2,862
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Effects of curdlan on the texture and structure of Alaska pollock surimi gels treated at 120°C

, , , , , & show all
Pages 1778-1788 | Received 13 Dec 2016, Accepted 10 Mar 2017, Published online: 23 Aug 2018

References

  • Lorentzen, G.; Ytterstad, E.; Olsen, R.L.; Skjerdal, T. Thermal Inactivation and Growth Potential of Listeriainnocua in Rehydrated Salt-Cured Cod Prepared for Ready-To-Eat Products. Food Control 2010, 21(8), 1121-6%@ 0956-7135.
  • Zhang, T.; Xue, Y.; Li, Z.; Wang, Y.; Xue, C. Effects of Deacetylation of Konjac Glucomannan on Alaska Pollock Surimi Gels Subjected to High-Temperature (120 C) Treatment. Food Hydrocolloids 2015, 43, 125–131.
  • Park, J.W. Surimi Seafood: Products, Market, and Manufacturing. Surimi and Surimi Seafood 2005, 375–433.
  • Paker, I.; Matak, K.E. Impact of Sarcoplasmic Proteins on Texture and Color of Silver Carp and Alaska Pollock Protein Gels. LWT-Food Science and Technology 2015, 63(2), 985–991.
  • Benjakul, S.; Visessanguan, W.; Chantarasuwan, C. Effect of High‐Temperature Setting on Gelling Characteristic of Surimi from Some Tropical Fish. International Journal of Food Science & Technology 2004, 39(6), 671–680.
  • Gordon, A.; Barbut, S. Effect of Chloride Salts on Protein Extraction and Interfacial Protein Film Formation in Meat Batters. Journal of the Science of Food and Agriculture 1992, 58(2), 227–238.
  • Sánchez-González, I.; Carmona, P.; Moreno, P.; Borderías, J.; Sanchez-Alonso, I.; Rodríguez-Casado, A.; Careche, M. Protein and Water Structural Changes in Fish Surimi during Gelation as Revealed by Isotopic H/D Exchange and Raman Spectroscopy. Food Chemistry 2008, 106(1), 56–64.
  • Zhang, L.; Zhang, F.; Wang, X. Changes of Protein Secondary Structures of Pollock Surimi Gels under High-Temperature (100°C and 120°C) Treatment. Journal of Food Engineering 2016, 171, 159–163.
  • Zhu, Z.; Lanier, T.C.; Farkas, B.E.; Li, B. Transglutaminase and High Pressure Effects on Heat-Induced Gelation of Alaska Pollock (Theragra chalcogramma) Surimi. Journal of Food Engineering 2014, 131, 154–160.
  • Zhang, L.; Xue, Y.; Xu, J.; Li, Z.; Xue, C. Effects of High-Temperature Treatment (⩾100°C) on Alaska Pollock (Theragra chalcogramma) Surimi Gels. Journal of Food Engineering 2013, 115(1), 115–120.
  • Ramírez-Suárez, J.; Addo, K.; Xiong, Y. Gelation of Mixed Myofibrillar/Wheat Gluten Proteins Treated with Microbial Transglutaminase. Food Research International 2005, 38(10), 1143–1149.
  • Kudre, T.; Benjakul, S.; Kishimura, H. Effects of Protein Isolates from Black Bean and Mungbean on Proteolysis and Gel Properties of Surimi from Sardine (Sardinella albella). LWT - Food Science and Technology 2013, 50(2), 511–518.
  • Leloup, V.; Colonna, P.; Ring, S. Diffusion of a Globular Protein in Amylose and Amylopectin Gels. Food Hydrocolloids 1987, 1(5), 465–469.
  • Park, J.W. Ingredient Technology and Formulation Development. In: Park JW (ed) Surimi and surimi seafood. Food Science and Technology-New York-Marcel Dekker 2000, 343–392.
  • Debusca, A.; Tahergorabi, R.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Physicochemical Properties of Surimi Gels Fortified with Dietary Fiber. Food Chemistry 2014, 148, 70–76.
  • Pietrowski, B.N.; Tahergorabi, R.; Matak, K.E.; Tou, J.C.; Jaczynski, J. Chemical Properties of Surimi Seafood Nutrified with Ω-3 Rich Oils. Food Chemistry 2011, 129(3), 912–919.
  • Ramírez, J.A.; Uresti, R.M.; Velazquez, G.; Vázquez, M. Food Hydrocolloids as Additives to Improve the Mechanical and Functional Properties of Fish Products: A Review. Food Hydrocolloids 2011, 25(8), 1842–1852.
  • Saha, D.; Bhattacharya, S. Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. Journal of Food Science and Technology 2010, 47(6), 587–597.
  • Herranz, B.; Tovar, C.A.; Solo-de-Zaldívar, B.; Borderias, A.J. Effect of Alkalis on Konjac Glucomannan Gels for Use as Potential Gelling Agents in Restructured Seafood Products. Food Hydrocolloids 2012, 27(1), 145–153.
  • Barrera, A.; Ramırez, J.; González-Cabriales, J.; Vázquez, M. Effect of Pectins on the Gelling Properties of Surimi from Silver Carp. Food Hydrocolloids 2002, 16(5), 441–447.
  • Harada, T. Production, Properties, and Application of Curdlan [With Applications to the Food Industry]; ACS Symposium Series American Chemical Society, 1977.
  • Lee, K.B.; Bae, J.H.; Kim, J.S.; Yoo, Y.C.; Kim, B.S.; Kwak, S.T.; Kim, Y.S. Anticoagulant Activity of Sulfoalkyl Derivatives of Curdlan. Archives of Pharmacal Research 2001, 24(2), 109–113.
  • McIntosh, M.; Stone, B.; Stanisich, V. Curdlan and Other Bacterial (1→ 3)-Β-D-Glucans. Applied Microbiology and Biotechnology 2005, 68(2), 163–173.
  • Kanzawa, Y.; Harada, T.; Koreeda, A.; Harada, A.; Okuyama, K. Difference of Molecular Association in Two Types of Curdlan Gel. Carbohydrate Polymers 1989, 10(4), 299–313.
  • Chen, C.; Wang, R.; Sun, G.; Fang, H.; Ma, D.; Yi, S. Effects of High Pressure Level and Holding Time on Properties of Duck Muscle Gels Containing 1% Curdlan. Innovative Food Science & Emerging Technologies 2010, 11(4), 538–542.
  • Wang, M.; Chen, C.; Sun, G.; Wang, W.; Fang, H. Effects of Curdlan on the Color, Syneresis, Cooking Qualities, and Textural Properties of Potato Starch Noodles. Starch‐Stärke 2010, 62(8), 429–434.
  • Lanier, T.C. Measurement of Surimi Composition and Functional Properties. Surimi Technology 1992, 12, 123-163.
  • Liu, R.; Zhao, S.-M.; Xiong, S.-B.; B-J, X.; L-H, Q. Role of Secondary Structures in the Gelation of Porcine Myosin at Different Ph Values. Meat Science 2008, 80(3), 632–639.
  • Ogawa, M.; Ehara, T.; Tamiya, T.; Tsuchiya, T. Thermal Stability of Fish Myosin. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 1993, 106(3), 517–521.
  • Wu, C.; Yuan, C.; Chen, S.; Liu, D.; Ye, X.; Hu, Y. The Effect of Curdlan on the Rheological Properties of Restructured Ribbonfish (Trichiurus Spp.) Meat Gel. Food Chemistry 2015, 179, 222–231.
  • Funami, T.; Yada, H.; Nakao, Y. Thermal and Rheological Properties of Curdlan Gel in Minced Pork Gel. Food Hydrocolloids 1998, 12(1), 55–64.
  • Lefèvre, F.; Fauconneau, B.; Ouali, A.; Culioli, J. Thermal Gelation of Brown Trout Myofibrils: Effect of Muscle Type, Heating Rate and Protein Concentration. Journal of Food Science 2008, 63(2), 299–304.
  • Mleko, S.; Foegeding, E.A. Ph Induced Aggregation and Weak Gel Formation of Whey Protein Polymers. Journal Food Sciences 2000, 65(1), 139–143.
  • Hirashima, M.; Takaya, T.; Nishinari, K. DSC and Rheological Studies on Aqueous Dispersions of Curdlan. Thermochimica Acta 1997, 306(1), 109–114.
  • Konno, A.; Harada, T. Thermal Properties of Curdlan in Aqueous Suspension and Curdlan Gel. Food Hydrocolloids 1991, 5(5), 427–434.
  • Konno, A.; Okuyama, K.; Koreeda, A.; Harada, A.; Kanzawa, Y.; Harada, T. Molecular Association and Dissociation in Formation of Curdlan Gels; Food Hydrocolloids: Springer: 1994, 30(2), 113–118.
  • Funami, T.; Funami, M.; Yada, H.; Nakao, Y. A Rheological Study on the Effects of Heating Rate and Dispersing Method on the Gelling Characteristics of Curdlan Aqueous Dispersions. Food Hydrocolloids 2000, 14(5), 509–518.
  • Spink, C.H. Differential Scanning Calorimetry. Methods in Cell Biology 2008, 84, 115–141.
  • Wright, D.J.; Leach, I.B.; Wilding, P. Differential Scanning Calorimetric Studies of Muscle and Its Constituent Proteins. Journal of the Science of Food and Agriculture 1977, 28(6), 557–564.
  • Murray, E.; Arntfield, S.; Ismond, M. The Influence of Processing Parameters on Food Protein Functionality II. Factors Affecting Thermal Properties as Analyzed by Differential Scanning Calorimetry. Canadian Institute of Food Science and Technology Journal 1985, 18(2), 158–162.
  • Chanarat, S.; Benjakul, S. Impact of Microbial Transglutaminase on Gelling Properties of Indian Mackerel Fish Protein Isolates. Food Chemistry 2013, 136(2), 929–937.
  • Funami, T.; Nakao, Y. Effects of Curdlan on the Rheological Properties and Gelling Processes of Meat Gels under a Model System Using Minced Pork. 1. Application of Curdlan to Meat Products. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi 1996, 43(1), 21–28.
  • Funami, T.; Unami, M.; Yada, H.; Nakao, Y. Gelation Mechanism of Curdlan by Dynamic Viscoelasticity Measurements. Journal of Food Science 1999, 64(1), 129–132.
  • Zhang, R.; Edgar, K.J. Properties, Chemistry, and Applications of the Bioactive Polysaccharide Curdlan. Biomacromolecules 2014, 15(4), 1079–1096.
  • Hu, Y.; Liu, W.; Yuan, C.; Morioka, K.; Chen, S.; Liu, D.; Ye, X. Enhancement of the Gelation Properties of Hairtail (Trichiurus haumela) Muscle Protein with Curdlan and Transglutaminase. Food Chemistry 2015, 176, 115–122.
  • Choi, S.-G.; Kerr, W.L. 1 H NMR Studies of Molecular Mobility in Wheat Starch. Food Research International 2003, 36(4), 341–348.
  • Hazlewood, C.; Nichols, B. Evidence for the Existence of a Minimum of Two Phases of Ordered Water in Skeletal Muscle. Nature 1969, 222, 747–750.
  • Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water Distribution and Mobility in Meat during the Conversion of Muscle to Meat and Ageing and the Impacts on Fresh Meat Quality Attributes—A Review. Meat Science 2011, 89(2), 111–124.
  • Møller, S.M.; Grossi, A.; Christensen, M.; Orlien, V.; Søltoft-Jensen, J.; Straadt, I.K.; Thybo, A.K.; Bertram, H.C. Water Properties and Structure of Pork Sausages as Affected by High-Pressure Processing and Addition of Carrot Fibre. Meat Science 2011, 87(4), 387–393.