980
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of carrot root radial press process for different shapes of loading elements using the finite element method

, , &
Pages S340-S352 | Received 13 Nov 2016, Accepted 15 Feb 2017, Published online: 08 May 2017

References

  • Li, Z.; Colin, T. Quantitative Evaluation of Mechanical Damage to Fresh Fruits. Trends in Food Science & Technology 2014, 35, 138–150.
  • Sadrnia, H.; Rajabipour, A.; Jafari, A.; Javadi, A.; Mostofi, Y.; Kafashan, J.; Dintwa, E.; De Baerdemaeker, J. Internal Bruising Prediction in Watermelon Compression Using Nonlinear Models. Journal of Food Engineering 2008, 86(2), 272–280.
  • Hyde, G.M. Bruising-impacts, Why Apples Bruise, and What You Can do to Minimize Bruising. Tree Fruit Postharvest Journal 1997, 8(4), 9–12.
  • Kabas, O. Methods of Measuring Bruise Volume of Pear (Pyrus communis L.). International Journal of Food Properties 2010, 13(5), 1178–1186.
  • Komarnicki, P.; Stopa, R.; Szyjewicz, D.; Młotek, M. Evaluation of Bruise Resistance of Pears to Impact Load. Postharvest Biology and Technology 2016, 114, 36–44.
  • Thompson, A.K. Fruit and Vegetables: Harvesting, Handling and Storage. Wiley 2007, ISBN: 9781405106191.
  • Chen, P.; Yazdani, R. Prediction of Apple Bruising Due to Impact on Different Surfaces. Transactions of the ASAE 1991, 34, 956–961.
  • Garcia, J.L.; Ruiz-Altisent, M.; Barreiro, P. Factors Influencing Mechanical Properties and Bruise Susceptibility of Apples and Pears. Journal of Agricultural Engineering Research 1995, 61, 11–18.
  • Grotte, M.; Duprat, F.; Loonis, D.; Piétri, E. Mechanical Properties of the Skin and the Flesh of Apples. International Journal of Food Properties 2001, 4(1), 149–161.
  • Roudot, A.C.; Duprat, F.; Wenian, C. Modelling the Response of Apples to Loads. Journal of Agricultural Engineering Research 1991, 4, 249–259.
  • Yuwana, Y.; Duprat, F. Prediction of Apple Bruising Based on the Instantaneous Impact Shear Stress and Energy Absorbed. International Agrophysics 1998, 12, 133–140.
  • Studman, C.J. Model of Fruit Bruising. In: Proceedings of the 2nd Australasian Postharvest Conference, Science and Technology for the Fresh Food Revolution, 1996, Monash University, Melbourne. Institute for Horticultural Development, Department of Natural Resources and the Environment, 241–246.
  • Studman, C.J. Handling Systems and Packaging. In: CIGR Agricultural Engineering Handbook IV.3; F.W. Bakker-Arkema, Ed.; American Society of Agricultural Engineers: St. Joseph, MI, 1999, 291–340, Chapter 3.
  • Pang, D.W.; Studman, C.L.; Banks, N.H. Apple Bruising Thresholds for an Instrumented Sphere. Transactions of the ASAE 1994, 37(3), 893–897.
  • Gołacki, K. A Quick Method to Determine the Mechanical Condition of Carrot Roots. Acta Horticulturae 1998, 421, 259–263.
  • Stropek, Z.; Gołacki, K. A New Method for Measuring Impact Related Bruises in Fruits. Postharvest Biology and Technology 2015, 110, 131–139.
  • Stropek, Z.; Gołacki K. Methodological Aspects of Determining Apple Mechanical Properties During Impact, International Journal of Food Properties 2016, 19(6), 1325–1334.
  • Umeda, M.; Namikawa, K. Modeling the Deformation of Cell to Loads Using Model Cell of Rubber Balk Fitted with Water. International Agrophysics 1994, 8, 597–601.
  • Holt, J.E.; Schoorl, D. Package Protection and Energy Dissipation in Apple Packs. Scientia Horticulturae 1984, 24, 165–176.
  • Kitthawee, U.; Pathaveerat, S.; Srirungruang, T.; Slaughter, D. Mechanical Bruising of Young Coconut. Biosystems Engineering 2011, 109, 211–219.
  • Rodriguez, L.; Ruiz, M.; De Felipe, M.R. Differences in the Structural Response of ‘Granny-Smith’ Apples Under Mechanical Impact and Compression. Journal of Texture Studies 1990, 21, 155–164.
  • Wenian, C.; Duprat, F.; Roudot, A.C. Evaluation of the Importance of the Cellular Tissue Geometry on the Strains Observed on Apples after a Compression or an Impact. Sciences des Aliments 1991, 11, 99–110.
  • Sojak, M.; Głowacki, S. Klasyfikacja Marchwi Z Wykorzystaniem Systemu Ekspertowego. Inżynieria Rolnicza 2008, 7(105), 201–206.
  • Herold, B.; Geyer, M.; Studman, C.J. Fruit Contact Pressure Distributions Equipment. Computers and Electronics in Agriculture 2001, 32, 167–179.
  • Lu, F.; Ishikawa, Y.; Kitazawa, H.; Satake, T. Measurement of Impact Pressure and Bruising of Apple Fruit Using Pressure-Sensitive Film Technique. Journal of Food Engineering 2010, 96(4), 614–620.
  • Rabelo, G.F.; Dal Fabbro, I.M.; Linares, A.W. Contact Stress area Measurement of Spherical Fruit. Acta Horticulturae 2001, 562, 195–200.
  • Lewis, R.; Yoxall, A.; Marshall, M.B.; Canty, L.A. Characterising Pressure and Bruising in Apple Fruit. Wear 2008, 264, 37–46.
  • Opara, U.L.; Pathare, P.B. Bruise Damage Measurement and Analysis of Fresh Horticultural Produce–A Review. Postharvest Biology and Technology 2014, 91, 9–24.
  • Dintwa, E.; Jancsók, P.; Mebatsion, H.K.; Verlinden, B.; Verboven, P.; Wang, C.X.; Thomas, C.R.; Tijskens, E.; Ramon, H.; Nicolaï, B. A Finite Element Model for Mechanical Deformation of Single Tomato Suspension Cells. Journal of Food Engineering 2011 103(3), 265–272.
  • Kobyłka, R.; Molenda, M. DEM Simulations of Loads on Obstruction Attached to the Wall of a Model Grain Silo and of Flow Disturbance Around the Obstruction. Powder Technology 2014, 256, 210–216.
  • Li, Z.; Li, P.; Yang, H.; Liu, J. Internal Mechanical Damage Prediction in Tomato Compression Using Multiscale Finite Element Models. Journal of Food Engineering 2013, 116(3), 639–647.
  • Petrů, M.; Novák, O.; Herák, D.; Simanjuntak S. Finite Element Method Model of the Mechanical Behaviour of Jatropha curcas L. Seed Under Compression Loading. Biosystems Engineering 2012, 111, 412–421.
  • Van Zeebroeck, M.; Tijskens, E.; Dintwa, E.; Kafashan, J.; Loodts, J.; De Baerdemaeker, J.; Ramon, H. The Discrete Element Method (DEM) to Simulate Fruit Impact Damage During Transport and Handling: Case Study of Vibration Damage During Apple Bulk Transport. Postharvest Biology Technology 2006a, 41, 92–100.
  • Van Zeebroeck, M.; Tijskens, E.; Dintwa, E.; Kafashan, J.; Loodts, J.; De Baerdemaeker, J.; Ramon, H. The Discrete Element Method (DEM) to Simulate Fruit Impact Damage During Transport and Handling: Model Building and Validation of DEM to Predict Bruise Damage of Apples. Postharvest Biology Technology 2006b, 41, 85–91.
  • Van Zeebroeck, M.; Lombaert, G.; Dintwa, E.; Ramon, H.; Degrande, G.; Tijskens, E. The Simulation of the Impact Damage to Fruit During the Passage of a Truck over a Speed Bump by Means of the Discrete Element Method. Biosystems Engineering 2008, 101, 58–68.
  • Yousefi, S.; Farsi, H.; Kheiralipour, K. Drop Test of Pear Fruit: Experimental Measurement and Finite Element Modelling. Biosystems Engineering 2016, 147, 17–25.
  • Lu, R.; Abbott, J.A. Finite Element Analysis of Modes of Vibration in Apples. Journal of Texture Studies 1996, 27, 265–286.
  • Puri, V.M.; Anantheswaran, R.C. The Finite-Element Method in Food Processing: A Review. Journal of Food Engineering 1993, 19(3), 247–274.
  • Lu, R.; Abbott, J.A. Finite Element Modelling of Transient Responses of Apples to Impulse Excitation. Transactions of the ASAE 1997, 40(5), 1395–1409.
  • Song, H.; Wang, J.; Li, Y. Studies on Vibrations Characteristics of the Pear Using Finite Element Method. Journal of Zhejiang University Science B 2006, 7(6), 491–496.
  • Abbott, J.A.; Lu, R. Anisotropic Mechanical Properties of Apples. Transactions of the ASAE 1996 39(4), 1451–1459.
  • Dintwa, E.; Van Zeebroeck, M.; Ramon, H.; Tijskens, E. Finite Element Analysis of the Dynamic Collision of Apple Fruit. Postharvest Biology and Technology 2008, 49, 260–276.
  • Van Zeebroeck, M.; Tijskens, E.; Van Liedekerke, P.; Deli, V.; De Baerdemaeker, J.; Ramon, H. Determination of the Dynamical Behaviour of Biological Materials during Impact Using a Pendulum Device. Journal of Sound and Vibration 2003, 266, 465–480.
  • Celik, H.K.; Rennie, A.E.W.; Akinci, I. Deformation Behaviour Simulation of an Apple Under Drop Case by Finite Element Method. Journal of Food Engineering 2011, 104(2), 293–298.
  • Wu, N.; Pitts, M.J. Development and Validation of a Finite Element Model of an Apple Fruit Cell. Postharvest Biology Technology 1999, 16, 1–8.
  • Wu, N. Modeling Apple Firmness Sensors with Finite Element Method. M.S. Thesis. Washington State University, Pullman, WA 1993.
  • Manjunatha S.S.; Das Gupta D.K. Instrumental Textural Characteristics of Restructured Carrot Cubes. International Journal of Food Properties 2006, 9(3), 453–462.
  • Stopa, R.; Smolnicki, T. Modelowanie Rozkładów Przemieszczeń Walcowej Próbki Bulwy Ziemniaka Przy Obciążeniu Osiowym Metodą Elementów Skończonych. Inżynieria Rolnicza 2011, 9(134), 223–230.
  • Smolnicki, T.; Rusiński, E. Superelement-Based Modeling of Load Distribution in Large-Size Slewing Bearings. Journal of Mechanical Design 2007, 129(4), 459–463.
  • Gerhard, H.; Busse, G. Lockin-ESPI interferometric imaging for remote non-destructive testing. Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials, Québec City, Canada, 2005.
  • Steudle, E.; Wieneke, J. Changes in Water Relations and Elastic Properties of Apple Fruit Cells during Growth And Development. Journal of the American Society for Horticultural Science 1985, 110, 824–829.
  • Dyląg, Z.; Jakubowicz, A.; Orłoś, Z.; Wytrzymałość Materiałów. WNT. Warszawa. 2003 ISBN: 8320428165.
  • McGarry, A. Cellular Basis of Tissue Toughness in Carrot (Daucus carota L.) Storage Roots. Annals of Botany 1995, 75(2), 157–163.
  • Tibäck, E.; Langton, M.; Oliveira, J.; Ahrné, L. Mathematical Modeling of the Viscosity of Tomato, Broccoli and Carrot Purees Under Dynamic Conditions. Journal of Food Engineering 2014, 124, 35–42.
  • Jones, C.S.; Holt, J.E.; Schoorl, D. A Model to Predict Damage to Horticultural Produce During Transport. Journal of Agricultural Engineering Research 1991, 4, 259–272.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.