72,957
Views
188
CrossRef citations to date
0
Altmetric
Articles

Role of lactic acid bacteria on the yogurt flavour: A review

, ORCID Icon, , , &
Pages S316-S330 | Received 31 Aug 2016, Accepted 12 Feb 2017, Published online: 05 Jul 2017

References

  • Shiby, V.K.; Mishra, H.N. Fermented Milks and Milk Products as Functional Foods–A Review. Critical Reviews in Food Science and Nutrition 2013, 53, 482–496.
  • Tsarouhas, P.H.; Arvanitoyannis, I.S. Yogurt Production Line: Reliability Analysis. Production & Manufacturing Research 2014, 2, 11–23.
  • Sodini, I.; Remeuf, F.; Haddad, S.; Corrieu, G. The Relative Effect of Milk Base, Starter, and Process on Yogurt Texture: A Review. Critical Reviews in Food Science and Nutrition 2004, 44, 113–137.
  • Salvador, A.; Fiszman, S.M. Textural and Sensory Characteristics of Whole and Skimmed Flavored Set-Type Yogurt during Long Storage. Journal of Dairy Science 2005, 87, 4033–4041.
  • Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Critical Reviews in Food Science and Nutrition 2010, 50, 938–950.
  • Reineccius, G. An Overview of Flavor Perception In Flavor Chemistry and Technology; Heath, H.; Reineccius, G.; Eds.; Taylor and Francis: Boca Raton, USA, 2005; 1–53.
  • Hummel, T. Frontiers Retronasal Perception of Odors. Chemistry and Biodiversity 2012, 107, 484–487.
  • Routray, W.; Mishra, H.N. Scientific and Technical Aspects of Yogurt Aroma and Taste: A Review. Comprehensive Reviews in Food Science and Food Safety 2011, 10, 208–220.
  • Mende, S.; Rohm, H.; Jaros, D. Influence of Exopolysaccharides on the Structure, Texture, Stability and Sensory Properties of Yoghurt and Related Products. International Dairy Journal 2015, 52, 57–71.
  • Ott, A.; Fay, L.B.; Chaintreau, A. Determination and Origin of the Aroma Impact Compounds of Yogurt Flavor. Journal of Agricultural and Food Chemistry 1997, 45, 850–858.
  • Güler, Z.;. Changes in Salted Yoghurt during Storage. International Journal of Food Science and Technology 2007, 42, 235–245.
  • Imhof, R.; Bosset, J.O. Relationships between Micro-Organisms and Formation of Aroma Compounds in Fermented Dairy Products. Zeitschrift Für Lebensmittel-Untersuchung Und -Forschung 1994, 198, 267–276.
  • Tamime, A.Y.; Robinson, R.K. Chapter 7: Biochemistry of Fermentation. In Yoghurt: Science and Technology; Tamime, A.Y.; Robinson, R.K.; Eds.; CRC Press: Boca Raton, USA, 1999.
  • Ott, A.; Hugi, A.; Baumgartner, M.; Chaintreau, A. Sensory Investigation of Yogurt Flavor Perception: Mutual Influence of Volatiles and Acidity. Journal of Agricultural and Food Chemistry 2000, 48, 441–450.
  • Rychlik, M.; Sax, M.; Schieberle, P. On the Role of Short-Chain Free Fatty Acids for the Development of a Cheese-Like Off-Note in Pasteurized Yoghurt. LWT - Food Science and Technology 2006, 39, 521–527.
  • Vazquez-Landaverde, P.A.; Velazquez, G.; Torres, J.A.; Qian, M.C. Quantitative Determination of Thermally Derived Off-Flavor Compounds in Milk Using Solid-Phase Microextraction and Gas Chromatography. Journal of Dairy Science 2005, 88, 3764–3772.
  • Smit, G.; Smit, B.A.; Engels, W.J. Flavour Formation by Lactic Acid Bacteria and Biochemical Flavour Profiling of Cheese Products. FEMS Microbiology Review 2005, 29, 591–610.
  • Steele, J.; Broadbent, J.; Kok, J. Perspectives on the Contribution of Lactic Acid Bacteria to Cheese Flavor Development. Current Opinion in Biotechnology 2013, 24, 135–141.
  • Smid, E.J.; Kleerebezem, M. Production of Aroma Compounds in Lactic Fermentations. Annual Review of Food Science and Technology 2014, 5, 313–326.
  • Thierry, A.; Pogacic, T.; Weber, M.; Lortal, S. Production of Flavor Compounds by Lactic Acid Bacteria in Fermented Foods In Biotechnology of Lactic Acid Bacteria: Novel Applications; Mozzi, F.; Raya, R.R.; Vignolo, G.M.; Eds.; Wiley-Blackwell: West Sussex, UK, 2015; 314–340.
  • De Bok, F.A.; Janssen, P.W.; Bayjanov, J.R.; Sieuwerts, S.; Lommen, A.; Van Hylckama Vlieg, J.E.; Molenaar, D. Volatile Compound Fingerprinting of Mixed-Culture Fermentations. Applied and Environmental Microbiology 2011, 77, 6233–6239.
  • Pan, D.D.; Wu, Z.; Peng, T.; Zeng, X.Q.; Li, H. Volatile Organic Compounds Profile during Milk Fermentation by Lactobacillus Pentosus and Correlations between Volatiles Flavor and Carbohydrate Metabolism. Journal of Dairy Science 2014, 97, 624–631.
  • Chaves, A.C.; Fernandez, M.; Lerayer, A.L.; Mierau, I.; Kleerebezem, M.; Hugenholtz, J. Metabolic Engineering of Acetaldehyde Production by Streptococcus thermophilus. Applied and Environmental Microbiology 2002, 68, 5656–5662.
  • Guo, T.; Kong, J.; Zhang, L.; Zhang, C.; Hu, S. Fine Tuning of the Lactate and Diacetyl Production through Promoter Engineering in Lactococcus lactis. PLOS One 2012, 7, e36296.
  • Aleksandrzak-Piekarczyk, T.; Mayo, B.; Fernandez, M.; Kowalczyk, M.; Alvarez-Martin, P.; Bardowski, J. Updates in the Metabolism of Lactic Acid Bacteria In Biotechnology of Lactic Acid Bacteria: Novel Applications; Mozzi, F.; Raya, R.R.; Vignolo, G.M.; Eds.; Wiley-Blackwell: West Sussex, UK, 2015; 3–33.
  • Endo, A.; Dicks, L.M.T. Physiology of the LAB In Lactic Acid Bacteria: Biodiversity and Taxonomy; Holzapfel, W.H.; Wood, B.J.B.; Eds.; Wiley-Blackwell: West Sussex, UK, 2014; 13–30.
  • Lopez De Felipe, F.; Kleerebezem, M.; De Vos, W.M.; Hugenholtz, J. Cofactor Engineering: A Novel Approach to Metabolic Engineering in Lactococcus lactis by Controlled Expression of NADH Oxidase. Journal of Bacteriology 1998, 180, 3804–3808.
  • Puri, P.; Goel, A.; Bochynska, A.; Poolman, B. Regulation of Acetate Kinase Isozymes and Its Importance for Mixed-Acid Fermentation in Lactococcus lactis. Journal of Bacteriology 2014, 196, 1386–1393.
  • Tanaka, K.; Komiyama, A.; Sonomoto, K.; Ishizaki, A.; Hall, S.J.; Stanbury, P.F. Two Different Pathways for D-Xylose Metabolism and the Effect of Xylose Concentration on the Yield Coefficient of L-Lactate in Mixed-Acid Fermentation by the Lactic Acid Bacterium Lactococcus lactis IO-1. Applied and Environmental Microbiology 2002, 60, 160–167.
  • Sandine, W.E.; Daly, C.; Elliker, P.R.; Vedamuthu, E.R. Causes and Control of Culture-Related Flavor Defects in Cultured Dairy Products A. Journal of Dairy Science 1972, 55, 1031–1039.
  • Raya, R.R.; Manca De Nadra, M.C.; De Ruiz Holgado, A.P.; Oliver, G. Acetaldehyde Metabolism in Lactic Acid Bacteria. Milchwissenschaft-Milk Science International 1986, 41, 397–401.
  • Neves, A.R.; Pool, W.A.; Kok, J.; Kuipers, O.P.; Santos, H. Overview on Sugar Metabolism and Its Control in Lactococcus lactis - the Input from in Vivo NMR. FEMS Microbiology Review 2005, 29, 531–554.
  • Smith, J.S.; Hui, Y.H. Dairy: Yogurt InFood Processing: Principles and Applications; Smith, J.S.; Hui, Y.H.; Eds.; Wiley-Blackwell: West Sussex, UK, 2015; 297–318.
  • Guerra,; Hernández, E.J.; Estepa, R.G.; Rivas, I.R. Analysis of Diacetyl in Yogurt by Two New Spectrophotometric and Fluorimetric Methods. Food Chemistry 1995, 53, 315–319.
  • Passerini, D.; Laroute, V.; Coddeville, M.; Le Bourgeois, P.; Loubiere, P.; Ritzenthaler, P.; Cocaign-Bousquet, M.; Daveran-Mingot, M.L. New Insights into Lactococcus lactis Diacetyl- and Acetoin-Producing Strains Isolated from Diverse Origins. International Journal of Food Microbiology 2013, 160, 329–336.
  • Hugenholtz, J.;. Citrate Metabolism in Lactic Acid Bacteria. FEMS Microbiology Reviews 1993, 12, 165–178.
  • Broadbent, J.R.; Cai, H.; Larsen, R.L.; Hughes, J.E.; Welker, D.L.; De Carvalho, V.G.; Tompkins, T.A.; Ardo, Y.; Vogensen, F.; De Lorentiis, A.; Gatti, M.; Neviani, E.; Steele, J.L. Genetic Diversity in Proteolytic Enzymes and Amino Acid Metabolism among Lactobacillus helveticus Strains. Journal of Dairy Science 2011, 94, 4313–4328.
  • Kleerebezem, M.; Boekhorst, J.; Van Kranenburg, R.; Molenaar, D.; Kuipers, O.P.; Leer, R.; Tarchini, R.; Peters, S.A.; Sandbrink, H.M.; Fiers, M.W.; Stiekema, W.; Lankhorst, R.M.; Bron, P.A.; Hoffer, S.M.; Groot, M.N.; Kerkhoven, R.; De Vries, M.; Ursing, B.; De Vos, W.M.; Siezen, R.J. Complete Genome Sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences 2003, 100, 1990–1995.
  • Callanan, M.; Kaleta, P.; O’Callaghan, J.; O’Sullivan, O.; Jordan, K.; McAuliffe, O.; Sangrador-Vegas, A.; Slattery, L.; Fitzgerald, G.F.; Beresford, T.; Ross, R.P. Genome Sequence of Lactobacillus helveticus, an Organism Distinguished by Selective Gene Loss and Insertion Sequence Element Expansion. Journal of Bacteriology 2008, 190, 727–735.
  • Liu, M.; Bayjanov, J.R.; Renckens, B.; Nauta, A.; Siezen, R.J. The Proteolytic System of Lactic Acid Bacteria Revisited: A Genomic Comparison. BMC Genomics 2010, 11, 36.
  • Bustos, I.; Martinez-Bartolome, M.A.; Achemchem, F.; Pelaez, C.; Requena, T.; Martinez-Cuesta, M.C. Volatile Sulphur Compounds-Forming Abilities of Lactic Acid Bacteria: C-S Lyase Activities. International Journal of Food Microbiology 2011, 148, 121–127.
  • Lees, G.J.; Jago, G.R. Formation of Acetaldehyde from Threonine by Lactic Acid Bacteria. Journal of Dairy Research 1976, 43, 75–83.
  • Ott, A.; Germond, J.E.; Chaintreau, A. Origin of Acetaldehyde during Milk Fermentation Using (13)C-Labeled Precursors. Journal of Agricultural and Food Chemistry 2000, 48, 1512–1517.
  • Smit, B.A.; Engels, W.J.; Alewijn, M.; Lommerse, G.T.; Kippersluijs, E.A.; Wouters, J.T.; Smit, G. Chemical Conversion of Alpha-Keto Acids in Relation to Flavor Formation in Fermented Foods. Journal of Agricultural and Food Chemistry 2004, 52, 1263–1268.
  • Mcsweeney, P.L.H.; Sousa, M.J. Biochemical Pathways for the Production of Flavour Compounds in Cheeses during Ripening: A Review. Le Lait 2000, 80, 293–324.
  • Hassan, F.A.M.; Abd El-Gawad, M.A.M.; Enab, A.K. Flavour Compounds in Cheese (Review). Research on Precision Instrument and Machinery 2012, 2, 169–181.
  • Holland, R.; Coolbear, T. Purification of Tributyrin Esterase from Lactococcus lactis Subsp. Cremoris E8. Journal of Dairy Research 1996, 63, 131–140.
  • Fenster, K.M.; Parkin, K.L.; Steele, J.L. Characterization of an Arylesterase from Lactobacillus helveticus CNRZ32. Journal of Applied Microbiology 2000, 88, 572–583.
  • Fernández, J.; Mohedano, A.F.; Fernández-Garcı, E.; Medina, M.; Nuñez, M. Purification and Characterization of an Extracellular Tributyrin Esterase Produced by a Cheese Isolate, Micrococcus Sp. INIA 528. International Dairy Journal 2004, 14, 135–142.
  • Gobbetti, M.; Smacchi, E.; Corsetti, A. Purification and Characterization of a Cell Surface-Associated Esterase from Lactobacillus fermentum DT41. International Dairy Journal 1997, 7, 13–21.
  • Holland, R.; Liu, S.Q.; Crow, V.L.; Delabre, M.L.; Lubbers, M.; Bennett, M.; Norris, G. Esterases of Lactic Acid Bacteria and Cheese Flavour: Milk Fat Hydrolysis, Alcoholysis and Esterification. International Dairy Journal 2005, 15, 711–718.
  • Costello, P.J.; Siebert, T.E.; Solomon, M.R.; Bartowsky, E.J. Synthesis of Fruity Ethyl Esters by Acyl Coenzyme A: Alcohol Acyltransferase and Reverse Esterase Activities in Oenococcus oeni and Lactobacillus plantarum. Journal of Applied Microbiology 2013, 114, 797–806.
  • Liu, S.Q.; Holland, R.; Crow, V.L. Ethyl Butanoate Formation by Dairy Lactic Acid Bacteria. International Dairy Journal 1998, 8, 651–657.
  • Medina, R.B.; Katz, M.B.; González, S.; Oliver, G. Determination of Esterolytic and Lipolytic Activities of Lactic Acid Bacteria. Methods in Molecular Biology 2004, 268, 465–470.
  • Soukoulis, C.; Panagiotidis, P.; Koureli, R.; Tzia, C. Industrial Yogurt Manufacture: Monitoring of Fermentation Process and Improvement of Final Product Quality. Journal of Dairy Science 2007, 90, 2641–2654.
  • Sieuwerts, S.; De Bok, F.A.; Hugenholtz, J.; Van Hylckama Vlieg, J.E. Unraveling Microbial Interactions in Food Fermentations: From Classical to Genomics Approaches. Applied and Environmental Microbiology 2008, 74, 4997–5007.
  • Tamime, A.Y. Fermented Milks: A Historical Food with Modern Applications–A Review. European Journal of Clinical Nutrition 2002, 56(Suppl 4), S2–S15.
  • Beshkova, D.; Simova, E.; Frengova, G.; Simov, Z. Production of Flavour Compounds by Yogurt Starter Cultures. Journal of Industrial Microbiology and Biotechnology 1998, 20, 180–186.
  • Liu, W.; Yu, J.; Sun, Z.; Song, Y.; Wang, X.; Wang, H.; Wuren, T.; Zha, M.; Menghe, B.; Heping, Z. Relationships between Functional Genes in Lactobacillus delbrueckii Ssp. Bulgaricus Isolates and Phenotypic Characteristics Associated with Fermentation Time and Flavor Production in Yogurt Elucidated Using Multilocus Sequence Typing. Journal of Dairy Science 2016, 99, 89–103.
  • Benozzi, E.; Romano, A.; Capozzi, V.; Makhoul, S.; Cappellin, L.; Khomenko, I.; Aprea, E.; Scampicchio, M.; Spano, G.; Märk, T.D. Monitoring of Lactic Fermentation Driven by Different Starter Cultures via Direct Injection Mass Spectrometric Analysis of Flavour-Related Volatile Compounds. Food Research International 2015, 76, 682–688.
  • Settachaimongkon, S.; Nout, M.J.; Antunes Fernandes, E.C.; Hettinga, K.A.; Vervoort, J.M.; Van Hooijdonk, T.C.; Zwietering, M.H.; Smid, E.J.; Van Valenberg, H.J. Influence of Different Proteolytic Strains of Streptococcus thermophilus in Co-Culture with Lactobacillus delbrueckii Subsp. Bulgaricus on the Metabolite Profile of Set-Yoghurt. International Journal of Food Microbiology 2014, 177, 29–36.
  • Boumerdassi, H.; Monnet, C.; Desmazeaud, M.; Corrieu, G. Isolation and Properties of Lactococcus lactis Subsp. Lactis Biovar Diacetylactis CNRZ 483 Mutants Producing Diacetyl and Acetoin from Glucose. Applied and Environmental Microbiology 1997, 63, 2293–2299.
  • Settachaimongkon, S.; Van Valenberg, H.J.; Winata, V.; Wang, X.; Nout, M.J.; Van Hooijdonk, T.C.; Zwietering, M.H.; Smid, E.J. Effect of Sublethal Preculturing on the Survival of Probiotics and Metabolite Formation in Set-Yoghurt. Food Microbiology 2015, 49, 104–115.
  • Zaręba, D.; Ziarno, M.; Ścibisz, I.; Gawron, J. The Importance of Volatile Compound Profile in the Assessment of Fermentation Conducted by Lactobacillus Casei DN-114 001. International Dairy Journal 2014, 35, 11–14.
  • Zhuang, G.; Wang, J.; Yan, L.; Wei, C.; Liu, X.M.; Zhang, H.P. In Vitro Comparison of Probiotic Properties of Lactobacillus Casei Zhang, a Potential New Probiotic, with Selected Probiotic Strains. LWT - Food Science and Technology 2010, 42, 1640–1646.
  • Østlie, H.M.; Helland, M.H.; Narvhus, J.A. Growth and Metabolism of Selected Strains of Probiotic Bacteria in Milk. International Journal of Food Microbiology 2003, 87, 17–27.
  • Østlie, H.M.; Treimo, J.; Narvhus, J.A. Effect of Temperature on Growth of Probiotic Bacteria in Milk. International Dairy Journal 2005, 15, 989–997.
  • Oliveira, R.P.D.S.; Perego, P.; Oliveira, M.N.D.; Converti, A. Growth, Organic Acids Profile and Sugar Metabolism of Bifidobacterium lactis in Co-Culture with Streptococcus Thermophilus: The Inulin Effect. Food Research International 2012, 48, 21–27.
  • Özer, B.H.; Kirmaci, H.A. Functional Milks and Dairy Beverages. International Journal of Dairy Technology 2009, 63, 1–15.
  • Prasanna, P.H.P.; Grandison, A.S.; Charalampopoulos, D. Bifidobacteria in Milk Products: An Overview of Physiological and Biochemical Properties, Exopolysaccharide Production, Selection Criteria of Milk Products and Health Benefits. Food Research International 2014, 55, 247–262.
  • Casarotti, S.N.; Monteiro, D.A.; Moretti, M.M.S.; Penna, A.L.B. Influence of the Combination of Probiotic Cultures during Fermentation and Storage of Fermented Milk. Food Research International 2014, 59, 67–75.
  • Zareba, D.; Ziarno, M.; Obiedzinski, M. Volatile Profile of Non-Fermented Milk and Milk Fermented by Bifidobacterium animalis Subsp. Lactis. International Journal of Food Properties 2012, 15, 1010–1021.
  • Chaves, A.C.S.D.; Ruas-Madiedo, P.; Starrenburg, M.; Hugenholtz, J.; Lerayer, A.L.S. Impact of Engineered Streptococcus thermophilus Trains Overexpressing Glya Gene on Folic Acid and Acetaldehyde Production in Fermented Milk. Brazilian Journal of Microbiology 2003, 34, 114–117.
  • Bongers, R.S.; Hoefnagel, M.H.; Kleerebezem, M. High-Level Acetaldehyde Production in Lactococcus lactis by Metabolic Engineering. Applied and Environmental Microbiology 2005, 71, 1109–1113.
  • Benson, K.H.; Godon, J.J.; Renault, P.; Griffin, H.G.; Gasson, M.J. Effect of Ilvbn-Encoded Α-Acetolactate Synthase Expression on Diacetyl Production in Lactococcus lactis. Applied Microbiology and Biotechnology 1996, 45, 107–111.
  • Aymes, F.; Monnet, C.; Corrieu, G. Effect of Alpha-Acetolactate Decarboxylase Inactivation on Alpha-Acetolactate and Diacetyl Production by Lactococcus lactis Subsp. Lactis Biovar Diacetylactis. Journal of Bioscience and Bioengineering 1999, 87, 87–92.
  • Goupil, N.; Corthier, G.; Ehrlich, S.D.; Renault, P. Imbalance of Leucine Flux in Lactococcus lactis and Its Use for the Isolation of Diacetyl-Overproducing Strains. Applied and Environmental Microbiology 1996, 62, 2636–2640.
  • Platteeuw, C.; Hugenholtz, J.; Starrenburg, M.; Van Alen-Boerrigter, I.; De Vos, W.M. Metabolic Engineering of Lactococcus lactis: Influence of the Overproduction of Alpha-Acetolactate Synthase in Strains Deficient in Lactate Dehydrogenase as a Function of Culture Conditions. Applied and Environmental Microbiology 1995, 61, 3967–3971.
  • Monnet, C.; Aymes, F.; Corrieu, G. Diacetyl and Alpha-Acetolactate Overproduction by Lactococcus lactis Subsp. Lactis Biovar Diacetylactis Mutants that are Deficient in Alpha-Acetolactate Decarboxylase and Have a Low Lactate Dehydrogenase Activity. Applied and Environmental Microbiology 2000, 66, 5518–5520.
  • Swindell, S.R.; Benson, K.H.; Griffin, H.G.; Renault, P.; Ehrlich, S.D.; Gasson, M.J. Genetic Manipulation of the Pathway for Diacetyl Metabolism in Lactococcus lactis. Applied and Environmental Microbiology 1996, 62, 2641–2643.
  • Garrigues, C.; Loubiere, P.; Lindley, N.D.; Cocaign-Bousquet, M. Control of the Shift from Homolactic Acid to Mixed-Acid Fermentation in Lactococcus lactis: Predominant Role of the NADH/NAD+ Ratio. Journal of Bacteriology 1997, 179, 5282–5287.
  • Lopez De Felipe, F.; Gaudu, P. Multiple Control of the Acetate Pathway in Lactococcus lactis under Aeration by Catabolite Repression and Metabolites. Applied Microbiology and Biotechnology 2009, 82, 1115–1122.
  • Hugenholtz, J.; Kleerebezem, M.; Starrenburg, M.; Delcour, J.; De Vos, W.; Hols, P. Lactococcus Lactis as a Cell Factory for High-Level Diacetyl Production. Applied and Environmental Microbiology 2000, 66, 4112–4114.
  • Fernandez, L.; Beerthuyzen, M.M.; Brown, J.; Siezen, R.J.; Coolbear, T.; Holland, R.; Kuipers, O.P. Cloning, Characterization, Controlled Overexpression, and Inactivation of the Major Tributyrin Esterase Gene of Lactococcus lactis. Applied and Environmental Microbiology 2000, 66, 1360–1368.
  • Liu, S.Q.; Baker, K.; Bennett, M.; Holland, R.; Norris, G.; Crow, V.L. Characterisation of Esterases of Streptococcus thermophilus ST1 and Lactococcus lactis Subsp. Cremoris B1079 as Alcohol Acyltransferases. International Dairy Journal 2004, 14, 865–870.
  • Liu, M.; Bienfait, B.; Sacher, O.; Gasteiger, J.; Siezen, R.J.; Nauta, A.; Geurts, J.M. Combining Chemoinformatics with Bioinformatics: In Silico Prediction of Bacterial Flavor-Forming Pathways by a Chemical Systems Biology Approach “Reverse Pathway Engineering”. PLOS One 2014, 9, e84769.
  • Smid, E.J.; Hugenholtz, J. Functional Genomics for Food Fermentation Processes. Annual Review of Food Science and Technology 2010, 1, 497–519.
  • Flahaut, N.A.; Wiersma, A.; Van De Bunt, B.; Martens, D.E.; Schaap, P.J.; Sijtsma, L.; Dos Santos, V.A.; De Vos, W.M. Genome-Scale Metabolic Model for Lactococcus lactis MG1363 and Its Application to the Analysis of Flavor Formation. Applied Microbiology and Biotechnology 2013, 97, 8729–8739.
  • Garrigues, C.; Johansen, E.; Crittenden, R. Pangenomics – an Avenue to Improved Industrial Starter Cultures and Probiotics. Current Opinion in Biotechnology 2013, 24, 187–191.
  • Zhang, L.; Zhang, Y.; Liu, Q.; Meng, L.; Hu, M.; Lv, M.; Li, K.; Gao, C.; Xu, P.; Ma, C. Production of Diacetyl by Metabolically Engineered Enterobacter cloacae. Scientific Reports 2015, 5, 9033.
  • Gemert, L.J.V. Odour Threshold Values in Water In Odour Thresholds. Compilations of Odour Threshold Values in Air, Water and Other Media; Gemert, L.J.V.;Eds.; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011; 157–289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.