLA/PCL/cinnamaldehyde Antimicrobial Packaging on Physicochemical and Microbial Quality of Button Mushroom (Agaricus Bisporus). Postharvest Biology and Technology 2015, 99, 73–79.
  • Llana-Ruiz-Cabello, M.; Pichardo, S.; Baños, A.; Núñez, C.; Bermúdez, J.M.; Guillamón, E.; Aucejo, S.; Cameán, A.M. Characterisation and Evaluation of PLA Films Containing An Extract of Allium spp. to Be Used in the Packaging of Ready-to-Eat Salads Under Controlled Atmospheres. LWT–Food Science and Technology 2015, 64(2), 1354–1361.
  • NCCLS. National Committee for Clinical Lab Standards: Methods for Dilution and Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard 2000, 20, M7–A5.
  • Tayel, A.A.; El-Tras, W.F.; Moussa, S.; El-Baz, A.F.; Mahrous, H.; Salem, M.F.; Brimer, L. Antibacterial Actin of Zinc Oxide Nanoparticles Against Foodborne Pathogens. Journal of Food Safety 2011, 31(2), 211–218.
  • Kim, J.M.; Marshall, M.R.; Wei, C. Antibacterial Activity of Some Essential Oil Components Against 5 Foodborne Pathogens. Journal of Agricultural Food Chemistry 1995, 43(11), 2839–2845.
  • NCCLS. National Committee for Clinical Lab Standards: Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Standard 1999, M26–A.
  • Arfat, Y.A.; Benjakul, S.; Prodpran, T.; Sumpavapol, P.; Songtipya, P. Properties and Antimicrobial Activity of Fish Protein Isolate/Fish Skin Gelatin Film Containing Basil Leaf Essential Oil and Zinc Oxide Nanoparticles. Food Hydrocolloids 2014, 41, 265–273.
  • NCCLS. National Committee for Clinical Lab Standards: Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard 2003, M2–A8.
  • Pasquet, J.; Chevalier, Y.; Couval, E.; Bouvier, D.; Noizet, G.; Morliere, C.; Bolzinger, M.A. Antimicrobial Activity of Zinc Oxide Particles on Five Micro-Organisms of the Challenge Tests Related to Their Physicochemical Properties. Int J Pharm 2014, 460(1–2), 92–100.
  • Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Materials Science & Engineering C-Materials for Biological Applications 2014, 44, 278–284.
  • Shi, L.E.; Li, Z.H.; Zheng, W.; Zhao, Y.F.; Jin, Y.F.; Tang, Z.X. Synthesis, Antibacterial Activity, Antibacterial Mechanism, and Food Applications of Zno Nanoparticles: A Review. Food Additives and Contaminants Part A—Chemistry Analysis Control Exposure & Risk Assessment 2014, 31(2), 173–186.
  • Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial Effects of Silver Nanoparticles. Nanomedicine-Nanotechnology Biology and Medicine 2007, 3(1), 95–101.
  • Seil, J.T.; Webster, T.J. Antimicrobial Applications of Nanotechnology: Methods and Literature. International Journal of Nanomedicine 2012, 7, 2767–2781.
  • Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of Natural Antimicrobials for Food Preservation. Journal of Agricultural Food Chemistry 2009, 57(14), 5987–6000.
  • Rhim, J.W.; Hong, S.I.; Ha, C.S. Tensile, Water Vapor Barrier, and Antimicrobial Properties Of PLA/Nanoclay Composite Films. LWT–Food Science and Technology 2009, 42(2), 612–617.
  • Jin, T.; Sun, D.; Su, J.Y.; Zhang, H.; Sue, H.J. Antimicrobial Efficacy of Zinc Oxide Quantum Dots Against Listeria Monocytogenes, Salmonella Enteritidis, and Escherichia Coli O157:H7. Journal of Food Science 2009, 74(1), M46–M52.
  • Ramos, O.L.; Silva, S.I.; Soares, J.C.; Fernandes, J.C.; Pocas, M.F.; Pintado, M.E.; Malcata, F.X. Features and Performance of Edible Films, Obtained from Whey Protein Isolate Formulated with Antimicrobial Compounds. Food Research International 2012, 45(1), 351–361.
  • Sung, S.Y.; Sin, L.T.; Tee, T.T.; Bee, S.T.; Rahmat, A.R. Effects of Allium Sativum Essence Oil As Antimicrobial Agent for Food Packaging Plastic Film. Innovative Food Science & Emerging Technologies 2014, 26, 406–414.
  • Ramos, M.; Jimenez, A.; Peltzer, M.; Garrigos, M.C. Characterization and Antimicrobial Activity Studies of Polypropylene Films with Carvacrol and Thymol for Active Packaging. Journal of Food Engineering 2012, 109(3), 513–519.
  • Torlak, E.; Sert, D. Antibacterial Effectiveness of Chitosan-Propolis Coated Polypropylene Films Against Foodborne Pathogens. Int J Biol Macromol 2013, 60, 52–55.
  • Erdohan, Z.O.; Cam, B.; Turhan, K.N. Characterization of Antimicrobial Polylactic Acid Based Films. Journal of Food Engineering 2013, 119(2), 308–315.
  • Shemesh, R.; Goldman, D.; Krepker, M.; Danin-Poleg, Y.; Kashi, Y.; Vaxman, A.; Segal, E. LDPE/Clay/Carvacrol Nanocomposites with Prolonged Antimicrobial Activity. Journal of Applied Polymer Science 2015, 132(2). DOI: 10.1002/app.41261.
  • Shemesh, R.; Krepker, M.; Goldman, D.; Danin-Poleg, Y.; Kashi, Y.; Nitzan, N.; Vaxman, A.; Segal, E. Antibacterial and Antifungal LDPE Films for Active Packaging. Polymers for Advanced Technologies 2015, 26(1), 110–116.
  • Suppakul, P.; Sonneveld, K.; Bigger, S.W.; Miltz, J. Efficacy of Polyethylene-Based Antimicrobial Films Containing Principal Constituents of Basil. LWT–Food Science and Technology 2008, 41(5), 779–788.
  • Salmieri, S.; Islam, F.; Khan, R.; Hossain, F.; Ibrahim, H.M.; Miao, C.; Hamad, W.; Lacroix, M. Antimicrobial Nanocomposite Films Made of Poly(Lactic Acid)–Cellulose Nanocrystals (PLA–CNC) in Food Applications—Part B: Effect of Oregano Essential Oil Release on the Inactivation of Listeria Monocytogenes in Mixed Vegetables. Cellulose 2014, 21(6), 4271–4285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.