910
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Detection of aflD gene in contaminated pistachio with Aspergillus flavus by DNA based electrochemical biosensor

, , , &
Pages S119-S130 | Received 22 Sep 2016, Accepted 01 Feb 2017, Published online: 03 May 2017

References

  • Dalié, D.K.D.; Deschamps, A.M.; Richard-Forget, F. Lactic Acid Bacteria – Potential for Control of Mould Growth and Mycotoxins: A Review. Food Control [Internet] 2010, 21, 370–380. doi.org/10.1016/j.foodcont.2009.07.011.
  • Kollia, E.; Proestos, C.; Zoumpoulakis, P.; et al. Inhibitory Effect of Cynara Cardunculus L. Extract on Aflatoxin B1 Production by Aspergillus Parasiticus in Sesame (Sesamum Indicum L.). International Journal of Food Properties [Internet] 2016, 1–10. doi.org/10.1080/10942912.2016.1206928.
  • Sardiñas, N.; Vázquez, C.; Gil-Serna, J.; et al. Specific Detection and Quantification of Aspergillus Flavus and Aspergillus Parasiticus in Wheat Flour by SYBR® Green Quantitative PCR. International Journal of Food Microbiology [Internet] 2011, 145, 121–125. http://linkinghub.elsevier.com/retrieve/pii/S0168160510006720.
  • Scherm, B.; Palomba, M.; Serra, D.; et al. Detection of Transcripts of the Aflatoxin Genes Afld, Aflo, and Aflp by Reverse Transcription-Polymerase Chain Reaction Allows Differentiation of Aflatoxin-Producing and Non-Producing Isolates of Aspergillus Flavus and Aspergillus Parasiticus. International Journal of Food Microbiology 2005, 98, 201–210.
  • Rodrigues, P.; Soares, C.; Kozakiewicz, Z.; et al. Identification and Characterization of Aspergillus Flavus and Aflatoxins. Communicating Current Research and Educational Topics and Trends in Applied Microbiology 2007, 2, 527–534.
  • Mcgrath, T.F.; Elliott, C.T.; Fodey, T.L. Biosensors for the Analysis of Microbiological and Chemical Contaminants in Food. Analytical and Bioanalytical Chemistry 2012, 403, 75–92.
  • Mazloum-Ardakani, M.; Rajabzadeh, N.; Benvidi, A.; et al. Sex Determination Based on Amelogenin DNA by Modified Electrode with Gold Nanoparticle. Analytical Biochemistry [Internet] 2013, 443, 132–138. doi.org/10.1016/j.ab.2013.08.028.
  • Wang, C.; Yuan, X.; Liu, X.; et al. Signal-On Impedimetric Electrochemical DNA Sensor Using Dithiothreitol Modified Gold Nanoparticle Tag for Highly Sensitive DNA Detection. Analytica Chimica Acta [Internet] 2013, 799, 36–43. doi.org/10.1016/j.aca.2013.09.024.
  • Thi, T.; Lien, N.; Dai, T.; et al. Multi-Wall Carbon Nanotubes (Mwcnts) -Doped Polypyrrole DNA Biosensor for Label-Free Detection of Genetically Modified Organisms by QCM and EIS. Talanta 2010, 80, 1164–1169.
  • Benvidi, A.; Rajabzadeh, N.; Mazloum-Ardakani, M. Simple and Label-Free Electrochemical Impedance Amelogenin Gene Hybridization Biosensing Based on Reduced Graphene Oxide. Biosensors and Bioelectronic [Internet] 2014, 58, 145–152. doi.org/10.1016/j.bios.2014.01.053.
  • Casse, N.; Gautier, C.; Cougnon, C. Detection and Modelling of DNA Hybridization by EIS Measurements Mention of a Polythiophene Matrix Suitable for Electrochemically Controlled Gene Delivery. Biosensors and Bioelectronics 2007, 22, 2025–2031.
  • Park, J.; Park, S. DNA Hybridization Sensors Based on Electrochemical Impedance Spectroscopy as a Detection Tool. Sensors 2009, 9, 9513–9532.
  • Keighley, S.D.; Li, P.; Estrela, P.; et al. Optimization of DNA Immobilization on Gold Electrodes for Label-Free Detection by Electrochemical Impedance Spectroscopy. Biosensors and Bioelectronics 2008, 23, 1291–1297.
  • Abdalhai, M.H.; Bashari, M.; Ji, J.; et al. Rapid and Sensitive Detection of Foodborne Pathogenic Bacteria (Staphylococcus Aureus) Using an Electrochemical DNA Genomic Biosensor and Its Application in Fresh Beef. Journal of Agricultural and Food Chemistry 2014, 62, 12659–12667.
  • Park, S.-M.; Yoo, J.-S. Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements. Analytical Chemistry [Internet] 2003, 75, 455 A–461 A. doi.org/10.1021/ac0313973.
  • Bonanni, A.; Valle, M. Use of Nanomaterials for Impedimetric DNA Sensors: A Review. Analytica Chimica Acta [Internet] 2010, 678, 7–17. doi.org/10.1016/j.aca.2010.08.022.
  • Mazloum-Ardakani, M.; Heidari, M.M.; Naderi, M.; et al. Detection of Amplified SRY Gene by a Novel Electrochemical Biosensor Based on Gold Nanoparticles. Scientia Iranica [Internet] 2012, 19, 913–918. doi.org/10.1016/j.scient.2012.01.009.
  • Siddiquee, S.; Rovina, K.; Yusof, N.A.; et al. Nanoparticle-Enhanced Electrochemical Biosensor with DNA Immobilization and Hybridization of Trichoderma Harzianum Gene. Sensing and Bio-Sensing Research [Internet] 2014, 2, 16–22. http://www.sciencedirect.com/science/article/pii/S2214180414000063.
  • Cheng, X.R.; Hau, B.Y.H.; Endo, T.; et al. Au Nanoparticle-Modified DNA Sensor Based on Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance. Biosensors and Bioelectronic [Internet] 2014, 53, 513–518. doi.org/10.1016/j.bios.2013.10.003.
  • Mojtahedi, H.; Rabie, C.J.; Lübben, A.; et al. Toxic Aspergilli from Pistachio Nuts. Mycopathologia 1979, 67, 123–127.
  • Tombelli, S.; Mascini, M.; Scherm, B. DNA Biosensors for the Detection of Aflatoxin Producing Aspergillus Flavus and A. Parasiticus. Monatsh Chem. 2009, 140, 901–907.
  • Uldahl, S.A.; Knutsen, G. Spore Swelling and Germination as a Bioassay for the Rapid Screening of Crude Biological Extracts for Antifungal Activity. Journal of Microbiological Methods [Internet] 2009, 79, 82–88. doi.org/10.1016/j.mimet.2009.08.007.
  • Gotti, G.; Fajerwerg, K.; Evrard, D.; et al. Electrodeposited Gold Nanoparticles on Glassy Carbon: Correlation between Nanoparticles Characteristics and Oxygen Reduction Kinetics in Neutral Media. Electrochimica Acta 2014, 128, 412–419.
  • Hezard, T.; Fajerwerg, K.; Evrard, D.; et al. Gold Nanoparticles Electrodeposited on Glassy Carbon Using Cyclic Voltammetry: Application to Hg (II) Trace Analysis. Journal of Electroanalytical Chemistry [Internet] 2012, 664, 46–52. doi.org/10.1016/j.jelechem.2011.10.014.
  • Mazloum-Ardakani, M.; Hosseinzadeh, L.; Heidari, M.M. Detection of the M268T Angiotensinogen A3B2 Mutation Gene Based on Screen-Printed Electrodes Modified with a Nanocomposite: Application to Human Genomic Samples. Microchim Acta 2016, 183, 219–227.
  • Faustinelli, P.C.; Wang, X.M.; Palencia, E.R.; et al. Genome Sequences of Eight Aspergillus Flavus Spp. and One A. Parasiticus Sp., Isolated from Peanut Seeds in Georgia. Genome Announcements 2016, 4, 3–4.
  • Fu, Y.; Yuan, R.; Xu, L.; et al. Indicator Free DNA Hybridization Detection via EIS Based on Self-Assembled Gold Nanoparticles and Bilayer Two-Dimensional 3-Mercaptopropyltrimethoxysilane onto a Gold Substrate. Biochemical Engineering J 2005, 23, 37–44.
  • Park, B.; Yoon, D.; Kim, D. Formation and Modification of a Binary Self-Assembled Monolayer on a Nano-Structured Gold Electrode and Its Structural Characterization by Electrochemical Impedance Spectroscopy. Journal of Electroanalytical Chemistry [Internet] 2011, 661, 329–335. doi.org/10.1016/j.jelechem.2011.08.013.
  • Ashktorab, N.; Shahnoushi, N. Evaluating the Effect of Aflatoxin Food Safety Concerns on Iran’ S Pistachio Trade with Gravity Model. African Journal of Agricultual Research 2013, 8, 5320–5326.
  • Wengui, L.; Kunlong, X.; Rong, X.; et al. Development of an HPLC-Based Method for the Detection of Aflatoxins in Pu-Erh Tea. International Journal of Food Properties 2015, 18, 842–848.
  • Patel, T.K.; Anand, R.; Singh, A.P.; et al. Evaluation of Aflatoxin B1 Biosynthesis in A. Flavus Isolates from Central India and Identification of Atoxigenic Isolates. Biotechnology and Bioprocess Engineering. 2014, 19, 1105–1113.
  • Mazloum-Ardakani, M.; Aghaei, R.; Mehdi, M. Quantum-Dot Biosensor for Hybridization and Detection of R3500Q Mutation of Apolipoprotein B-100 Gene. Biosensors and Bioelectronic [Internet] 2015, 72, 362–369. doi.org/10.1016/j.bios.2015.05.014.
  • Qicai, L.; Qiang, Y.; Wennan, W.; et al. DNA Electrochemical Sensor for Detection of PRSS1 Point Mutation Based on Restriction Endonuclease Technique. Preparative Biochemistry and Biotechnology 2015, 45, 430–437.
  • Feng, K.; Zhao, J.; Wu, Z.; et al. High-Sensitive Electrochemical Detection of Point Mutation Based on Polymerization-Induced Enzymatic Amplification. Biosensors and Bioelectronics [Internet] 2011, 26, 3187–3191. doi.org/10.1016/j.bios.2010.12.024.
  • INSO. Pistachio Kernel Specifications and Test Methods. Iranian National Standardization Organization. 2013; 5th. Revision. ICS:67.080.10. INSO:218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.