5,181
Views
21
CrossRef citations to date
0
Altmetric
Articles

Microstructural evolution of whipped cream in whipping process observed by confocal laser scanning microscopy

, , , , , & show all
Pages 593-605 | Received 10 Aug 2017, Accepted 03 Feb 2018, Published online: 03 May 2018

References

  • Jakubczyk, E.; Niranjan, K. Transient Development of Whipped Cream Properties. Journal of Food Engineering 2006, 77(1), 79–83. DOI: 10.1016/j.jfoodeng.2005.06.046.
  • Noda, M.; Shiinoki, Y. Microstruture and Rheological Behavior of Whipping Cream. Journal of Texture Studies 1986, 17(2), 189–204. DOI: 10.1111/j.1745-4603.1986.tb00404.x.
  • Chang, Y.; Hartel, R. W. Measurement of Air Cell Distributions in Dairy Foams. International Dairy Journal 2002, 12(5), 463–472. DOI: 10.1016/S0958-6946(01)00171-6.
  • Caldwell, K. B.; Goff, H. D.; Stanley, D. W. A Low-Temperature Scanning Electron Microscopy Study of Ice Cream. I Techniques and General Microstructure. Food Structure 1992;11(1):1–9.
  • Brooker, B. E.; Anderson, M.; Andrews, A. T. The Development of Structure in Whipped Cream. Food Microstructure 1986;5(2):277–285.
  • Smith, A. K.; Kakuda, Y.; Goff, H. D. Changes in Protein and Fat Structure in Whipped Cream Caused by Heat Treatment and Addition of Stabilizer to the Cream. Food Research International 2000, 33(8), 697–706. DOI: 10.1016/S0963-9969(00)00115-0.
  • Brooker, B. E.;. The Adsorption of Crystalline Fat to the Air-Water Interface of Whipped Cream. Food Structure 1990;9(3):223–229.
  • Hotrum, N. E.; Cohen Stuart, M. A.; van Vliet, T.; Avino, S. F.; van Aken, G. A. Elucidating the Relationship between the Spreading Coefficient, Surface-Mediated Partial Coalescence and the Whipping Time of Artificial Cream. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2005;260(1–3):71–78.
  • van Aken, G. A.;. Aeration of Emulsions by Whipping. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2001;190(3):333–354.
  • Goff, H. D.;. Interactions and Contributions of Stabilizers and Emulsifiers to Development of Structure in Ice-Cream. In Food Colloids and Polymers: Stability and Mechanical Properties; Dickinson, E., Walstra, P., Eds. Chapman and Hall: Chambage, 1993, pp 71–74.
  • Needs, E. C.; Huitson, A. The Contribution of Milk Serum Proteins to the Development of Whipped Cream Structure. Food Structure 1991;10(4):353–360.
  • Fredrick, E.; Heyman, B.; Moens, K.; Fischer, S.; Verwijlen, T.; Moldenaers, P.; Meeren, P. V.; Dewettinck, K. Monoacylglycerols in Dairy Recombined Cream: II. The Effect on Partial Coalescence and Whipping Properties. Food Research International 2013, 51(2), 936–945. DOI: 10.1016/j.foodres.2013.02.006.
  • Graef, V. D.; Microstructural Properties of Isothermal Palm Oil Crystallization; Ghent, Belgium: Ghent University: 2009.
  • Maeda, H.; Ishida, N.; Kawauchi, K.; Tuzimura, K. Reaction of Fluorescein-Isothiocyanate with Proteins and Amino Acids. I. Covalent and Noncovalent Binding of Fluorescein-Isothiocyanate and Fluorescein to Proteins. Journal of Biochemistry 1969, 65(5), 777. DOI: 10.1093/oxfordjournals.jbchem.a129077.
  • Long, Z.; Zhao, M.; Sun-Waterhouse, D.; Lin, Q.; Zhao, Q. Effects of Sterilization Conditions and Milk Protein Composition on the Rheological and Whipping Properties of Whipping Cream. Food Hydrocolloids 2016, 52, 11–18. DOI: 10.1016/j.foodhyd.2015.06.015.
  • Fredrick, E.; van de Walle, D.; Walstra, P.; Zijtveld, J. H.; Fisher, S.; van der Meeren, P.; Dewettinck, K. Isothermal Crystallization Behaviour of Milk Fat in Bulk and Emulsified State. International Dairy Journal 2011, 21(9), 685–695. DOI: 10.1016/j.idairyj.2010.11.007.
  • Garcia-Moreno, P. J.; Horn, A. F.; Jacobsen, C. Influence of Casein-Phospholipid Combinations as Emulsifier on the Physical and Oxidative Stability of Fish Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry 2014, 62(5), 1142–1152. DOI: 10.1021/jf405073x.
  • Smith, A. K.; Goff, H. D.; Kakuda, Y. Microstructure and Rheological Properties of Whipped Cream as Affected by Heat Treatment and Addition of Stabilizer. International Dairy Journal 2000, 10(4), 295–301. DOI: 10.1016/S0958-6946(00)00043-1.
  • Nguyen, V.; Duong, C. T. M.; Vu, V. Effect of Thermal Treatment on Physical Properties and Stability of Whipping and Whipped Cream. Journal of Food Engineering 2015, 163, 32–36. DOI: 10.1016/j.jfoodeng.2015.04.026.
  • Sajedi, M.; Nasirpour, A.; Keramat, J.; Desobry, S. Effect of Modified Whey Protein Concentrate on Physical Properties and Stability of Whipped Cream. Food Hydrocolloids 2014, 36, 93–101. DOI: 10.1016/j.foodhyd.2013.09.007.
  • Allen, K. E.; Dickinson, E.; Murray, B. Acidified Sodium Caseinate Emulsion Foams Containing Liquid Fat: A Comparison with Whipped Cream. Lwt-Food Science and Technology 2006, 39(3), 225–234. DOI: 10.1016/j.lwt.2005.02.004.
  • Zhao, Q.; Zhao, M.; Yang, B.; Cui, C. Effect of Xanthan Gum on the Physical Properties and Textural Characteristics of Whipped Cream. Food Chemistry 2009, 116(3), 624–628. DOI: 10.1016/j.foodchem.2009.02.079.
  • Goff, H. D.;. Instability and Partial Coalescence in Whippable Dairy Emulsions. Journal of Dairy Science 1997, 80(10), 2620–2630. DOI: 10.3168/jds.S0022-0302(97)76219-2.
  • Zhou, X.; Chen, L.; Han, J.; Shi, M.; Wang, Y.; Zhang, L.; Li, Y.; Wu, W. Stability and Physical Properties of Recombined Dairy Cream: Effects of Soybean Lecithin. International Journal of Food Properties 2017, 20(10), 2223–2233.
  • Fang, Y.; Dalgleish, D. G. Casein Adsorption on the Surfaces of Oil-In-Water Emulsions Modified by Lecithin. Colloids and Surfaces B: Biointerfaces 1993, 1(6), 357–364. DOI: 10.1016/0927-7765(93)80030-3.
  • Murray, B. S.; Cros, L. Adsorption of β-lactoglobulin and β-casein to Metal Surfaces and Their Removal by a Non-Ionic Surfactant, as Monitored via a Quartz Crystal Microbalance. Colloids & Surfaces B Biointerfaces 1998, 10(4), 227–241. DOI: 10.1016/S0927-7765(97)00066-0.
  • Dickinson, E.; Rolfe, S. E.; Dalgleish, D. G. Competitive Adsorption in Oil-In-Water Emulsions Containing α-lactalbumin and β-lactoglobulin. Food Hydrocolloids 1989, 3(3), 193–203. DOI: 10.1016/S0268-005X(89)80003-7.
  • Brown, E. M.; Carroll, R. J.; Pfeffer, P. E.; Sampugna, J. Complex Formation in Sonicated Mixtures of β-Lactoglobulin and Phosphatidylcholine. Lipids 1983, 18(2), 111–118. DOI: 10.1007/BF02536104.
  • Arboleya, J. C.; Sutcliffe, L. H.; Wilde, P. J. Density and Microviscosity Studies of Palm Oil/Water Emulsions. Journal of Agricultural and Food Chemistry 2005, 53(11), 4448–4453. DOI: 10.1021/jf050129y.
  • Wilde, P.; Mackie, A.; Husband, F.; Gunning, P.; Morris, V. Proteins and Emulsifiers at Liquid Interfaces. Advances in Colloid and Interface Science 2004, 108–109, 63–71. DOI: 10.1016/j.cis.2003.10.011.
  • Dalgleish, D. G.; Srinivasan, M.; Singh, H. Surface Properties of Oil-In-Water Emulsion Droplets Containing Casein and Tween 60. Journal of Agricultural and Food Chemistry 1995, 43(9), 2351–2355. DOI: 10.1021/jf00057a007.
  • Arboleya, J. C.; Ridout, M. J.; Wilde, P. J. Rheological Behaviour of Aerated Palm Kernel Oil/Water Emulsions. Food Hydrocolloids 2009, 23(5), 1358–1365. DOI: 10.1016/j.foodhyd.2008.10.007.
  • Moens, K.; Masum, A. K. M.; Dewettinck, K. Tempering of Dairy Emulsions: Partial Coalescence and Whipping Properties. International Dairy Journal 2016, 56, 92–100. DOI: 10.1016/j.idairyj.2016.01.007.
  • Moens, K.; Clercq, N. D.; Verstringe, S.; Dewettinck, K. Revealing the Influence of Tempering on Polymorphism and Crystal Arrangement in Semi-Crystalline Oil-In-Water Emulsions. Crystal Growth & Design 2015, 15(12), 5693–5704. DOI: 10.1021/acs.cgd.5b00665.