2,093
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Colorimetric sensor array-based artificial olfactory system for sensing Chinese green tea’s quality: A method of fabrication

, , , , &
Pages 1762-1773 | Received 06 Mar 2017, Accepted 07 Jul 2017, Published online: 21 Dec 2017

References

  • Zeng, X.; Tian, J.; Cai, K.; Wu, X.; Wang, Y.; Zheng, Y.; Su, Y.; Cui, L. Promoting Osteoblast Differentiation by the Flavanes from Huangshan Maofeng Tea Is Linked to a Reduction of Oxidative Stress. Phytomedicine. 2014, 21, 217–224. DOI: 10.1016/j.phymed.2013.08.026.
  • Ramdani, D.; Chaudhry, A. S.; Seal, C. J. Chemical Composition, Plant Secondary Metabolites, and Minerals of Green and Black Teas and the Effect of Different Tea-To-Water Ratios during Their Extraction on the Composition of Their Spent Leaves as Potential Additives for Ruminants. J. Agric. Food Chem. 2013, 61, 4961–4967. DOI: 10.1021/jf4002439.
  • Lv, S. D.; Wu, Y. S.; Song, Y. Z.; Zhou, J. S.; Lian, M.; Wang, C.; Liu, L. Multivariate Analysis Based on GC-MS Fingerprint and Volatile Composition for the Quality Evaluation of Pu-Erh Green Tea. Food Anal. Methods. 2015, 8, 321–333. DOI: 10.1007/s12161-014-9900-0.
  • Gao, L.; Bian, M.; Mi, R.; Hu, X.; Wu, J. Quality Identification and Evaluation of Pu-Erh Teas of Different Grade Levels and Various Ages through Sensory Evaluation and Instrumental Analysis. Int. J. Food Sci. Technol. 2016, 51, 1338–1348. DOI: 10.1111/ijfs.13103.
  • Lu, X.; Zhao, Y.; Sun, Y.; Yang, S.; Yang, X. Characterisation of Polysaccharides from Green Tea of Huangshan Maofeng with Antioxidant and Hepatoprotective Effects. Food Chem. 2013, 141, 3415–3423. DOI: 10.1016/j.foodchem.2013.06.058.
  • Ouyang, Q.; Zhao, J.; Chen, Q. Instrumental Intelligent Test of Food Sensory Quality as Mimic of Human Panel Test Combining Multiple Cross-Perception Sensors and Data Fusion. Anal. Chim. Acta. 2014, 841, 68–76. DOI: 10.1016/j.aca.2014.06.001.
  • Yi, T.; Zhu, L.; Peng, W. L.; He, X. C.; Chen, H. L.; Li, J.; Yu, T.; Liang, Z.; Zhao, Z.; Chen, H. Comparison of Ten Major Constituents in Seven Types of Processed Tea Using HPLC-DAD-MS Followed by Principal Component and Hierarchical Cluster Analysis. Lwt-Food Sci. Technol. 2015, 62, 194–201. DOI: 10.1016/j.lwt.2015.01.003.
  • Wu, Y.; Lv, S.; Chen, W.; Gao, X.; Li, J.; Meng, Q. Comparative Analysis of Volatiles Difference of Yunnan Sun-Dried Pu-Erh Green Tea from Different Tea Mountains: Jingmai and Wuliang Mountain by Chemical Fingerprint Similarity Combined with Principal Component Analysis and Cluster Analysis. Chem. Cent. J. 2016, 10, 1–11. DOI: 10.1186/s13065-016-0159-y.
  • Jiang, H.; Chen, Q. Chemometric Models for the Quantitative Descriptive Sensory Properties of Green Tea (Camellia Sinensis, L.) Using Fourier Transform near Infrared (FT-NIR) Spectroscopy. Food Anal. Methods. 2014, 8, 954–962. DOI: 10.1007/s12161-014-9978-4.
  • Diniz, P. H. G. D.; Pistonesi, M. F.; Araújo, M. C. U. Using SPA-PLS and NIR Spectroscopy for the Determination of Total Polyphenols and Moisture in Commercial Tea Samples. Anal. Methods. 2015, 7, 3379–3384. DOI: 10.1039/C4AY03099K.
  • Wang, X.; Huang, J.; Fan, W.; Lu, H. Identification of Green Tea Varieties and Fast Quantification of Total Polyphenols by Near-Infrared Spectroscopy and Ultraviolet-Visible Spectroscopy with Chemometric Algorithms. Anal. Methods. 2014, 7, 787–792. DOI: 10.1039/C4AY02106A.
  • Diniz, P. H. G. D.; Gomes, A. A.; Pistonesi, M. F.; Band, B. S. F.; Araújo, M. C. U. D. Simultaneous Classification of Teas according to Their Varieties and Geographical Origins by Using NIR Spectroscopy and SPA-LDA. Food Anal. Methods. 2014, 7, 1712–1718.
  • Deng, S.; Xu, Y.; Li, X.; He, Y. Moisture Content Prediction in Tealeaf with near Infrared Hyperspectral Imaging. Comput. Electron. Agric. 2015, 118, 38–46. DOI: 10.1016/j.compag.2015.08.014.
  • Xie, C.; Li, X.; Shao, Y.; He, Y. Color Measurement of Tea Leaves at Different Drying Periods Using Hyperspectral Imaging Technique. PLoS One. 2014, 9, e113422–e113422. DOI: 10.1371/journal.pone.0113422.
  • Zhu, Y.; Lv, H. P.; Dai, W. D.; Guo, L.; Tan, J. F.; Zhang, Y.; Yu, F.; Shao, C.; Peng, Q.; Lin, Z. Separation of Aroma Components in Xihu Longjing Tea Using Simultaneous Distillation Extraction with Comprehensive Two-Dimensional Gas Chromatography-Time-Of-Flight Mass Spectrometry. Separation Purif. Technol. 2016, 164, 146–154. DOI: 10.1016/j.seppur.2016.03.028.
  • Han, Z. X.; Rana, M. M.; Liu, G. F.; Gao, M. J.; Li, D. X.; Wu, F. G.; Li, X. B.; Wan, X. C.; Wei, S. Green Tea Flavour Determinants and Their Changes over Manufacturing Processes. Food Chem. 2016, 212, 739–748. DOI: 10.1016/j.foodchem.2016.06.049.
  • Dai, Y.; Zhi, R.; Zhao, L.; Gao, H.; Shi, B.; Wang, H. Longjing Tea Quality Classification by Fusion of Features Collected from E-Nose. Chemometr. Intell. Lab. Syst. 2015, 144, 63–70. DOI: 10.1016/j.chemolab.2015.03.010.
  • Lippolis, V.; Pascale, M.; Cervellieri, S.; Damascelli, A.; Visconti, A. Screening of Deoxynivalenol Contamination in Durum Wheat by Mos-Based Electronic Nose and Identification of the Relevant Pattern of Volatile Compounds. Food Control. 2014, 37, 263–271. DOI: 10.1016/j.foodcont.2013.09.048.
  • Griffiths, P. R.; Brennan, P. A. Roles for Learning in Mammalian Chemosensory Responses. Horm. Behav. 2014, 68, 91–102. DOI: 10.1016/j.yhbeh.2014.08.010.
  • Lewis, N. S. Comparisons between Mammalian and Artificial Olfaction Based on Arrays of Carbon Black—Polymer Composite Vapor Detectors. Acc. Chem. Res. 2004, 37, 663–672. DOI: 10.1021/ar030120m.
  • Ryman, S. K.; Bruce, N. D. B.; Freund, M. S. Temporal Responses of Chemically Diverse Sensor Arrays for Machine Olfaction Using Artificial Intelligence. Sens. Actuators B Chem. 2016, 231, 666–674. DOI: 10.1016/j.snb.2016.03.059.
  • Rakow, N. A.; Suslick, K. S. A Colorimetric Sensor Array for Odour Visualization. Nature. 2000, 406, 710–713. DOI: 10.1038/35021028.
  • Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Suslick, K. S. Colorimetric Sensor Arrays for Volatile Organic Compounds. Anal. Chem. 2006, 78, 3591–3600. DOI: 10.1021/ac052111s.
  • Khulal, U.; Zhao, J.; Hu, W.; Chen, Q. Comparison of Different Chemometric Methods in Quantifying Total Volatile Basic-Nitrogen (TVB-N) Content in Chicken Meat Using a Fabricated Colorimetric Sensor Array. RSC Adv. 2016, 6, 4663–4672. DOI: 10.1039/C5RA25375F.
  • Ouyang, Q.; Zhao, J.; Chen, Q.; Hao, L. Classification of Rice Wine according to Different Marked Ages Using a Novel Artificial Olfactory Technique Based on Colorimetric Sensor Array. Food Chem. 2013, 138, 1320–1324. DOI: 10.1016/j.foodchem.2012.11.124.
  • Chen, Q.; Sun, C.; Ouyang, Q.; Liu, A.; Li, H.; Zhao, J. Classification of Vinegar with Different Marked Ages Using Olfactory Sensors and Gustatory Sensors. Anal. Methods. 2014, 6, 9783–9790. DOI: 10.1039/C4AY02386B.
  • Liu, F.; Chen, H.; Tang, X. Investigation on Strawberry Freshness by Rapid Determination Using Artificial Olfactory System. Int. J. Food Properties. 2017. DOI: 10.1080/10942912.2017.1315595.
  • Chen, Q.; Hui, Z.; Zhao, J.; Ouyang, Q. Evaluation of Chicken Freshness Using a Low-Cost Colorimetric Sensor Array with AdaBoost–OLDA Classification Algorithm. LWT-Food Sci. Technol. 2014, 57, 502–507. DOI: 10.1016/j.lwt.2014.02.031.
  • Salinas, Y.; Ros-Lis, J. V.; Vivancos, J. L.; Martínez-Máñez, R.; Marcos, M. D.; Aucejo, S.; Herranz, N.; Lorente, I.; Garcia, E. A Novel Colorimetric Sensor Array for Monitoring Fresh Pork Sausages Spoilage. Food Control. 2014, 35, 166–176. DOI: 10.1016/j.foodcont.2013.06.043.
  • Morsy, M. K.; Zór, K.; Kostesha, N.; Alstrøm, T. S.; Heiskanen, A.; El-Tanahi, H.; Sharoba, A.; Papkovsky, D.; Larsen, J.; Khalaf, H.; et al. Development and Validation of a Colorimetric Sensor Array for Fish Spoilage Monitoring. Food Control. 2015, 60, 346–352. DOI: 10.1016/j.foodcont.2015.07.038.
  • Li, J.; Fu, B.; Huo, D.; Hou, C.; Yang, M.; Shen, C. Discrimination of Chinese Teas according to Major Amino Acid Composition by a Colorimetric IDA Sensor. Sens. Actuators B Chem. 2016, 240, 770–778. DOI: 10.1016/j.snb.2016.09.019.
  • Li, J.; Fu, B.; Huo, D.; Hou, C.; Yang, M.; Shen, C. A Colorimetric Multilayer Sensor for Discriminating Red Wine and Green Tea by Measurement of Antioxidant Activity. Anal. Methods. 2016, 8, 3345–3352. DOI: 10.1039/C5AY03360H.
  • Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Ingison, C. K.; Suslick, K. S. Colourimetric Sensor Arrays for Volatile Organic Compounds. Anal. Chem. 2006, 78, 3591–3600. DOI: 10.1021/ac052111s.
  • Suslick, K. S.; Rakow, N. A.; Sen, A. Colourimetric Sensor Arrays for Molecular Recognition. Tetrahedron. 2004, 60, 11133–11138. DOI: 10.1016/j.tet.2004.09.007.
  • Chen, Q.; Liu, A.; Zhao, J.; Ouyang, Q.; Sun, Z.; Huang, L. Monitoring Vinegar Acetic Fermentation Using a Colorimetric Sensor Array. Sens. Actuators B Chem. 2013, 183, 608–616. DOI: 10.1016/j.snb.2013.04.033.
  • Rakow, N. A. A Metalloporphyrin-Based Colorimetric Nose: “Smell-Seeing”. University of Illinois at Urbana-Champaign: Urbana, America, 2001.
  • Chen, Q.; Liu, A.; Zhao, J.; Qin, O. Classification of Tea Category Using a Portable Electronic Nose Based on an Odor Imaging Sensor Array. J. Pharm. Biomed. Anal. 2013, 84, 77–83. DOI: 10.1016/j.jpba.2013.05.046.
  • Huang, X. W.; Li, Z. H.; Zou, X. B.; Shi, J. Y.; Mao, H. P.; Zha, J. W.; Hao, L. M.; Holmes, M. Detection of Meat-Borne Trimethylamine Based on Nanoporous Colorimetric Sensor Arrays. Food Chem.. 2016, 197, 930–936. DOI: 10.1016/j.foodchem.2015.11.041.
  • Tahir, H. E.; Zou, X. B.; Huang, X. W.; Shi, J. Y.; Mariod, A. A. Discrimination of Honeys Using Colorimetric Sensor Arrays, Sensory Analysis and Gas Chromatography Techniques. Food Chem. 2016, 206, 37–43. DOI: 10.1016/j.foodchem.2016.03.032.
  • Singh, H.; Raj, V. B.; Kumar, J.; Durani, F.; Mishra, M.; Nimal, A. T.; Sharma, M. U. Saw Mono Sensor for Identification of Harmful Vapors Using PCA and ANN. Process. Saf. Environ. Prot. 2016, 102, 577–588. DOI: 10.1016/j.psep.2016.05.014.
  • Šnirc, M.; Kral, M.; Ošťádalová, M.; Golian, J.; Tremlová, B. Application of Principal Component Analysis Method for Characterization Chemical, Technological, and Textural Parameters of Farmed and Pastured Red Deer. Int. J. Food Properties. 2017, 20, 754–761. DOI: 10.1080/10942912.2016.1180532.
  • Xia, Q.; Liu, C.; Liu, J.; Pan, W.; Lu, X.; Yang, J.; Chen, W.; Zheng, L. Rapid and Non-Destructive Determination of Rancidity Levels in Butter Cookies by Multi-Spectral Imaging. J. Sci. Food Agric. 2016, 96, 1821–1827. DOI: 10.1002/jsfa.2016.96.issue-5.
  • Li, H.; Chen, Q.; Zhao, J.; Ouyang, Q. Non-Destructive Evaluation of Pork Freshness Using a Portable Electronic Nose (E-Nose) Based on a Colorimetric Sensor Array. Anal. Methods. 2014, 6, 6271–6277. DOI: 10.1039/C4AY00014E.
  • Ho, C. T.; Zheng, X.; Li, S. Tea Aroma Formation. Food Sci. Hum. Wellness. 2015, 4, 9–27. DOI: 10.1016/j.fshw.2015.04.001.
  • Liu, P.; Xu, Y.; Yin, J.; Chen, G.; Wang, F. Effect of Main Water Quality Factors on Volatile Components of Huangshan Maofeng Tea with Faint Scent. J. Chin. Inst. Food Sci. Technol. 2016, 16, 245–257.
  • Kumazawa, K.; Masuda, H. Identification of Potent Odorants in Different Green Tea Varieties Using Flavor Dilution Technique. J. Agric. Food Chem. 2002, 50, 5660–5663. DOI: 10.1021/jf020498j.
  • Baba, R.; Kumazawa, K. Characterization of the Potent Odorants Contributing to the Characteristic Aroma of Chinese Green Tea Infusions by Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2014, 62, 8308–8313. DOI: 10.1021/jf502308a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.