3,011
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Pattern recognition analysis on nutritional profile and chemical composition of edible bird’s nest for its origin and authentication

, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1680-1696 | Received 08 May 2018, Accepted 18 Jul 2018, Published online: 06 Aug 2018

References

  • Ireland, J. D.; Moller, A. Review of International Food Classification and Description. Journal of Food Composition and Analysis 2000, 13, 529–538. DOI: 10.1006/jfca.2000.0921.
  • Kek, S. P.; Chin, N. L.; Yusof, Y. A.; Tan, S. W.; Chua, L. S. Classification of Entomological Origin of Honey Based on Its Physicochemical and Antioxidant Properties. International Journal of Food Properties 2017,20, Sup3. DOI:10.1080/10942912.2017.1359185.
  • Kek, S. P.; Chin, N. L.; Yusof, Y. A.; Tan, S. W.; Chua, L. S. Classification of Honey from Its Bee Origin via Chemical Profiles and Mineral Content. Food Analytical Methods 2017, 10, 19–30. DOI: 10.1007/s12161-016-0544-0.
  • Quek, M. C.; Chin, N. L.; Yusof, Y. A.; Law, C. L.; Tan, S. W. Characterisation of Edible Bird’s Nest of Different Production, Species and Geographical Origins Using Nutritional Composition, Physicochemical Properties and Antioxidant Activities. Food Research International 2018, 109, 35–43. DOI: 10.1016/j.foodres.2018.03.078.
  • Zhang, J.; Li, D.; Lv, Q.; Ye, F.; Jing, X.; Masters, E. T.; Shimizu, N.; Abe, M.; Akihisa, T.; Feng, F. Compositions and Melanogenesis-Inhibitory Activities of the Extracts of Defatted Shea (Vitellaria Paradoxa) Kernels from Seven African Countries. Journal of Food Composition and Analysis 2018, 70, 89–97. DOI: 10.1016/j.jfca.2018.04.010.
  • Marini, F.; Balestrieri, F.; Bucci, R.; Magrı̀, A. L.; Marini, D. Supervised Pattern Recognition to Discriminate the Geographical Origin of Rice Bran Oils: A First Study. Microchemical Journal 2003, 74, 239–248. DOI: 10.1016/S0026-265X(03)00028-6.
  • Nurjuliana, M.; Man, Y. B. C.; Hashim, D. M.; Mohamed, A. K. S. Rapid Identification of Pork for Halal Authentication Using the Electronic Nose and Gas Chromatography Mass Spectrometer with Headspace Analyzer. Meat Science 2011, 88, 638–644. DOI: 10.1016/j.meatsci.2011.02.022.
  • Lim, C. K.; Cranbrook, E. Swiftlets of Borneo: Builders of Edible Nests; Natural History Publications (Borneo): Malaysia, 2002
  • Chua, K. H.; Lee, T. H.; Nagandran, K.; Yahaya, N. H. M.; Lee, C. T.; Tan, T. T. E.; Aziz, R. A. Edible Bird’s Nest Extract as a Chondro-Protective Agent for Human Chondrocytes Isolated from Osteoarthritic Knee: In Vitro Study. BMC Complementary and Alternative Medicine 2013, 13, 1–9. DOI: 10.1186/1472-6882-13-1.
  • Ma, F. C.; Liu, D. C.; Dai, M. X. The Effects of the Edible Bird’s Nest on Sexual Function of Male Castrated Rats. African Journal of Pharmacy and Pharmacology 2012, 6, 2875–2879. DOI: 10.5897/AJPP12.307.
  • Guo, C. T.; Takahashi, T.; Bukawa, W.; Takahashi, N.; Yagi, H.; Kato, K.; Hidari, K. I. P. J.; Miyamoto, D.; Suzuki, T.; Suzuki, Y. Edible Bird’s Nest Extract Inhibits Influenza Virus Infection. Antiviral Research 2006, 70, 140–146. DOI: 10.1016/j.antiviral.2006.02.005.
  • Matsukawa, N.; Matsumoto, M.; Bukawa, W.; Chiji, H.; Nakayama, K.; Hara, H.; Tsukahara, T. Improvement of Bone Strength and Dermal Thickness Due to Dietary Edible Bird’s Nest Extract in Ovariectomized Rats. Bioscience, Biotechnology, and Biochemistry 2011, 75, 590–592. DOI: 10.1271/bbb.100705.
  • Kong, Y. C.; Keung, W. M.; Yip, T. T.; Ko, K. M.; Tsao, S. W.; Ng, M. H. Evidence that Epidermal Growth Factor Is Present in Swiftlet’s (Collocalia) Nest. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 1987, 87, 221–226. DOI: 10.1016/0305-0491(87)90133-7.
  • Vimala, B.; Hussain, H.; Nazaimoon, W. M. W. Effects of Edible Bird’s Nest on Tumour Necrosis Factor-Alpha Secretion, Nitric Oxide Production and Cell Viability of Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Food and Agricultural Immunology 2012, 23, 303–314. DOI: 10.1080/09540105.2011.625494.
  • Roh, K. B.; Lee, J.; Kim, Y. S.; Park, J.; Kim, J. H.; Lee, J.; Park, D. Mechanisms of Edible Bird’s Nest Extract-Induced Proliferation of Human Adipose-Derived Stem Cells. Evidence-Based Complementary and Alternative Medicine 2011, 2012, 1–11. DOI: 10.1155/2012/797520.
  • Marcone, M. F. ;. Characterization of the Edible Bird’s Nest the “Caviar of the East”. Food Research International 2005, 38, 1125–1134. DOI: 10.1016/j.foodres.2005.02.008.
  • Huda, M. Z. N.; Zuki, A. B. Z.; Azhar, K.; Goh, Y. M.; Suhaimi, H.; Hazmi, A. J. A.; Zairi, M. S. Proximate, Elemental and Fatty Acid Analysis of Pre-Processed Edible Birds’ Nest (Aerodramus Fuciphagus): A Comparison between Regions and Type of Nest. Journal of Food Technology 2008, 6, 39–44.
  • Ma, F. C.; Liu, D. C. Extraction and Determination of Hormones in the Edible Bird’s Nest. Asian Journal of Chemistry 2012, 24, 117–120.
  • Norhayati, M. K.; Azman, O.; Nazaimoon, W. M. W. Preliminary Study of the Nutritional Content of Malaysian Edible Bird’s Nest. Malaysian Journal of Nutrition 2010, 16, 389–396.
  • Saengkrajang, W.; Matan, N.; Matan, N. Nutritional Composition of the Farmed Edible Bird’s Nest (Collocalia Fuciphaga) in Thailand. Journal of Food Composition and Analysis 2013, 31, 41–45. DOI: 10.1016/j.jfca.2013.05.001.
  • Wong, C. F.; Chan, G. K. L.; Zhang, M. L.; Yao, P.; Lin, H. Q.; Dong, T. T. X.; Li, G.; Lai, X. P.; Tsim, K. W. K. Characterization of Edible Bird’s Nest by Peptide Fingerprinting with Principal Component Analysis. Food Quality and Safety 2017, 1, 83–92. DOI: 10.1093/fqsafe/fyx002.
  • Legin, A.; Rudnitskaya, A.; Lvova, L.; Vlasov, Y.; Natale, C. D.; D’amico, A. Evaluation of Italian Wine by the Electronic Tongue: Recognition, Quantitative Analysis and Correlation with Human Sensory Perception. Analytica Chimica Acta 2003, 484, 33–44. DOI: 10.1016/S0003-2670(03)00301-5.
  • Berrueta, L. A.; Alonso-Salces, R. M.; Héberger, K. Supervised Pattern Recognition in Food Analysis. Journal of Chromatography A 2007, 1158, 196–214. DOI: 10.1016/j.chroma.2007.05.024.
  • Chai, K. C.; Jong, C. H.; Tay, K. M.; Lim, C. P. A Perceptual Computing-Based Method to Prioritize Failure Modes in Failure Mode and Effect Analysis and Its Application to Edible Bird Nest Farming. Applied Soft Computing 2016, 49, 734–747. DOI: 10.1016/j.asoc.2016.08.043.
  • Chang, W. L.; Tay, K. M.; Lim, C. P. Clustering and Visualization of Failure Modes Using an Evolving Tree. Expert Systems with Applications 2015, 42, 7235–7244. DOI: 10.1016/j.eswa.2015.04.036.
  • Tay, K. M.; Jong, C. H.; Lim, C. P. A Clustering-Based Failure Mode and Effect Analysis Model and Its Application to the Edible Bird Nest Industry. Neural Computing and Applications 2015, 26, 551–560. DOI: 10.1007/s00521-014-1647-4.
  • Jong, C. H.; Tay, K. M.; Lim, C. P. Application of the Fuzzy Failure Mode and Effect Analysis Methodology to Edible Bird Nest Processing. Computers and Electronics in Agriculture 2013, 96, 90–108. DOI: 10.1016/j.compag.2013.04.015.
  • Boutros, P. C.; Okey, A. B. Unsupervised Pattern Recognition: An Introduction to the Whys and Wherefores of Clustering Microarray Data. Briefings in Bioinformatics 2005, 6, 331–343.
  • Shi, J. Y.; Zhang, F.; Li, Z. H.; Huang, X. W.; Zou, X. B.; Zhang, W.; Holmes, M.; Chen, Y. Rapid Authentication of Indonesian Edible Bird’s Nests by Near-Infrared Spectroscopy and Chemometrics. Analytical Methods 2017, 9, 1297–1306. DOI: 10.1039/C6AY03352K.
  • Guo, L.; Wu, Y.; Liu, M.; Wang, B.; Ge, Y.; Chen, Y. Determination of Edible Bird’s Nests by FTIR and SDS-PAGE Coupled with Multivariate Analysis. Food Control 2017, 80, 259–266. DOI: 10.1016/j.foodcont.2017.05.007.
  • Pizarro, C.; Rodríguez-Tecedor, S.; Pérez-del-Notario, N.; González-Sáiz, J. M. Recognition of Volatile Compounds as Markers in Geographical Discrimination of Spanish Extra Virgin Olive Oils by Chemometric Analysis of Non-Specific Chromatography Volatile Profiles. Journal of Chromatography A 2011, 1218, 518–523. DOI: 10.1016/j.chroma.2010.11.045.
  • Manzanares, A. B.; García, Z. H.; Galdón, B. R.; Rodríguez, E. R.; Romero, C. D. Differentiation of Blossom and Honeydew Honeys Using Multivariate Analysis on the Physicochemical Parameters and Sugar Composition. Food Chemistry 2011, 126, 664–672. DOI: 10.1016/j.foodchem.2010.11.003.
  • Rodríguez, N.; Ortiz, M. C.; Sarabia, L.; Gredilla, E. Analysis of Protein Chromatographic Profiles Joint to Partial Least Squares to Detect Adulterations in Milk Mixtures and Cheeses. Talanta 2010, 81, 255–264. DOI: 10.1016/j.talanta.2009.11.067.
  • Fasolato, L.; Novelli, E.; Salmaso, L.; Corain, L.; Camin, F.; Perini, M.; Antonetti, P.; Balzan, S. Application of Nonparametric Multivariate Analyses to the Authentication of Wild and Farmed European Sea Bass (Dicentrarchus Labrax). Results of a Survey on Fish Sampled in the Retail Trade. Journal of Agricultural and Food Chemistry 2010, 58, 10979–10988.
  • Bellomarino, S. A.; Parker, R. M.; Conlan, X. A.; Barnett, N. W.; Adams, M. J. Partial Least Squares and Principal Components Analysis of Wine Vintage by High Performance Liquid Chromatography with Chemiluminescence Detection. Analytica Chimica Acta 2010, 678, 34–38. DOI: 10.1016/j.aca.2010.08.021.
  • Quek, M. C. ; Pattern recognition models for identification of Malaysian edible bird’s nest origin [Thesis]. Malaysia: Universiti Putra Malaysia; 2017.
  • AOAC . Official Methods of Analysis of AOAC International, 17th ed.; Association of Analytical Communities: Gaithersburg, Maryland, USA, 2000.
  • Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D. A.; Barrow, C. J. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. Journal of Applied Phycology 2006, 18, 445–450. DOI: 10.1007/s10811-006-9048-4.
  • Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D. H. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. Journal of Food Composition and Analysis 2006, 19, 669–675. DOI: 10.1016/j.jfca.2006.01.003.
  • Azilawati, M. I.; Hashim, D. M.; Jamilah, B.; Amin, I. Validation of a Reverse-Phase High-Performance Liquid Chromatography Method for the Determination of Amino Acids in Gelatins by Application of 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate Reagent. Journal of Chromatography A 2014, 1353, 49–56. DOI: 10.1016/j.chroma.2014.04.050.
  • Malaysian Standard MS 2509:2012 (P) . Test Method for Edible-Birdnest (Ebn)-Determination of Nitrite (NO2) and Nitrate (NO3) Contents; Department of Standards Malaysia: Selangor, Malaysia, 2012.
  • Paydar, M.; Wong, Y. L.; Wong, W. F.; Hamdi, O. A. A.; Kadir, N. A.; Looi, C. Y. Prevalence of Nitrite and Nitrate Contents and Its Effect on Edible Bird Nest’s Color. Journal of Food Science 2013, 78, T1940–T1947. DOI: 10.1111/1750-3841.12313.
  • Wang, H.; Ni, K. Y.; Wang, Y. Determination of Sialic Acid in Edible Bird’s Nest. Chinese Journal of Pharmaceutical Analysis 2006, 26, 1251–1253.
  • Marini, F.; Magrı̀, A. L.; Balestrieri, F.; Fabretti, F.; Marini, D. Supervised Pattern Recognition Applied to the Discrimination of the Floral Origin of Six Types of Italian Honey Samples. Analytica Chimica Acta 2004, 515, 117–125. DOI: 10.1016/j.aca.2004.01.013.
  • Kaiser, H. F. ;. The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika 1958, 23, 187–200. DOI: 10.1007/BF02289233.
  • Sacco, A.; Brescia, M. A.; Liuzzi, V.; Reniero, F.; Guillou, G.; Ghelli, S.; Meer, P. Characterization of Italian Olive Oils Based on Analytical and Nuclear Magnetic Resonance Determinations. Journal of the American Oil Chemists’ Society 2000, 77, 619–625. DOI: 10.1007/s11746-000-0100-y.
  • Abdi, H.; Williams, L. J. Principal Component Analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2010, 2, 433–459. DOI: 10.1002/wics.101.
  • Møller, S. F.; Frese, J. V.; Bro, R. Robust Methods for Multivariate Data Analysis. Journal of Chemometrics 2005, 19, 549–563. DOI: 10.1002/(ISSN)1099-128X.
  • Tistaert, C.; Dejaegher, B.; Heyden, Y. V. Chromatographic Separation Techniques and Data Handling Methods for Herbal Fingerprints: A Review. Analytica Chimica Acta 2011, 690, 148–161. DOI: 10.1016/j.aca.2011.02.023.
  • Antonogeorgos, G.; Panagiotakos, D. B.; Priftis, K. N.; Tzonou, A. Logistic Regression and Linear Discriminant Analyses in Evaluating Factors Associated with Asthma Prevalence among 10- to 12-Years-Old Children: Divergence and Similarity of the Two Statistical Methods. International Journal of Pediatrics 2009, 952042, 1–6. DOI: 10.1155/2009/952042.
  • Seow, E. K.; Ibrahim, B.; Muhammad, S. A.; Lee, L. H.; Cheng, L. H. Differentiation between House and Cave Edible Bird’s Nests by Chemometric Analysis of Amino Acid Composition Data. LWT-Food Science and Technology 2016, 65, 428–435. DOI: 10.1016/j.lwt.2015.08.047.
  • Hajeb, P.; Jinap, S.; Ismail, A.; Mahyudin, N. A. Mercury Pollution in Malaysia. Reviews of Environmental Contamination & Toxicology 2012, 220, 45–66.
  • Shazili, N. A. M.; Yunus, K.; Ahmad, A. S.; Abdullah, N.; Rashid, M. K. A. Heavy Metal Pollution Status in the Malaysian Aquatic Environment. Aquatic Ecosystem Health & Management 2006, 9, 137–145. DOI: 10.1080/14634980600724023.
  • Lourie, S. A.; Tompkins, D. M. The Diets of Malaysian Swiftlets. Ibis 2000, 142, 596–602. DOI: 10.1111/j.1474-919X.2000.tb04459.x.
  • Chua, Y. G.; Bloodworth, B. C.; Leong, L. P.; Li, S. F. Y. Metabolite Profiling of Edible Bird’s Nest Using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry. Rapid Communications in Mass Spectrometry 2014, 28, 1387–1400. DOI: 10.1002/rcm.6914.