1,193
Views
5
CrossRef citations to date
0
Altmetric
Articles

Alteration on phenolic acids and the appearance of lotus (Nelumbo nucifera Gaertn) seeds dealt with antistaling agents during storage

, , , , , & show all
Pages 1481-1494 | Received 10 Oct 2017, Accepted 13 Jun 2018, Published online: 16 Jul 2018

References

  • Bhat, R.; Sridhar, K. R. Nutritional Quality Evaluation of Electron Beam-Irradiated Lotus (Nelumbo Nucifera) Seeds. Food Chemistry 2008, 107(1), 174–184. DOI: 10.1016/j.foodchem.2007.08.002
  • Wu, J.-Z.; Zheng, Y.-B.; Chen, T.-Q.; Yi, J.; Qin, L.-P.; Rahman, K.; Lin, W.-X. Evaluation of the Quality of Lotus Seed of Nelumbo Nucifera Gaertn from Outer Space Mutation. Food Chemistry 2007, 105(2), 540–547. DOI: 10.1016/j.foodchem.2007.04.011
  • Kredy, H. M.; Huang, D.; Xie, B.; He, H.; Yang, E.; Tian, B.; Xiao, D. Flavonols of Lotus (Nelumbo Nucifera, Gaertn.) Seed Epicarp and Their Antioxidant Potential. European Food Research and Technology 2010, 231(3), 387–394. DOI: 10.1007/s00217-010-1287-6.
  • Man, J.; Cai, J.; Cai, C.; Xu, B.; Huai, H.; Wei, C. Comparison of Physicochemical Properties of Starches from Seed and Rhizome of Lotus. Carbohydrate Polymers 2012, 88(2), 676–683. DOI: 10.1016/j.carbpol.2012.01.016.
  • Agnihotri, V. K.; ElSohly, H. N.; Khan, S. I.; Jacob, M. R.; Joshi, V. C.; Smillie, T.; Khan, I. A.; Walker, L. A. Constituents of Nelumbo Nucifera Leaves and Their Antimalarial and Antifungal Activity. Phytochemistry Letters 2008, 1(2), 89–93. DOI: 10.1016/j.phytol.2008.03.003
  • Fulton, S. L.; McKinley, M. C.; Young, I. S.; Cardwell, C. R.; Woodside, J. V. The Effect of Increasing Fruit and Vegetable Consumption on Overall Diet: A Systematic Review and Meta-Analysis. Critical Reviews in Food Science and Nutrition 2016, 56(5), 802–816. DOI: 10.1080/10408398.2012.727917
  • Wei, W.; Lv, P.; Xia, Q.; Tan, F.; Sun, F.; Yu, W.; Jia, L.; Cheng, J. Fresh-Keeping Effects of Three Types of Modified Atmosphere Packaging of Pine-Mushrooms. Postharvest Biology and Technology 2017, 132, 62–70. DOI: 10.1016/j.postharvbio.2017.05.020
  • Xu, F.; Wang, S.; Xu, J.; Liu, S.; Li, G. Effects of Combined Aqueous Chlorine Dioxide and UV-C on Shelf-Life Quality of Blueberries. Postharvest Biology and Technology 2016, 117, 125–131. DOI: 10.1016/j.postharvbio.2016.01.012
  • Mami, Y.; Peyvast, G.; Ziaie, F.; Ghasemnezhad, M.; Salmanpour, V. Improvement of Shelf-Life and Postharvest Quality of White Button Mushroom by 60co Gama-Ray Irradiation. Plant Knowledge J. 2013, 2, 2, 1.
  • Krasnova, I.; Misina, I.; Seglina, D.; Aboltins, A.; Karklina, D. Application of Different Anti-Browning Agents in order to Preserve the Quality of Apple Slices, 11th Baltic Conference on Food Science and Technology” Food Science and Technology in a Changing World”. FOODBALT 2017. Latvia University of Agriculture: Jelgava, Latvia:27-28 April 2017;  pp 106–111.
  • Landi, M.; Degl’Innocenti, E.; Guglielminetti, L.; Guidi, L. Role of Ascorbic Acid in the Inhibition of Polyphenol Oxidase and the Prevention of Browning in Different Browning‐Sensitive Lactuca Sativa Var. Capitata (L.) And Eruca Sativa (Mill.) Stored as Fresh‐Cut Produce. Journal of the Science of Food and Agriculture 2013, 93(8), 1814–1819. DOI: 10.1002/jsfa.5969.
  • Golan-Goldhirsh, A.; Whitaker, J. R. Effect of Ascorbic Acid, Sodium Bisulfite, and Thiol Compounds on Mushroom Polyphenol Oxidase. Journal of Agricultural and Food Chemistry 1984, 32(5), 1003–1009. DOI: 10.1021/jf00125a013.
  • Perera, C. O.; Smith, B., Technology of processing of horticultural crops. Handbook of farm, dairy, and food machinery engineering, 2nd ed; Kutz, M., Eds.; Academic Press: Cambridge, MA, 2013; pp 259-315.
  • Del Olmo, A.; Calzada, J.; Nuñez, M. Benzoic Acid and Its Derivatives as Naturally Occurring Compounds in Foods and as Additives: Uses, Exposure, and Controversy. Critical Reviews in Food Science and Nutrition 2017, 57(14), 3084–3103. DOI: 10.1080/10408398.2015.1087964.
  • Ngamchuachit, P.; Sivertsen, H. K.; Mitcham, E. J.; Barrett, D. M. Effectiveness of Calcium Chloride and Calcium Lactate on Maintenance of Textural and Sensory Qualities of Fresh‐Cut Mangos. Journal of Food Science 2014, 79, 5. DOI: 10.1111/1750-3841.12446.
  • Raybaudi‐Massilia, R. M.; Mosqueda‐Melgar, J.; Soliva‐Fortuny, R.; Martín‐Belloso, O. Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and alternative natural antimicrobials. Comprehensive Reviews in Food Science 2009, 8 (3), 157-180.
  • Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial By-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chemistry 2006, 99(1), 191–203. DOI: 10.1016/j.foodchem.2005.07.042.
  • Ky, I.; Crozier, A.; Cros, G.; Teissedre, P.-L. Polyphenols Composition of Wine and Grape Sub-Products and Potential Effects on Chronic Diseases. Nutrition 2014, 2, 2, 3, 165–177.
  • Quideau, S.; Deffieux, D.; Douat‐Casassus, C.; Pouysegu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angewandte Chemie International Edition 2011, 50(3), 586–621. DOI: 10.1002/anie.201000044.
  • Burda, S.; Oleszek, W.; Lee, C. Y. Phenolic Compounds and Their Changes in Apples during Maturation and Cold Storage. Journal of Agricultural and Food Chemistry 1990, 38(4), 945–948. DOI: 10.1021/jf00094a006.
  • Coseteng, M.; Lee, C. Changes in Apple Polyphenoloxidase and Polyphenol Concentrations in Relation to Degree of Browning. Journal of Food Science 1987, 52(4), 985–989. DOI: 10.1111/j.1365-2621.1987.tb14257.x.
  • Mathew, A.; Parpia, H. Food Browning as a Polyphenol Reaction. Advances Food Science 1971, 19, 75–145.
  • Queiroz, C.; Mendes Lopes, M. L.; Fialho, E.; Valente-Mesquita, V. L. Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Journal of Food, Agriculture and Environment 2008, 24(4), 361–375. DOI: 10.1080/87559120802089332.
  • Downes, F. Compendium of Methods for the Microbiological Examination of Foods; American Public Health Association: Washington DC, 1992.
  • Kanchanapoom, T.; Kasai, R.; Yamasaki, K. Phenolic Glycosides from Barnettia Kerrii. Phytochemistry 2002, 59, 5, 565–570.
  • Kato, H.; Li, W.; Koike, M.; Wang, Y.; Koike, K. Phenolic Glycosides from Agrimonia Pilosa. Phytochemistry 2010, 71(16), 1925–1929. DOI: 10.1016/j.phytochem.2010.08.007.
  • Xu, G.; Ye, X.; Liu, D.; Ma, Y.; Chen, J. Composition and Distribution of Phenolic Acids in Ponkan (Citrus Poonensis Hort. Ex Tanaka) and Huyou (Citrus Paradisi Macf. Changshanhuyou) during Maturity. Journal of Food Composition and Analysis 2008, 21(5), 382–389. DOI: 10.1016/j.jfca.2008.03.003.
  • Tarnawski, M.; Depta, K.; Grejciun, D.; Szelepin, B. HPLC Determination of Phenolic Acids and Antioxidant Activity in Concentrated Peat Extract—A Natural Immunomodulator. Journal of Pharmaceutical and Biomedical Analysis 2006, 41(1), 182–188. DOI: 10.1016/j.jpba.2005.11.012.
  • Duesterberg, C. K.; Waite, T. D. Kinetic Modeling of the Oxidation of P-Hydroxybenzoic Acid by Fenton’s Reagent: Implications of the Role of Quinones in the Redox Cycling of Iron. Environmental Science and Technology 2007, 41, 11, 4103–4110
  • Oliveira, C. M.; Ferreira, A. C. S.; De Freitas, V.; Silva, A. M. Oxidation Mechanisms Occurring in Wines. Food Research International 2011, 44(5), 1115–1126. DOI: 10.1016/j.foodres.2011.03.050.
  • Gershenzon, J. Secondary Metabolites and Plant Defense. In Taiz, L., Zeiger, E., Eds.; Plant Physiol., 3rd ed; Sinauer: Sunderland, Ma, 2002; pp 283–308.
  • Seigler, D. S.; Shikimic Acid Pathway. In Plant Secondary Metabolism; Springer: Boston, MA, 1998; pp 94–105.
  • Cartea, M. E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2010, 16(1), 251–280. DOI: 10.3390/molecules16010251.
  • Patterson, D.; Effects of Allelopathic Chemicals on Growth and Physiological Responses of Soybean (Glycine Max). Weed Sci. 1981, 29(1), 53–59.
  • Brito-Arias, M.;. Hydrolysis of Glycosides. In Synthesis and Characterization of Glycosides; Springer: Boston, MA, 2016; pp. x355–367.
  • Luo, L.; Hao, Y.; Jia, L.; Zhu, W. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated Enzymatic Honeysuckle Browning System by High Performance Liquid Chromatography and Mass Spectrometry. Trop. J. Pharm. Res. 2016, 15(2), 405–409. DOI: 10.4314/tjpr.v15i2.25.
  • Tomic, D.; Grigorakis, S.; Loupassaki, S.; Makris, D. P. Implementation of Kinetics and Response Surface Methodology Reveals Contrasting Effects of Catechin and Chlorogenic Acid on the Development of Browning in Wine Model Systems Containing either Ascorbic Acid or Sulphite. European Food Research and Technology 2017, 243(4), 565–574. DOI: 10.1007/s00217-016-2766-1.
  • Saba, M. K.; Sogvar, O. B. Combination of Carboxymethyl Cellulose-Based Coatings with Calcium and Ascorbic Acid Impacts in Browning and Quality of Fresh-Cut Apples. LWT - Food Science and Technology 2016, 66, 165–171. DOI: 10.1016/j.lwt.2015.10.022.
  • Louarme, L.; Billaud, C. Evaluation of Ascorbic Acid and Sugar Degradation Products during Fruit Dessert Processing under Conventional or Ohmic Heating Treatment. LWT - Food Science and Technology 2012, 49(2), 184–187. DOI: 10.1016/j.lwt.2011.12.035.
  • Danilewicz, J. C.; Seccombe, J. T.; Whelan, J. Mechanism of Interaction of Polyphenols, Oxygen, and Sulfur Dioxide in Model Wine and Wine. Am. J. Enol. Vitic. 2008, 59, 2, 128–136.
  • Youngblood, M. P.;. Kinetics and Mechanism of the Addition of Sulfite to P-Benzoquinone. Journal of Organic Chemistry 1986, 51(11), 1981–1985. DOI: 10.1021/jo00361a008.
  • Tanaka, T.; Watarumi, S.; Matsuo, Y.; Kamei, M.; Kouno, I. Production of Theasinensins A and D, Epigallocatechin Gallate Dimers of Black Tea, by Oxidation–Reduction Dismutation of Dehydrotheasinensin A. Tetrahedron 2003, 59(40), 7939–7947. DOI: 10.1016/j.tet.2003.08.025.
  • Ricke, S.;. Perspectives on the Use of Organic Acids and Short Chain Fatty Acids as Antimicrobials. Poultry Science 2003, 82(4), 632–639. DOI: 10.1093/ps/82.4.632.
  • Zhu, B. K. Synthesis and Properties of a New Bacteriostatic Agent of Ballast Water. In Zhao, J., Iranpour, R.; Li, X.; Jin, B., Eds; Advanced Materials Research; Trans Tech Publ: Switzerland, 2013; pp 2461–2467.
  • Krebs, H. A.; Wiggins, D.; Stubbs, M.; Sols, A.; Bedoya, F. Studies on the Mechanism of the Antifungal Action of Benzoate. Biochem. J. 1983, 214(3), 657. DOI: 10.1042/bj2140657.
  • Banerjee, R.; Mukherjee, G.; Patra, K. C. Microbial Transformation of Tannin-Rich Substrate to Gallic Acid through Co-Culture Method. Bioresource Technology 2005, 96(8), 949–953. DOI: 10.1016/j.biortech.2004.08.004.
  • Sharma, K. P.; John, P.; Goswami, P.; Soni, M. Enzymatic Synthesis of Gallic Acid from Tannic Acid with an Inducible Hydrolase of Enterobacter Spp. Biocatalysis and Biotransformation 2017, 35(3), 177–184. DOI: 10.1080/10242422.2017.1306740.