3,272
Views
15
CrossRef citations to date
0
Altmetric
Articles

In vitro digestion, physicochemical and morphological properties of low glycemic index rice flour prepared through enzymatic hydrolysis

, , , &
Pages 2632-2645 | Received 07 Sep 2018, Accepted 01 Nov 2018, Published online: 20 Nov 2018

References

  • Srikaeo, K.; Arranz-Martínez, P. Formulating Low Glycaemic Index Rice Flour to Be Used as a Functional Ingredient. J. Cereal Sci. 2015, 61, 33–40. DOI: 10.1016/j.jcs.2014.10.002.
  • Hu, E. A.; Pan, A.; Malik, V.; Sun, Q. White Rice Consumption and Risk of Type-2 Diabetes: Meta-Analysis and Systematic Review. BMJ. 2012, 344, e1454. DOI: 10.1136/bmj.e1454.
  • Shumoy, H.; Raes, K. In Vitro Starch Hydrolysis and Estimated Glycemic Index of Tef Porridge and Injera. Food Chem. 2017. DOI: 10.1016/j.foodchem.2017.02.060.
  • Karl, J. P.; Roberts, S.; Schaefer, E. J.; Gleason, J. A.; Fuss, P.; Ramussen, H.; Das, S. K. Effects of Carbohydrate Quantity and Glycemic Index on Resting Metabolic Rate and Body Composition during Weight Loss. Obesity. 2015, 23(11), 2190–2198. DOI: 10.1002/oby.21268.
  • Agama-Acevedo, E.; Islas-Hernández, J. J.; Pacheco-Vargas, G.; Osorio-Díaz, P.; Bello-Pérez, L. A. Starch Digestibility and Glycemic Index of Cookies Partially Substituted with Unripe Banana Flour. LWT-Food Sci Technol. 2012, 46(1), 177–182. DOI: 10.1016/j.lwt.2011.10.010.
  • Jenkins, D. J.; Kendall, C. W.; Augustin, L. S.; Mitchell, S.; Sahye-Pudaruth, S.; Mejia, S. B.; Josse, R. G. Effect of Legumes as Part of A Low Glycemic Index Diet on Glycemic Control and Cardiovascular Risk Factors in Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Arch Intern Med. 2012, 172(21), 1653–1660. DOI: 10.1001/2013.jamainternmed.70.
  • Eleazu, C. O.;. The Concept of Low Glycemic Index and Glycemic Load Foods as Panacea for Type-2 Diabetes Mellitus; Prospects, Challenges and Solutions. Afr Health Sci. 2016, 16(2), 468–479. DOI: 10.4314/ahs.v16i2.15.
  • Amin, T.; Naik, H. R.; Hussain, S. Z.; Rather, A. H.; Murtaza, I.; Dar, B. N. Structural Properties of High-Protein, Low Glycemic Index (GI) Rice Flour. Int J Food Properties. 2016, 20(11), 2793–2804. DOI: 10.1080/10942912.2016.1252391.
  • Chen, W. P.; Chang, Y. C. Production of High-Fructose Syrup and High Protein Rice Flour from Broken Rice. J Sci Food Agric. 1984, 35(10), 1128–1135. DOI: 10.1002/jsfa.2740351012.
  • AOAC Official Methods. Official Methods of Analysis; Association of Official: Washington, DC, 2000.
  • Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A Starch Hydrolysis Procedure to Estimate Glycemic Index. Nutr Res. 1997, 17, 427–437. DOI: 10.1016/S0271-5317(97)00010-9.
  • Englyst, H.; Kingman, S.; Cummings, J. Classification and Measurement of Nutritionally Important Starch Fractions. Eur J Clin Nutr. 1992, 46, S33–S50.
  • Rashmi, S.; Urooj, A. Effect of Processing on Nutritionally Important Starch Fractions in Rice Varieties. Int J Food Sci Nutr. 2003, 54(1), 27–36. DOI: 10.1080/096374803161976.
  • Gujaral, H. S.; Rosell, C. M. Formulations and Quality Characterization of Gluten-Free Egyptian Balady Flat Bread. Ann Agric Sci. 2013, 58(1), 19–25. DOI: 10.1016/j.aoas.2013.01.004.
  • Magwazaa, L. S.; Oparab, U. L. Analytical Methods for Determination of Sugars and Sweetness of Horticultural Products- A Review. Sci Hortic. 2015, 184, 179–192. DOI: 10.1016/j.scienta.2015.01.001.
  • Tester, R. F.; Karkalas, J.; Qi, X. Starch- Composition, Fine Structure and Architecture. J Cereal Sci. 2004, 39, 151–165. DOI: 10.1016/j.jcs.2003.12.001.
  • Puri, S.; Maninder, A.; Sarao, L. K. Optimization of the Use of Fungal Enzymes Amylase and Glucoamylase to Enhance the Nutritional and Functional Properties of Rice Flour. Int J Scientific Eng Res. 2013, 9(4), 738–763.
  • Lee, K. Y.; Lee, S.; Lee, H. G. Effect of the Degree of Enzymatic Hydrolysis on the Physico-Chemical Properties and in Vitro Digestibility of Rice Starch. Food Sci Biotechnol. 2007, 19(5), 1333–1340. DOI: 10.1007/s10068-010-0190-z.
  • Robertson, M. D.; Bickerton, A. S.; Dermis, A. L.; Vidal, H.; Frayn, K. N. Insulin-Sensitizing Effects of Dietary Resistant Starch and Effects on Skeletal Muscle and Adipose Tissue Metabolism. Am J Clin Nutr. 2005, 82(3), 559–567. DOI: 10.1093/ajcn.82.3.559.
  • Choi, Y.; Giovannucci, E.; Lee, J. Glycaemic Index and Glycaemic Load in Relation to Risk of Diabetes-Related Cancers: A Meta-Analysis. Br J Nutr. 2012, 108, 1934–1947. DOI: 10.1017/S0007114512003984.
  • Chen, P.; Fengwei, X.; Zhao, L.; Qiao, Q.; Xingxun, L. Effect Of Acid Hydrolysis On The Multi-Scale Structure Change Of Starch With Different Amylose Content. Food Hydrocoll. 2017, 69, 359–368. DOI: 10.1016/j.foodhyd.2017.03.003.
  • Odenigbo, A.; Rahimi, J.; Ngadi, M.; Amer, S.; Mustafa, A. Starch Digestibility and Predicted Glycemic Index of Fried Sweet Potato Cultivars. Functional Foods Health Disease. 2012, 2(7), 280–289. DOI: 10.31989/ffhd.v2i7.83.
  • Foster-Powell, K.; Holt, S. H.; Brand-Miller, J. C. International Table of Glycemic Index and Glycemic Load Values. Am J Clin Nutr. 2002, 76(1), 5–56. DOI: 10.1093/ajcn/76.1.5.
  • Hung, P. V.; Huynh, T. C.; Nguyen, T. L. In Vitro Digestibility and in Vivo Glucose Response of Native and Physically Modified Rice Starches Varying Amylose Contents. Food Chem. 2015. DOI: 10.1016/j.foodchem.2015.02.118.
  • Rocha, T. D.; Carneiro, A. P.; Franco, C. M. Effect of Enzymatic Hydrolysis on Some Physicochemical Properties of Root and Tuber Granular Starches. Ciência E Tecnologia De Alimentos. 2010, 30(2), 544–551. DOI: 10.1590/S0101-20612010000200039.
  • Matsuguma, L. S.; Lacerda, L. G.; Schnitzler, E.; Filho, M. A.; Franco, C. M.; Demiate, I. M. Characterization of Native and Oxidized Starches of Two Varieties of Peruvian Carrot (Arracacia Xanthorrhiza B.) From Two Production Areas of Paraná State, Brazil. Braz Arch Biol Technol. 2009, 52(3), 701–713. DOI: 10.1590/S1516-89132009000300022.
  • Aggarwal, P.; Dollimore, D. A Thermal Analysis Investigation of Partially Hydrolyzed Starch. Thermochim Acta. 1989, 31, 17–25.
  • Patwa, A.; Malcolm, B.; Wilson, J.; Ambrose, R. P. Particle Size Analysis of Two Distinct Classes of Wheat Flour by Sieving. Trans ASABE. 2014, 57(1), 151–159.
  • Sakhare, S. D.; Inamdar, A. A.; Soumya, C.; Indrani, D.; Rao, G. V. Effect of Flour Particle Size on Microstructural, Rheological and Physico-Sensory Characteristics of Bread and South Indian Parotta. J Food Sci Technol. 2014, 51(12), 4108–4113. http://link.springer.com/article/10.1007/s13197-013-0939-5.
  • Hera, E. D.; Gomez, M.; Rosell, C. M. Particle Size Distribution of Rice Flour Affecting the Starch Enzymatic Hydrolysis and Hydration Properties. Carbohydr Polym. 2013, 98, 421–427. DOI: 10.1016/j.carbpol.2013.06.002.
  • Tester, R. F.; Karkalas, J. Hydrolysis of Native Starches with Amylases. Anim Feed Scienec Technol. 2006, 130, 39–54. DOI: 10.1016/j.anifeedsci.2006.01.016.
  • Chen, Y.; Huang, S.; Tanga, Z.; Chena, X.; Zhang, Z. Structural Changes of Cassava Starch Granules Hydrolyzed by a Mixture of α-amylase and Glucoamylase. Carbohydr Polym. 2011, 85, 272–275. DOI: 10.1016/j.carbpol.2011.01.047.
  • Gelders, G. G.; Vanderstukken, T. C.; Goesaert, H.; Delcour, J. A. Amylose-Lipid Complexation: A New Fractionation Method. Carbohydr Polym. 2004, 56, 447–458. DOI: 10.1016/j.carbpol.2004.03.012.
  • Shamaia, K.; Bianco-Peled, H.; Shimonic, E. Polymorphism of Resistant Starch Type-III. Carbohydr Polym. 2003, 54, 363–369. DOI: 10.1016/S0144-8617(03)00192-9.
  • Cui, R.; Oates, C. G. The Effect of Amylose-Lipid Complex Formation on Enzyme-Susceptibility of Sago Strach. Food Chem. 1999, 65, 417–426. DOI: 10.1016/S0308-8146(97)00174-X.
  • Pongjanta, J.; Utaipathanaceep, A.; Naivikhul, O.; Piyachomkwan, K. Debranching Enzyme Concentration Affected on Physicochemical Properties and alpha-Amylase Hydrolysis Rate of Resistant Starch Type-III from Amylose Rice Starch. Carbohydr Polym. 2009, 78, 5–9. DOI: 10.1016/j.carbpol.2009.03.037.