2,475
Views
38
CrossRef citations to date
0
Altmetric
Articles

Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (l-EPSs) from Lactobacilli strains

, &
Pages 362-371 | Received 09 Nov 2015, Accepted 29 Feb 2016, Published online: 20 Sep 2016

References

  • FAO-WHO. Report of a Joint FAO/WHO Expert Consultation on Guidelines for the Evaluation of Probiotics in Food; Canada World Health Organization/Food and Agriculture Organization of the United Nations: London, Ontario, Canada, 2002.
  • Wyszyńska, A.; Kobierecka, P.; Bardowski, J.; Jagusztyn-Krynicka, E.K. Lactic Acid Bacteria—20 Years Exploring Their Potential as Live Vectors for Mucosal Vaccination. Applied Microbiology and Biotechnology 2015, 99, 2967–2977.
  • Li, J.Y.; Jin, M.M.; Meng, J.; Gao, S.M.; Lu, R.R. Exopolysaccharide from Lactobacillus Plantarum LP6: Antioxidation and the Effect on Oxidative Stress. Carbohydrate Polymers 2013, 98, 1147–1152.
  • Guo, Y.; Pan, D.; Li, H.; Sun, Y.; Zeng, X.; Yan, B. Antioxidant and Immunomodulatory Activity of Selenium Exopolysaccharide Produced by Lactococcus Lactis Subsp. Lactis. Food Chemistry 2013, 138, 84–89.
  • Cerning, J. Production of Exopolysaccharides by Lactic Acid Bacteria and Dairy Propionibacteria. Lait 1995, 75, 463–472.
  • Doron, S.; Snydman, D.R.; Gorbach, S.L. Lactobacillus GG: Bacteriology and Clinical Applications. Gastroenterology Clinics of North America 2005, 34, 483–498.
  • Landersjo, C.; Yang, Z.N.; Huttunen, E.; Widmalm, G. Structural Studies of the Exopolysaccharide Produced by Lactobacillus Rhamnosus Strain GG (ATCC 53103). Biomacromolecules 2002, 3, 880–884.
  • Francius, G.; Lebeer, S.; Alsteens, D.; Wildling, L.; Gruber, H.J.; Hols, P.; De Keersmaecker, S.; Vanderleyden, J.; Dufrêne, Y.F. Detection, Localization, and Conformational Analysis of Single Polysaccharide Molecules on Live Bacteria. ACS Nano 2008, 2, 1921–1929.
  • Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C.J. Genes and Molecules of Lactobacilli Supporting Probiotic Action. Microbiology and Molecular Biology Reviews 2008, 72, 728–764.
  • Lebeer, S.; Claes, I.J.; Verhoeven, T.L.; Vanderleyden, J.; De Keersmaecker, S.C. Exopolysaccharides of Lactobacillus rhamnosus GG Form a Protective Shield Against Innate Immune Factors in the Intestine. Microbiology and Biotechnology 2010, 4, 368–374.
  • Ruas-Madiedo, P.; Gueimonde, M.; Margolles, A.; de los Reyes-Gavilán, G.C.; Salminen, S. Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus. Journal of Food Protection 2006, 69, 2011–2015.
  • Yasuda, E.; Serata, M.; Sako, T. Suppressive Effect on Activation of Macrophages by Lactobacillus Casei Strain Shirota Genes Determining the Synthesis of Cell Wall-Associated Polysaccharides. Applied and Environmental Microbiology 2008, 74, 4746–4755.
  • Nikolic, M.; López, P.; Strahinic, I.; Suárez, A.; Kojic, M.; Fernández-García, M.; Topisirovic, L.; Golic, N.; Ruas-Madiedo, P. Characterisation of the Exopolysaccharide (EPS)-Producing Lactobacillus Paraplantarum BGCG11 and Its Non-EPS Producing Derivative Strains as Potential Probiotics. International Journal of Food Microbiology 2012, 158, 155–162.
  • Li, S.; Shah, N.P. Antioxidant and Antibacterial Activities of Sulphated Polysaccharides from Pleurotus Eryngii and Streptococcus Thermophilus ASCC 1275. Food Chemistry 2014, 165, 262–270.
  • Wu, M.H.; Pan, T.M.; Wu, Y.J.; Chang, S.J.; Chang, M.S.; Hu, C.Y. Exopolysaccharide Activities from Probiotic Bifidobacterium: Immunomodulatory Effects (on J774A.1 Macrophages) and Antimicrobial Properties. International Journal of Food Microbiology 2010, 144, 104–110.
  • Li, W.; Ji, J.; Rui, X.; Yu, J.; Tang, W.; Chen, X.; Jiang, M.; Dong, M. Production of Exopolysaccharides by Lactobacillus Helveticus MB2-1 and Its Functional Characteristics in Vitro. LWT–Food Science and Technology 2014, 59, 732–739.
  • Vu, B.; Chen, M.; Crawford, R.J.; Ivanova, E.P. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules 2009, 14, 2535–2554.
  • Dertli, E.; Mayer, M.J.; Narbad, A. Impact of the Exopolysaccharide Layer on Biofilms, Adhesion and Resistance to Stress in Lactobacillus Johnsonii FI9785. BMC Microbiology 2015, 15, 1–9.
  • Jones, S.E.; Versalovic, J. Probiotic Lactobacillus Reuteri Biofilms Produce Antimicrobial and Anti-Inflammatory Factors. BMC Microbiology 2009, 9, 35.
  • Walter, J.; Schwab, C.; Loach, D.M.; Ganzle, M.G.; Tannock, G.W. Glucosyltransferase A (GtfA) and Inulosucrase (Inu) of Lactobacillus Reuteri TMW1.106 Contribute to Cell Aggregation, in Vitro Biofilm Formation, and Colonization of the Mouse Gastrointestinal Tract. Microbiology 2008, 154, 72–80.
  • Stoodley, P.; Sauer, K.; Davies, D.G.; Costerton, J.W. Biofilms as Complex Differentiated Communities. Annual Review of Microbiology 2002, 56, 187–209.
  • Wang, J.; Zhao, X.; Yang, Y.; Zhao, A.; Yang, Z. Characterization and Bioactivities of an Exopolysaccharide Produced by Lactobacillus Plantarum YW32. International Journal of Biological Macromolecules 2015, 74, 119–126.
  • Ouali, F.A.; Kassaa, I.A.; Cudennec, B.; Abdallah, M.; Bendali, F.; Sadoun, D.; Chihib, N.E.; Drider, D. Identification of Lactobacilli with Inhibitory Effect on Biofilm Formation by Pathogenic Bacteria on Stainless Steel Surfaces. International Journal of Food Microbiology 2014, 191, 116–124.
  • ISAPP. 6th Meeting of the International Scientific Association of Probiotics and Prebiotics. London, Ontario, Canada, 2008.
  • Salazara, N.; Gueimondea, M.; De Los Reyes-Gavilána, C.G.; Ruas-Madiedo, P. Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Critical Reviews in Food Science Nutrition 2016, 56, 1440–1453. DOI:10.1080/10408398.2013.770728
  • Ryan, P.M.; Ross, R.P.; Fitzgerald, G.F.; Caplicee N.M.; Stanton, C. Sugar-Coated: Exopolysaccharide Producing Lactic Acid Bacteria for Food and Human Health Applications. Food and Function 2015, 6, 679–693.
  • Beerens H. Year Elective and Selective Insulation Medium for Bifidobacterium sp. Letters in Applied Microbiology 1990, 11, 155–157.
  • Frengova, G.I.; Simova, E.D.; Beshkova, D.M.; Simov, Z.I. Production and Monomer Composition of Exopolysaccharides by Yogurt Starter Cultures. Canadian Journal of Microbiology 2000, 46, 1123–1127.
  • Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Roberts, P.A.; Smith, F. Colorimetric Determination of Sugars and Related Substances. Analytical Chemistry 1956, 28, 350–356.
  • Djordjevic, D.; Wiedmann, M.; McLandsborough, L.A. Microtiter Plate Assay for Assessment of Listeria Monocytogenes Biofilm Formation. Applied and Environmental Microbiology 2002, 68, 2950–2958.
  • Kim, Y.; Oh, S.; Kim, S.H. Released Exopolysaccharide (r-EPS) Produced from Probiotic Bacteria Reduce Biofilm Formation of Enterohemorrhagic Escherichia Coli O157:H7.Biochemical and Biophysical Research Communication 2009, 379, 324–329.
  • Sayem, S.M.A.; Manzo, E.; Ciavatta, L.; Tramice, A.; Cordone, A.; Zanfardino, A.; De Felice, M.; Varcamonti, M. Anti-Biofilm Activity of an Exopolysaccharide from a Sponge-Associated Strain of Bacillus Licheniformis. Microbial Cell Factories 2011, 10, 74.
  • Van den Berg, D.J.C.; Smits, A.; Pot, B.; Ledeboer, A.M.; Kersters, K.; Verbakel, J.M.A.; Verrips, C.T. Isolation, Screening, and Identification of Lactic Acid Bacteria from Traditional Food Fermentation Processes and Culture Collections. Food Biotechnology 1993, 7, 189–205.
  • Tieking, M.; Korakli, M.; Ehrmann, M.A.; Ganzle, M.G.; Vogel. R.F. In Situ Production of Exopolysaccharides During Sourdough Fermentation by Cereal and Intestinal Isolates of Lactic Acid Bacteria. Applied and Environmental Microbiology 2003, 69, 945–952.
  • Sánchez, J.I.; Martìnez, B.; Guillén, R.; Jiménez-Díaz, R.; Rodríguez, A. Culture Conditions Determine the Balance Between Two Different Exopolysaccharides Produced by Lactobacillus Pentosus LPS26. Applied and Environmental Microbiology 2006, 72, 7495–7502.
  • Welman, A.D.; Maddox, I.S. Exopolysaccharides from Lactic Acid Bacteria: Perspectives and Challenges. Trends Biotechnology 2003, 21, 269–274.
  • Marshall, V.M.; Courie, E.N.; Moreton, R.S. Analysis and Production of Two Exopolysaccharides from Lactobacillus Lactis Subsp. Cremoris LC330. Journal of Dairy Research 1995, 62, 621–628.
  • Gamar, L.; Blondeau, K.; Simonet, J.M. Physiological Approach to Extracellular Polysaccharide Production by Lactobacillus Rhamnosus Strain C83. Journal of Applied Microbiology 1997, 83, 281–287.
  • Grobben, G.J.; Sikkema, J.; Smith, M.R.; de Bont, J.A.M. Production of Extracellular Polysaccharides by Lactobacillus Delbrueckii Spp. Bulgaricus NCFB 2772 Grown in a Chemically Defined Medium. Journal of Applied Bacteriology 1995, 79, 103–107.
  • Cerning, J.; Bouillanne, C.; Desmazeaud, M.J.; Landon, M. Isolation and Characterization of Exocellular Polysaccharide Produced by Lactobacillus Bulgaricus. Biotechnology Letters 1986, 8, 625–628.
  • Bouzar, F.; Cerning, J.; Desmazeaud, M. Expoloysaccharide Production in Milk by Lactobacillus Delbrueckii Ssp. Bulgaricus CNRZ 1187 and by Two Colonial Variants. Journal of Dairy Science 1996, 79, 205–211.
  • Aslim, B.; Beyatli, Y.; Yuksekdag, Z.N. Productions and Monomer Compositions of Exopolysaccharides by Lactobacillus Delbrueckii Subsp Bulgaricus and Streptococcus Thermophilus Strains Isolated from Traditional Home-Made Yoghurts and Raw Milk. International Journal of Food Science Technology 2006, 41, 973–979.
  • Ruas-Madiedo, P.; Hugenholtz, J.; Zoon, P. An Overview of the Functionality of Exopolysaccharides Produced by Lactic Acid Bacteria. International Dairy Journal 2002, 12, 163–171.
  • Pokusaeva, K.; Fitzgerald, G.F.; van Sinderen, D. Carbohydrate Metabolism in Bifidobacteria. Genes and Nutritions 2011, 6, 285–306.
  • Kim, Y.; Oh, S.; Yun, H.S.; Oh, S.; Kim, S.H. Cell-Bound Exopolysaccharide from Probiotic Bacteria Induces Autophagic Cell Death of Tumor Cells. Letters in Applied Microbiology 2010, 51, 123–130.
  • Rios-Covian, D.; Arboleya, S.; Hernandez-Barranco, A.M.; Alvarez-Buylla, J.R.; Ruas-Madiedo, P.; Gueimonde, M.; de los Reyes-Gavilan, C.G. Interactions Between Bifidobacterium and Bacteroides Species in Co-Fermentations are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria. Applied and Environmental Microbiology 2013, 79, 7518–7524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.