1,610
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Comparative physicochemical stability and efficacy study of lipoid S75-biopeptides nanoliposome composite produced by conventional and direct heating methods

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1646-1660 | Received 06 Mar 2018, Accepted 20 Jul 2018, Published online: 02 Aug 2018

References

  • Hartmann, R.; Meisel, H. Food-Derived Peptides with Biological Activity: From Research to Food Applications. Current Opinion in Biotechnology 2007, 18, 163–169. DOI: 10.1016/j.copbio.2007.01.013.
  • Korhonen, H.; Pihlanto, A. Food-Derived Bioactive Peptides–Opportunities for Designing Future Foods. Current Pharmaceutical Design 2003, 9, 1297–1308. DOI: 10.2174/1381612033454892.
  • Rutherfurd-Markwick, K. J.;. Food Proteins as a Source of Bioactive Peptides with Diverse Functions. British Journal of Nutrition 2012, 108, S149–157. DOI: 10.1017/S000711451200027X.
  • Zarei, M.; Forghani, B.; Ebrahimpour, A.; Abdul-Hamid, A.; Anwar, F.; Saari, N. In Vitro and in Vivo Antihypertensive Activity of Palm Kernel Cake Protein Hydrolysates: Sequencing and Characterization of Potent Bioactive. Industrial Crops and Products 2015, 76, 112–120. DOI: 10.1016/j.indcrop.2015.06.040.
  • Samaranayaka, A. G. P.; Li-Chan, E. C. Y. Food-Derived Peptidic Antioxidants: A Review of Their Production, Assessment, and Potential Applications. Journal of Functional Foods 2011, 3, 229–254. DOI: 10.1016/j.jff.2011.05.006.
  • Yea, C. S.; Ebrahimpour, A.; Hamid, A. A.; Bakar, J.; Muhammad, K.; Saari, N. Winged Bean [Psophorcarpus tetragonolobus (L.) DC] Seeds as an Underutilised Plant Source of Bifunctional Proteolysate and Biopeptides. Food & Function 2014, 5, 1007–1016. DOI: 10.1039/c3fo60667h.
  • Clemente, A.;. Enzymatic Protein Hydrolysates in Human Nutrition Enzymatic Protein Hydrolysates in Human Nutrition. Trends in Food Science & Technology 2000, 11, 254–262. DOI: 10.1016/S0924-2244(01)00007-3.
  • Lee, V. H. L.; Yamamoto, A. Penetration and Enzymatic Barriers to Peptide and Protein Absorption. Advanced Drug Delivery Reviews 1989, 4, 171–207. DOI: 10.1016/0169-409X(89)90018-5.
  • Renukuntla, J.; Vadlapudi, A. D.; Patel, A.; Boddu, S.; Mitra, A. K. Approaches for Enhancing Oral Bioavailability of Peptides and Proteins. International Journal of Pharmaceutics 2013, 447, 75–93. DOI: 10.1016/j.ijpharm.2013.02.030.
  • Molina Ortiz, S. E.; Mauri, A.; Monterrey-Quintero, E. S.; Trindade, M. A.; Santana, A. S.; Favaro-Trindade, C. S. Production and Properties of Casein Hydrolysate Microencapsulated by Spray Drying with Soybean Protein Isolate. LWT - Food Science and Technology 2009, 42, 919–923. DOI: 10.1016/j.lwt.2008.12.004.
  • Mohan, A.; Rajendran, S. R. C. K.; He, Q. S.; Bazinet, L.; Udenigwe, C. C. Encapsulation of Food Protein Hydrolysates and Peptides: A Review. RSC Advances 2015, 5, 79270–79278.
  • Trevaskis, N. L.; Charman, W. N.; Porter, C. J. H. Lipid-Based Delivery Systems and Intestinal Lymphatic Drug Transport: A Mechanistic Update. Advanced Drug Delivery Reviews 2008, 60, 702–716. DOI: 10.1016/j.addr.2007.09.007.
  • Augustin, M. A.; Sanguansri, L. Challenges and Solutions to Incorporation of Nutraceuticals in Foods. Annual Review of Food Science and Technology 2014, 6, 463–477. DOI: 10.1146/annurev-food-022814-015507.
  • Li, T.; Yang, S.; Liu, W.; Liu, C.; Liu, W.; Zheng, H.; Zhou, W.; Tong, G. Preparation and Characterization of Nanoscale Complex Liposomes Containing Medium-Chain Fatty Acids and Vitamin C. International Journal of Food Properties 2015, 18, 113–124. DOI: 10.1080/10942912.2012.685683.
  • Toniazzo, T.; Peres, M. S.; Ramos, A. P.; Pinho, S. C. Encapsulation of Quercetin in Liposomes by Ethanol Injection and Physicochemical Characterization of Dispersions and Lyophilized Vesicles. Food Bioscience 2017, 19, 17–25. DOI: 10.1016/j.fbio.2017.05.003.
  • Takahashi, M.; Kitamoto, D.; Imura, T.; Oku, H.; Takara, K.; Wada, K. Characterization and Bioavailability of Liposomes Containing a Ukon Extract. Bioscience, Biotechnology and Biochemistry 2008, 72, 1199–1205. DOI: 10.1271/bbb.70659.
  • Vauthier, C.; Labarre, D. Modular Biomimetic Drug Delivery Systems. Journal of Drug Delivery Science and Technology 2008, 18, 59–68. DOI: 10.1016/S1773-2247(08)50008-6.
  • Solaro, R.; Chiellini, F.; Battisti, A. Targeted Delivery of Protein Drugs by Nanocarriers. Materials 2010, 3, 1928–1980. DOI: 10.3390/ma3031928.
  • Thompson, A. K.; Couchoud, A.; Singh, H. Comparison of Hydrophobic and Hydrophilic Encapsulation Using Liposomes Prepared from Milk Fat Globule-Derived Phospholipids and Soya Phospholipids. Dairy Science & Technology 2009, 89, 99–113. DOI: 10.1051/dst/2008036.
  • Chen, X.; Zou, L. Q.; Niu, J.; Liu, W.; Peng, S. F.; Liu, C. M. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes. Molecules 2015, 20, 14293–14311. DOI: 10.3390/molecules200814293.
  • Da Rosa Zavareze, E.; Telles, A. C.; Mello El Halal, S. L.; Da Rocha, M.; Colussi, R.; Marques De Assis, L.; Suita De Castro, L. A.; Guerra Dias, A. R.; Prentice-Hernández, C. Production and Characterization of Encapsulated Antioxidative Protein Hydrolysates from Whitemouth Croaker (Micropogonias furnieri) Muscle and Byproduct. LWT - Food Science and Technology 2014, 59, 841–848. DOI: 10.1016/j.lwt.2014.05.013.
  • Li, Z.; Paulson, A. T.; Gill, T. A. Encapsulation of Bioactive Salmon Protein Hydrolysates with Chitosan-Coated Liposomes. Journal of Functional Foods 2015, 19, 733–743. DOI: 10.1016/j.jff.2015.09.058.
  • Mosquera, M.; Giménez, B.; Montero, P.; Gómez-Guillén, M. C. Incorporation of Liposomes Containing Squid Tunic ACE-inhibitory Peptides into Fish Gelatin. Journal of the Science of Food and Agriculture 2016, 96, 769–776. DOI: 10.1002/jsfa.7145.
  • Mosquera, M.; Giménez, B.; Da Silva, I. M.; Boelter, J. F.; Montero, P.; Gómez-Guillén, M. C.; Brandelli, A. Nanoencapsulation of an Active Peptidic Fraction from Sea Bream Scales Collagen. Food Chemistry 2014, 156, 144–150. DOI: 10.1016/j.foodchem.2014.02.011.
  • Mohan, A.; McClements, D. J.; Udenigwe, C. C. Encapsulation of Bioactive Whey Peptides in Soy Lecithin-Derived Nanoliposomes: Influence of Peptide Molecular Weight. Food Chemistry 2016, 213, 143–148. DOI: 10.1016/j.foodchem.2016.06.075.
  • Mufamadi, M. S.; Pillay, V.; Choonara, Y. E.; Du Toit, L. C.; Modi, G.; Naidoo, D.; Ndesendo, V. M. K., A Review on Composite Liposomal Technologies for Specialized Drug Delivery. Journal of Drug Delivery 2011, 2011, 19 pages. DOI: 10.1155/2011/939851.
  • Bozzuto, G.; Molinari, A. Liposomes as Nanomedical Devices. International Journal of Nanomedicine 2015, 10, 975–999. DOI: 10.2147/IJN.
  • Auwal, S. M.; Zarei, M.; Abdul-Hamid, A.; Saari, N., Response Surface Optimisation for the Production of Antioxidant Hydrolysates from Stone Fish Protein Using Bromelain. Evidence-Based Complementary and Alternative Medicine 2017, 2017, 1–10. DOI: 10.1155/2017/4765463.
  • Auwal, S. M.; Zarei, M.; Abdul-Hamid, A.; Saari, N. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology. Marine Drugs 2017, 15, 104. DOI: 10.3390/md15040104.
  • Auwal, S. M.; Zarei, M.; Ping, Tan, C.; Basri, M.; Saari, N. Improved in Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats. Nanomaterials 2017, 7, 421. DOI: 10.3390/nano7120458.
  • Da Silva Malheiros, P.; Micheletto, Y. M. S.; Da Silveira, N. P.; Brandelli, A. Development and Characterization of Phosphatidylcholine Nanovesicles Containing the Antimicrobial Peptide Nisin. Food Research International 2010, 43, 1198–1203. DOI: 10.1016/j.foodres.2010.02.015.
  • Thompson, A. K.; Mozafari, M. R.; Singh, H. The Properties of Liposomes Produced from Milk Fat Globule Membrane Material Using Different Techniques. Le Lait 2007, 87, 349–360. DOI: 10.1051/lait:2007013.
  • Wang, M.; Zhao, T.; Liu, Y.; Wang, Q.; Xing, S.; Li, L.; Wang, L.; Liu, L.; Gao, D. Ursolic Acid Liposomes with Chitosan Modification: Promising Antitumor Drug Delivery and Efficacy. Materials Science and Engineering: C 2017, 71, 1231–1240. DOI: 10.1016/j.msec.2016.11.014.
  • Agrawal, A. K.; Harde, H.; Thanki, K.; Jain, S. Improved Stability and Antidiabetic Potential of Insulin Containing Folic Acid Functionalized Polymer Stabilized Multilayered Liposomes following Oral Administration. Biomacromolecules 2014, 15, 350–360. DOI: 10.1021/bm401580k.
  • Jain, S.; Patil, S. R.; Swarnakar, N. K.; Agrawal, A. K. Oral Delivery of Doxorubicin Using Novel Polyelectrolyte-Stabilized Liposomes (Layersomes). Molecular Pharmaceutics 2012, 9, 2626–2635. DOI: 10.1021/mp300202c.
  • Jimsheena, V. K.; Gowda, L. R. Colorimetric, High-Throughput Assay for Screening Angiotensin I-Converting Enzyme Inhibitors. Analytical Chemistry 2009, 81, 9388–9394. DOI: 10.1021/ac901775h.
  • McClements, D. J. Nanoparticle- and Microparticle-Based Delivery Systems, 1st; CRC Press Taylor & Francis: New York, 2015; Vol. 1
  • Yea, C. S.; Kiat, T. W.; Saari, N. Preparation and Characterisation of Nanoliposomes Containing Winged Bean Seeds Bioactive Peptides. Journal of Microencapsulation 2015, 1–8. DOI:10.3109/02652048.2015.1057250.
  • Were, L. M.; Bruce, B.; Davidson, P. M.; Weiss, J. Encapsulation of Nisin and Lysozyme in Liposomes Enhances Efficacy against Listeria Monocytogenes. Journal of Food Protection 2004, 67, 922–927. DOI: 10.4315/0362-028X-67.5.922.
  • Morais, H. A.; Barbosa, C.; Delvivo, F. M.; Mansur, H. S.; De Oliveira, M. C.; Silvestre, M. P. C. Comparative Study of Microencapsulation of Casein Hydrolysates M Lipospheres and Liposomes. Journal of Food Biochemistry 2004, 28, 21–41. DOI: 10.1111/j.1745-4514.2004.tb00053.x.
  • Yokota, D.; Moraes, M.; Pinho, S. C. Characterization of Lyophilized Liposomes Produced with Non-Purified Soy Lecithin : A Case Study of Casein Hydrolysate Microencapsulation. Brazilian Journal of Chemical Engineering 2012, 29, 325–335. DOI: 10.1590/S0104-66322012000200013.
  • Gong, K.-J.; Shi, A.; Liu, H.; Liu, L.; Hu, H.; Yang, Y.; Adhikari, B.; Wang, Q., Preparation of Nanoliposome Loaded with Peanut Peptide Fraction: Stability and Bioavailability. Food & Function 2016, 7, 2034–2042. DOI: 10.1039/C5FO01612F.
  • Moinard-Chécot, D.; Chevalier, Y.; Briançon, S.; Beney, L.; Fessi, H. Mechanism of Nanocapsules Formation by the Emulsion-Diffusion Process. Journal of Colloid and Interface Science 2008, 317, 458–468. DOI: 10.1016/j.jcis.2007.09.081.
  • Da Silva Malheiros, P.; Sant’Anna, V.; Micheletto, Y. M. S.; Da Silveira, N. P.; Brandelli, A. Nanovesicle Encapsulation of Antimicrobial Peptide P34: Physicochemical Characterization and Mode of Action on Listeria monocytogenes. Journal of Nanoparticle Research 2011, 13, 3545–3552. DOI: 10.1007/s11051-011-0278-2.
  • Taylor, T. M.; Gaysinsky, S.; Davidson, P. M.; Bruce, B. D.; Weiss, J. Characterization of Antimicrobial-Bearing Liposomes by ζ-potential, Vesicle Size, and Encapsulation Efficiency. Food Biophysics 2007, 2, 1–9. DOI: 10.1007/s11483-007-9023-x.
  • Cui, J.; Li, C.; Guo, W.; Li, Y.; Wang, C.; Zhang, L.; Zhang, L.; Hao, Y.; Wang, Y. Direct Comparison of Two Pegylated Liposomal Doxorubicin Formulations: Is AUC Predictive for Toxicity and Efficacy? Journalof Controlled Release 2007, 118, 204–215. DOI: 10.1016/j.jconrel.2006.12.002.
  • Hattori, Y.; Hashida, M. Evaluation of Size and Zeta Potential of DNA/Carrier Complexes. In Non-Viral Gene Therapy: Gene Design and Delivery; Taira, K., Kataoka, K., Niidome, T., Eds.; Springer-Verlag: Tokyo, 2005; p. 293–299.
  • Panwar, P.; Pandey, B.; Lakhera, P. C.; Singh, K. P. Preparation, Characterization, and in Vitro Release Study of Albendazole-Encapsulated Nanosize Liposomes. International. Journal of Nanomedicine 2010, 5, 101–108. DOI: 10.2217/nnm.10.2.
  • Lim, W. M.; Rajinikanth, P. S.; Mallikarjun, C.; Kang, Y. B. Formulation and Delivery of Itraconazole to the Brain Using a Nanolipid Carrier System. International Journal of Nanomedicine 2014, 9, 2117–2126. DOI: 10.2147/IJN.
  • Yoon, H. Y.; Kwak, S. S.; Jang, M. H.; Kang, M. H.; Sung, S. W.; Kim, C. H.; Kim, S. R.; Yeom, D. W.; Kang, M. J.; Choi, Y. W. Docetaxel-Loaded RIPL Peptide (Iplvvplrrrrrrrrc)-Conjugated Liposomes: Drug Release, Cytotoxicity, and Antitumor Efficacy. International Journal of Pharmaceutics 2017, 523, 229–237. DOI: 10.1016/j.ijpharm.2017.03.045.
  • Hao, W.; Xia, T.; Shang, Y.; Xu, S.; Liu, H. Characterization and Release Kinetics of Liposomes Inserted by pH-responsive Bola-Polymer. Colloid and Polymer Science 2016, 294, 1107–1116. DOI: 10.1007/s00396-016-3871-1.
  • Kycia, A. H.; Su, Z.; Christa, L.; Lipkowski, J.; Brosseau, C. L.; Lipkowski, J. In Situ PM–IRRAS Studies of Biomimetic Membranes Supported at Gold Electrode Surfaces. Vibrational Spectroscopy at Electrified Interfaces 2013, 345–417.
  • Toyran, N.; Severcan, F. Competitive Effect of Vitamin D2 and Ca2+ on Phospholipid Model Membranes: An FTIR Study. Chemistry and Physics of Lipids 2003, 123, 165–176. DOI: 10.1016/S0009-3084(02)00194-9.
  • Hernández-Ledesma, B.; Miguel, M.; Amigo, L.; Aleixandre, M. A.; Recio, I. Effect of Simulated Gastrointestinal Digestion on the Antihypertensive Properties of Synthetic Beta-Lactoglobulin Peptide Sequences. Journal of Dairy Research 2007, 74, 336–339. DOI: 10.1017/S0022029907002609.
  • Jao, C.-L.; Huang, S.-L.; Hsu, K.-C. Angiotensin I-Converting Enzyme Inhibitory Peptides: Inhibition Mode, Bioavailability, and Antihypertensive Effects. Biomedicine / [Publiee Pour l’A.A.I.C.I.G.] 2012, 2, 130–136. DOI: 10.1016/j.biomed.2012.06.005.