856
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Negative impacts of in-vitro oxidative stress on the quality of heat-induced myofibrillar protein gelation during refrigeration

, , , , , & show all
Pages 2205-2217 | Received 30 May 2018, Accepted 24 Jul 2018, Published online: 10 Sep 2018

References

  • Zhang, Z.; Yang, Y.; Zhou, P.; Zhang, X.; Wang, J. Effects of High Pressure Modification on Conformation and Gelation Properties of Myofibrillar Protein. Food Chemistry 2017, 217, 678–686. DOI: 10.1016/j.foodchem.2016.09.040.
  • Cao, Y. G.; Xiong, Y. L. Chlorogenic Acid-Mediated Gel Formation of Oxidatively Stressed Myofibrillar Protein. Food Chemistry 2015, 180, 235–243. DOI: 10.1016/j.foodchem.2015.02.036.
  • Liu, Z.; Xiong, Y. L.; Chen, J. Protein Oxidation Enhances Hydration but Suppresses Water-Holding Capacity in Porcine Longissimus Muscle. Journal of Agricultural & Food Chemistry 2010, 58(19), 10697–10704. DOI: 10.1021/jf102043k.
  • Lund, M. N.; Luxford, C.; Skibsted, L. H.; Davies, M. J. Oxidation of Myosin by Heme Proteins Generates Myosin Radicals and Protein Cross-Links. Biochemical Journal 2008, 410, 565–574. DOI: 10.1042/BJ20071107.
  • Utrera, M.; Parra, V.; Estévez, M. Protein Oxidation during Frozen Storage and Subsequent Processing of Different Beef Muscles. Meat Science 2014, 96, 812–820. DOI: 10.1016/j.meatsci.2013.09.006.
  • Xiong, Y. L.; Protein Oxidation and Implications for Muscle Foods Quality. In Antioxidants in Muscle Foods; Decker, E. A., Faustman, C., Lopez-Bote, C. J., Eds..; Wiley: New York, 2000. pp 85–111.
  • Feng, X.; Li, C.; Ullah, N.; Hackman, R. M.; Chen, L.; Zhou, G. Potential Biomarker of Myofibrillar Protein Oxidation in Raw and Cooked Ham: 3-Nitrotyrosine Formed by Nitrosation. Journal of Agricultural & Food Chemistry 2015, 63(51), 10957–10964. DOI: 10.1021/acs.jafc.5b04107.
  • Dai, Y.; Lu, Y.; Wu, W.; Lu, X. M.; Han, Z. P.; Liu, Y.; Li, X. M.; Dai, R. T. Changes in Oxidation, Color and Texture Deteriorations during Refrigerated Storage of Ohmically and Water Bath-Cooked Pork Meat. Innovative Food Science & Emerging Technologies 2014, 26, 341–346. DOI: 10.1016/j.ifset.2014.06.009.
  • Liu, G.; Xiong, Y. L.; Butterfield, D. A. Chemical, Physical, and Gel-Forming Properties of Oxidized Myofibrils and Whey- and Soy-Protein Isolates. Journal of Food Science 2000, 65(5), 811–818. DOI: 10.1111/jfds.2000.65.issue-5.
  • Berlett, B. S.; Stadtman, E. R. Protein Oxidation in Aging, Disease, and Oxidative Stress. Journal of Biological Chemistry 1997, 272, 33, 20313–20316.
  • Srinivasan, S.; Hultin, H. O. Chemical, Physical, and Functional Properties of Cod Proteins Modified by a Nonenzymic Free-Radical-Generating System. Journal of Agricultural & Food Chemistry 1997, 45(2), 310–320. DOI: 10.1021/jf960367g.
  • Cao, Y. G.; Ai, N.; True, A. D.; Xiong, Y. L. Effects of (–)-Epigallocatechin-3-Gallate Incorporation on the Physicochemical and Oxidative Stability of Myofibrillar Protein–Soybean Oil Emulsions. Food Chemistry 2017. DOI: 10.1016/j.foodchem.2017.10.111.
  • Decker, E. A.; Xiong, Y. L.; Calvert, J. T.; Crum, A. D.; Blanchard, S. P. Chemical, Physical, and Functional Properties of Oxidized Turkey White Muscle Myofibrillar Proteins. Journal of Agricultural & Food Chemistry 1993, 41(2), 186–189. DOI: 10.1021/jf00026a007.
  • Feng, X.; Chen, L.; Lei, N.; Wang, S.; Xu, X. L.; Zhou, G.; Li, Z. Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (-)-Epigallocatechin-3-Gallate and NaCl. Journal of Agricultural & Food Chemistry 2017, 65(13), 2816–2826. DOI: 10.1021/acs.jafc.6b05517.
  • Utrera, M.; Estévez, M. Oxidation of Myofibrillar Proteins and Impaired Functionality: Underlying Mechanisms of the Carbonylation Pathway. Journal of Agricultural & Food Chemistry 2012, 60(32), 8002–8011. DOI: 10.1021/jf302111j.
  • Estévez, M.;. Protein Carbonyls in Meat Systems: A Review. Meat Science 2011, 89(3), 259–279. DOI: 10.1016/j.meatsci.2011.04.025.
  • Eymard, S.; Jacobsen, C.; Baron, C. P. Assessment of Washing with Antioxidant on the Oxidative Stability of Fatty Fish Mince during Processing and Storage. Journal of Agricultural & Food Chemistry 2010, 58(10), 6182–6189. DOI: 10.1021/jf904013k.
  • Soyer, A.; ÖZalp, B.; Dalmış, Ü.; Bilgin, V. Effects of Freezing Temperature and Duration of Frozen Storage on Lipid and Protein Oxidation in Chicken Meat. Food Chemistry 2010, 120(4), 1025–1030. DOI: 10.1016/j.foodchem.2009.11.042.
  • Thawornchinsombut, S.; Park, J. W. Frozen Stability of Fish Protein Isolate under Various Storage Conditions. Journal of Food Science 2006, 71(3), C227–C232. DOI: 10.1111/j.1365-2621.2006.tb15622.x.
  • Gornall, A. G.; Bardawill, C. J.; David, M. M. Determination of Serum Proteins by Means of Biuret Reaction. Journal of Biological Chemistry 1949, 177, 2, 751–766.
  • Levine, R. L.; Garland, D.; Oliver, C. N.; Amici, A.; Climent, I.; Lenz, A. G.; Stadtman, E. R. Determination of Carbonyl Content in Oxidatively Modified Proteins. Methods In Enzymology 1990, 186, 464–478.
  • Xing, T.; Zhao, X.; Wang, P.; Chen, H.; Xu, X. L.; Zhou, G. H. Different Oxidative Status and Expression of Calcium Channel Components in Stress-Induced Dysfunctional Chicken Muscle. Journal of Animal Science 2017, 95(4), 1565–1573. DOI: 10.2527/jas.2016.0868.
  • Li, K.; Kang, Z. L.; Zhao, Y. Y.; Xu, X. L.; Zhou, G. H. Use of High-Intensity Ultrasound to Improve Functional Properties of Batter Suspensions Prepared from PSE-like Chicken Breast Meat. Food & Bioprocess Technology 2014, 7(12), 3466–3477. DOI: 10.1007/s11947-014-1358-y.
  • Han, M. Y.; Zhang, Y.; Fei, Y.; Xu, X. L.; Zhou, G. H. Effect of Microbial Transglutaminase on NMR Relaxometry and Microstructure of Pork Myofibrillar Protein Gel. European Food Research & Technology 2009, 228(4), 665–670. DOI: 10.1007/s00217-008-0976-x.
  • Han, M. Y.; Wang, P.; Xu, X. L.; Zhou, G. H. Low-Field NMR Study of Heat-Induced Gelation of Pork Myofibrillar Proteins and Its Relationship with Microstructural Characteristics. Food Research International 2014, 62, 1175–1182. DOI: 10.1016/j.foodres.2014.05.062.
  • Rysman, T.; Hecke, T. V.; Poucke, C., . P.; Smet, S. D.; Royen, G. V. Protein Oxidation and Proteolysis during Storage and in Vitro Digestion of Pork and Beef Patties. Food Chemistry 2016, 209, 177–184. DOI: 10.1016/j.foodchem.2016.04.027.
  • Taborsky, G.; Oxidative Modification of Proteins in the Presence of Ferrous Ion and Air. Effect of Ionic Constituents of the Reaction Medium on the Nature of the Oxidation Products. Biochemistry 1973, 12, 7, 1341–1348.
  • Xiong, Y. L.; Decker, E. A. Alterations of Muscle Protein Functionality by Oxidative and Antioxidative Processes. Journal of Muscle Foods 1995, 6(2), 139–160. DOI: 10.1111/jmf.1995.6.issue-2.
  • Lorido, L.; Ventanas, S.; Akcan, T.; Estévez, M. Effect of Protein Oxidation on the Impaired Quality of Dry-Cured Loins Produced from Frozen Pork Meat. Food Chemistry 2016, 196, 1310. DOI: 10.1016/j.foodchem.2015.10.092.
  • Utrera, M.; Morcuende, D.; Estévez, M. Temperature of Frozen Storage Affects the Nature and Consequences of Protein Oxidation in Beef Patties. Meat Science 2014, 96(3), 1250–1257. DOI: 10.1016/j.meatsci.2013.10.032.
  • Li, C. Q.; Xiong, Y. L.; Chen, J. Protein Oxidation at Different Salt Concentrations Affects the Cross‐Linking and Gelation of Pork Myofibrillar Protein Catalyzed by Microbial Transglutaminase. Journal of Food Science 2013, 78(6), C823–C831. DOI: 10.1111/1750-3841.12027.
  • Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Prodpran, T.; Tanaka, M. Characterization of Edible Films from Skin Gelatin of Brownstripe Red Snapper and Bigeye Snapper. Food Hydrocolloids 2006, 20(4), 492–501. DOI: 10.1016/j.foodhyd.2005.04.007.
  • Srinivasan, S.; Hultin, H. O. Chemical, Physical, and Functional Properties of Cod Proteins Modified by a Nonenzymic Free-Radical-Generating System. Journal Agricultural and Food Chemistry 1997, 45(2), 310–320. DOI: 10.1021/jf960367g.
  • Soladoye, O. P.; Juárez, M. L.; Aalhus, J. L.; Shand, P.; Estévez, M. Protein Oxidation in Processed Meat: Mechanisms and Potential Implications on Human Health. Comprehensive Reviews in Food Science & Food Safety 2015, 14(2), 106–122. DOI: 10.1111/crf3.2015.14.issue-2.
  • Xiong, Y. L.; Park, D.; Ooizumi, T. Variation in the Cross-Linking Pattern of Porcine Myofibrillar Protein Exposed to Three Oxidative Environments. Journal of Agricultural & Food Chemistry 2009, 57(1), 153–159. DOI: 10.1021/jf8024453.
  • Bao, Y.; Boeren, S.; Ertbjerg, P. Myofibrillar Protein Oxidation Affects Filament Charges, Aggregation and Water-Holding. Meat Science 2018, 135, 102–108. DOI: 10.1016/j.meatsci.2017.09.011.
  • Lund, M. N.; Heinonen, M.; Baron, C. P.; Estévez, M. Protein Oxidation in Muscle Foods: A Review. Molecular Nutrition & Food Research 2011, 55(1), 83–95. DOI: 10.1002/mnfr.201000453.
  • Shao, J. H.; Deng, Y. M.; Jia, N.; Li, R. R.; Cao, J. X.; Liu, D. Y.; Li, J. R. Low-Field NMR Determination of Water Distribution in Meat Batters with NaCl and Polyphosphate Addition. Food Chemistry 2016, 200, 308–314. DOI: 10.1016/j.foodchem.2016.01.013.