2,241
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Physicochemical, taste, and functional changes during the enhanced fermentation of low-salt Sufu paste, a Chinese fermented soybean food

ORCID Icon, &
Pages 2714-2729 | Received 14 Aug 2018, Accepted 11 Dec 2018, Published online: 06 Jan 2019

References

  • Moy, Y.; Chou, C. Changes in the Contents of Sugars and Organic Acids during the Ripening and Storage of Sufu, a Traditional Oriental Fermented Product of Soybean Cubes. J. Agric. Food Chem. 2010, 58, 12790–12793. DOI: 10.1021/jf1033653.
  • Yin, L.; Li, L.; Li, Z.; Eizo, T.; Masayoshi, S. Changes in Isoflavone Contents and Composition of Sufu (Fermented Tofu) during Manufacturing. Food Chem. 2004, 87, 587–592. DOI: 10.1016/j.foodchem.2004.01.011.
  • Wang, J.; Lin, Q.; Wang, Y.; Chen, X. Research on Soybean Curd Coagulated by Lactic Acid Bacteria. SpringerPlus. 2013, 2, 250–260. DOI: 10.1186/2193-1801-2-250.
  • Han, B.; Rombouts, F. M.; Nout, M. J. R. Amino Acid Profiles of Sufu, a Chinese Fermented Soybean Food. J. Food Compost. Anal. 2004, 17, 689–698. DOI: 10.1016/j.jfca.2003.09.012.
  • Han, B. Z.; Rombouts, F. M.; Nout, M. J. A Chinese Fermented Soybean Food. Int. J. Food Microbiol. 2001, 65, 1–10. DOI: 10.1016/S0168-1605(00)00523-7.
  • Han, B.; Wang, J. H.; Rombouts, F. M.; Nout, M. J. R. Effect of NaCl on Textural Changes and Protein and Lipid Degradation during the Ripening Stage of Sufu, a Chinese Fermented Soybean Food. J. Sci. Food Agric. 2003, 83, 899–904. DOI: 10.1002/jsfa.1425.
  • Moy, Y. S.; Lu, T. J.; Chou, C. C. Volatile Components of the Enzyme-Ripened Sufu, a Chinese Traditional Fermented Product of Soy Bean. J. Biosci. Bioeng. 2012, 113, 196–201. DOI: 10.1016/j.jbiosc.2011.09.021.
  • Yvon, M.; Rijnen, L. Cheese Flavour Formation by Amino Acid Catabolism. Int. Dairy J. 2001, 11, 185–201. DOI: 10.1016/S0958-6946(01)00049-8.
  • Ardö, Y. Flavour Formation by Amino Acid Catabolism. Biotechnol. Adv. 2006, 24, 238–242. DOI: 10.1016/j.biotechadv.2005.11.005.
  • Banks, J. M.; Yvonb, M.; Griponb, J. C.; Fuentea, M. A. D. L.; Brechanya, E. Y.; Williams, A. G.; Muir, D. D. Enhancement of Amino Acid Catabolism in Cheddar Cheese Using α-ketoglutarate: Amino Acid Degradation in Relation to Volatile Compounds and Aroma Character. Int. Dairy J. 2001, 11, 235–243. DOI: 10.1016/S0958-6946(01)00053-X.
  • Rijnen, L.; Courtin, P.; Gripon, J. C.; Yvon, M. Expression of a Heterologous Glutamate Dehydrogenase Gene in Lactococcus Lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds. Appl. Environ. Microbiol. 2000, 66, 1354–1359. DOI: 10.1128/AEM.66.4.1354-1359.2000.
  • Cai, R. C.; Li, L.; Yang, M.; Cheung, H. Y.; Fu, L. Changes in Bioactive Compounds and Their Relationship to Antioxidant Activity in White Sufu during Manufacturing. Int. J. Food Sci. Technol. 2016, 51, 1721–1730. DOI: 10.1111/ijfs.13149.
  • Xia, X.; Li, G.; Zheng, J.; Ran, C.; Kan, J. Biochemical, Textural and Microstructural Changes in Whole-Soya Bean Cotyledon Sufu during Fermentation. Int. J. Food Sci. Technol. 2014, 49, 1834–1841. DOI: 10.1111/ijfs.12492.
  • Feng, Z.; Chen, H.; Lv, X. T.; Deng, H. L.; Chen, X.; Li, J. J.; Guo, L. Accelerated Ripening of Kedong Sufu with Autochthonous Starter Cultures Kocuria Rosea KDF3 and Its Protease KP3 as Adjuncts. J. Appl. Microbiol. 2014, 116, 877–889. DOI: 10.1111/jam.12433.
  • AOAC. Official Methods of Analysis of the AOAC, 18th ed.; Association of Official Analytical Chemists: Washington D.C., USA, 2006.
  • Dalkyoung, Y.; Hongkyoon, N.; Prinyawiwatkul, W. Physicochemical and Functional Properties of Chitosans Affected by Sun Drying Time during Decoloration. LWT - Food Sci. Technol. 2009, 42, 1553–1556. DOI: 10.1016/j.lwt.2009.05.004.
  • Leonard, K.; Wildi, B. S. Proteases of the Genus Bacillus. I. Neutral Proteases. Biotechnol. Bioeng. 1970, 12, 179. DOI: 10.1002/bit.260120205.
  • Inatsu, Y.; Nakamura, N.; Yuriko, Y.; Fushimi, T.; Watanasiritum, L.; Kawamoto, S. Characterization of Bacillus Subtilis Strains in Thua Nao, a Traditional Fermented Soybean Food in Northern Thailand. Lett Appl. Microbiol. 2010, 43, 237–242. DOI: 10.1111/j.1472-765X.2006.01966.x.
  • Boutrou, R.; Sepulchre, A.; Gripon, J. C.; Monnet, V. Simple Tests for Predicting the Lytic Behavior and Proteolytic Activity of Lactococcal Strains in Cheese. J. Dairy Sci. 1998, 81, 2321–2328. DOI: 10.3168/jds.S0022-0302(98)70121-3.
  • Yvon, M.; Thirouin, S.; Rijnen, L.; Fromentier, D.; Gripon, J. C. An Aminotransferase from Lactococcus Lactis Initiates Conversion of Amino Acids to Cheese Flavor Compounds. Appl. Environ. Microbiol. 1997, 63, 414–419.
  • Li, Y.; Yu, R.; Chou, C. Some Biochemical and Physical Changes during the Preparation of the Enzyme-Ripening Sufu, a Fermented Product of Soybean Curd. J. Agric. Food Chem. 2010, 58, 4888–4893. DOI: 10.1021/jf904600a.
  • Cardoso, V. M.; Borelli, B. M.; Lara, C. A.; Soares, M. A.; Pataro, C.; Bodevan, E. C.; Rosa, C. A. The Influence of Seasons and Ripening Time on Yeast Communities of a Traditional Brazilian Cheese. Food Res. Int. 2015, 69, 331–340. DOI: 10.1016/j.foodres.2014.12.040.
  • Borla, O. P.; Davidovich, L.; Roura, S. Isolation and Characterization of Proteolytic Microorganisms from Fresh and Fermented Cabbage. LWT - Food Sci. Technol. 2010, 43, 298–301. DOI: 10.1016/j.lwt.2009.07.006.
  • Trade standard SB/T 10170. Fermented Bean Curd (Sufu); Ministry of Commerce of the People’s Republic of China: Beijing, 2007.
  • Herranz, B.; Fernández, M.; Hierro, E.; Bruna, J. M.; Ordóñez, J. A.; De, L. H. L. Use of Lactococcus Lactis Subsp. Cremoris NCDO 763 and α-ketoglutarate to Improve the Sensory Quality of Dry Fermented Sausages. Meat Sci. 2004, 66, 151–163. DOI: 10.1016/S0309-1740(03)00079-2.
  • Yvon, M.; Berthelot, S.; Gripon, J. C. Adding Alpha-Ketoglutarate to Semi-Hard Cheese Curd Highly Enhances the Conversion of Amino Acids to Aroma Compounds. Int. Dairy J. 1998, 8, 889–898. DOI: 10.1016/S0958-6946(99)00011-4.
  • Tjener, K.; Stahnke, L. H.; Andersen, L.; Martinussen, J. Addition of α-ketoglutarate Enhances Formation of Volatiles by Staphylococcus carnosus during Sausage Fermentation. Meat Sci. 2004, 67, 711–719. DOI: 10.1016/j.meatsci.2004.02.003.
  • Tseng, Y. H.; Lee, Y. L.; Li, R. C.; Mau, J. L. Non-Volatile Flavour Components of Ganoderma tsugae. Food Chem. 2005, 90, 409–415. DOI: 10.1016/j.foodchem.2004.03.054.
  • Qin, L.; Ding, X. Evolution of Proteolytic Tasty Components during Preparation of Douchiba, a Traditional Chinese Soy-Fermented Appetizer. Food Technol. Biotechnol. 2007, 45, 85–90.
  • Dajanta, K.; Apichartsrangkoon, A.; Chukeatirote, E.; Frazier, R. A. Free-Amino Acid Profiles of Thua Nao, a Thai Fermented Soybean. Food Chem. 2011, 125, 342–347. DOI: 10.1016/j.foodchem.2010.09.002.
  • Lioe, H. N.; Apriyantono, A.; Takara, K.; Wada, K.; Yasuda, M. Umami Taste Enhancement of MSG/NaCl Mixtures by Subthreshold L‐α‐aromatic Amino Acids. J. Food Sci. 2005, 70, s401–s405. DOI: 10.1111/j.1365-2621.2005.tb11483.x.
  • Zhao, C. J.; Schieber, A.; Gänzle, M. G. Formation of Taste-Active Amino Acids, Amino Acid Derivatives and Peptides in Food Fermentations – A Review. Food Res. Int. 2016, 89, 39–47. DOI: 10.1016/j.foodres.2016.08.042.
  • Faraj, A.; Vasanthan, T. Soybean Isoflavones: Effects of Processing and Health Benefits. Food Rev. Int. 2004, 20, 51–75. DOI: 10.1081/FRI-120028830.
  • Zhang, X.; Qu, Y.; Ma, Q.; Zhang, Z.; Li, D.; Wang, J.; Shen, W.; Shen, E.; Zhou, J. Illumina MiSeq Sequencing Reveals Diverse Microbial Communities of Activated Sludge Systems Stimulated by Different Aromatics for Indigo Biosynthesis from Indole. PLoS One. 2015, 10, e125732. DOI: 10.1371/journal.pone.0125732.
  • Dhakal, R.; Bajpai, V. K.; Baek, K. H. Production of GABA (γ-Aminobutyric Acid) by Microorganisms: A Review. Braz. J. Microbiol. 2012, 43, 1230–1241. DOI: 10.1590/S1517-83822012000400001.
  • Zhao, C.; Zhang, Y.; Wei, X.; Hu, Z.; Zhu, F.; Xu, L.; Luo, M.; Liu, H. Production of Ultra-High Molecular Weight Poly-γ-glutamic Acid with Bacillus licheniformis P-104 and Characterization of Its Flocculation Froperties. Appl. Biochem. Biotechnol. 2013, 170, 562–572. DOI: 10.1007/s12010-013-0214-2.
  • Wu, Q.; Shah, N. P. High γ-aminobutyric Acid Production from Lactic Acid Bacteria: Emphasis on Lactobacillus brevis as a Functional Dairy Starter. Crit. Rev. Food Sci. Nutr. 2016. DOI: 10.1080/10408398.2016.1147418.
  • Yamaya, A.; Endo, Y.; Fujimoto, K.; Kitamura, K. Effects of Genetic Variability and Planting Location on the Phytosterol Content and Composition in Soybean Seeds. Food Chem. 2007, 102, 1071–1075. DOI: 10.1016/j.foodchem.2006.07.001.
  • Ma, Y.; Wang, J.; Cheng, Y.; Yin, L.; Li, L. Some Biochemical and Physical Changes during Manufacturing of Grey Sufu, a Traditional Chinese Fermented Soybean Curd. Int. J. Food Eng. 2013, 9, 45–54. DOI: 10.1515/ijfe-2012-0204.
  • Han, B. Z.; Cao, C. F.; Rombouts, F. M.; Nout, M. J. R. Microbial Changes during the Production of Sufu-A Chinese Fermented Soybean Food. Food Control. 2004, 15, 265–270. DOI: 10.1016/S0956-7135(03)00066-5.
  • Yasuda, M.; Tachibana, S.; Kuba-Miyara, M. Biochemical Aspects of Red Koji and Tofuyo Prepared Using Monascus Fungi. Appl. Microbiol. Biotechnol. 2012, 96, 49–60. DOI: 10.1007/s00253-012-4300-0.
  • Li, L.; Wang, J. Comparative Study of Chemical Composition and Texture Profile Analysis between Camembert Cheese and Chinese Sufu. Biotechnol. Front. 2012, 1, 1–8.