904
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Effects of different Wx alleles on amylopectin molecular structure and enzymatic hydrolysis properties of rice starch

ORCID Icon, , , , , , , & show all
Pages 2772-2784 | Received 13 Aug 2018, Accepted 12 Dec 2018, Published online: 17 Jan 2019

References

  • Champagne, E. T. Rice Starch Composition and Characteristics. Cereal Foods World. 1996, 41, 833–838.
  • Fujita, N. Starch Biosynthesis in Rice Endosperm. AGri Biosci. Monogr. 2014, 4, 1–18. DOI: 10.5047/agbm.2014.00401.0001.
  • Chung, H. J.; Liu, Q.; Lee, L.; Wei, D. Z. Relationship between the Structure, Physicochemical Properties and in Vitro Digestibility of Rice Starches with Different Amylose Contents. Food Hydrocoll. 2011, 25, 968–975. DOI: 10.1016/j.foodhyd.2010.09.011.
  • Zhu, L. J.; Liu, Q. Q.; Wilson, J. D.; Gu, M. H.; Shi, Y. C. Digestibility and Physicochemical Properties of Rice (Oryza Sativa L.) Flours and Starches Differing in Amylose Content. Carbohydr. Polym. 2011, 86, 1751–1759. DOI: 10.1016/j.carbpol.2011.07.017.
  • Cai, J.; Man, J.; Huang, J.; Liu, Q.; Wei, W.; Wei, C. Relationship between Structure and Functional Properties of Normal Rice Starches with Different Amylose Contents. Carbohydr. Polym. 2015, 125, 35–44. DOI: 10.1016/j.carbpol.2015.02.067.
  • Teng, B.; Zhang, Y.; Wu, J.; Cong, X.; Wang, R.; Han, Y.; Luo, Z. Association between Allelic Variation at the Waxy Locus and Starch Physicochemical Properties Using Single-Segment Substitution Lines in Rice (Oryza Sativa L.). Starch/Stärke. 2013, 65, 1069–1077. DOI: 10.1002/star.201300034.
  • Teng, B.; Zhang, Y.; Du, S.; Wu, J.; Li, Z.; Luo, Z.; Yang, J. Crystalline, Thermal and Swelling Properties of Starches from Single-Segment Substitution Lines with Different Wx Alleles in Rice (Oryza Sativa L.). J. Sci. Food Agric. 2017, 97, 108–114. DOI: 10.1002/jsfa.7693.
  • Zeeman, S. C.; Kossmann, J.; Smith, A. M. Starch: Its Metabolism, Evolution, and Biotechnological Modification in Plants. Annu. Rev. Plant Biol. 2010, 61, 209–234. DOI: 10.1146/annurev-arplant-042809-112301.
  • Teng, B.; Zeng, R.; Wang, Y.; Liu, Z.; Zhang, Z.; Zhu, H.; Ding, X.; Li, W.; Zhang, G. Detection of Allelic Variation at the Wx Locus with Single-Segment Substitution Lines in Rice (Oryza Sativa L.). Mol. Breed. 2012, 30, 583–595. DOI: 10.1007/s11032-011-9647-x.
  • Tawil, G.; Viksø-Nielsen, A.; Rollandsabaté, A.; Colonna, P.; Buléon, A. In Depth Study of a New Highly Efficient Raw Starch Hydrolyzing α-amylase from Rhizomucor Sp. Biomacromolecules. 2011, 12, 34–42. DOI: 10.1021/bm100913z.
  • Li, J. H.; Vasanthan, T.; Hoover, R.; Rossnagel, B. G. Starch from Hull-Less Barley: V. In-Vitro Susceptibility of Waxy, Normal, and High-Amylose Starches Towards Hydrolysis by Alpha-Amylases and Amyloglucosidase. Food Chem. 2004, 84, 621–632. DOI: 10.1016/S0308-8146(03)00287-5.
  • Carciofi, M.; Blennow, A.; Jensen, S. L.; Shaik, S. S.; Henriksen, A.; Buléon, A.; Holm, P. B.; Hebelstrup, K. H. Concerted Suppression of All Starch Branching Enzyme Genes in Barley Produces Amylose-Only Starch Granules. BMC Plant Biol. 2012, 12, 223. DOI: 10.1186/1471-2229-12-223.
  • Cai, J.; Yang, Y.; Man, J.; Huang, J.; Wang, Z.; Zhang, C.; Gu, M.; Liu, Q.; Wei, C. Structural and Functional Properties of Alkali-Treated High-Amylose Rice Starch. Food Chem. 2014, 145, 245–253. DOI: 10.1016/j.foodchem.2013.08.059.
  • Lin, L.; Guo, D.; Huang, J.; Zhang, X.; Zhang, L.; Wei, C. Molecular Structure and Enzymatic Hydrolysis Properties of Starches from High-Amylose Maize Inbred Lines and Their Hybrids. Food Hydrocolloids. 2016, 58, 246–254. DOI: 10.1016/j.foodhyd.2016.03.001.
  • Li, X.; Gao, W.; Wang, Y.; Jiang, Q.; Huang, L. Granule Structural, Crystalline, and Thermal Changes in Native Chinese Yam Starch after Hydrolysis with Two Different Enzymes– α-amylase and Gluco-Amylase. Starch/Stärke. 2011, 65, 75–82. DOI: 10.1002/star.201000104.
  • Englyst, H. N.; Kingman, S. M.; Cummings, J. H. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 45, S33–S50.
  • McCleary, B. V.; Monaghan, D. A. Measurement of Resistant Starch. J. AOAC Int. 2002, 85, 665–675.
  • Noda, T.; Nishiba, Y.; Sato, T.; Suda, I. Properties of Starches from Several Low-Amylose Rice Cultivars. Cereal Chem. 2003, 80, 193–197. DOI: 10.1094/CCHEM.2003.80.2.193.
  • Lin, L.; Zhang, L.; Cai, X.; Liu, Q.; Zhang, C.; Wei, C. The Relationship between Enzyme Hydrolysis and the Components of Rice Starches with the Same Genetic Background and Amylopectin Structure but Different Amylose Contents. Food Hydrocoll. 2018, 84, 406–413. DOI: 10.1016/j.foodhyd.2018.06.029.
  • Wei, C. X.; Xu, B.; Qin, F. L.; Yu, H. G.; Chen, C.; Meng, X. L.; Zhu, L.; Wang, Y.; Gu, M.; Liu, Q. C-Type Starch from High-Amylose Rice Resistant Starch Granules Modified by Antisense RNA Inhibition of Starch Branching Enzyme. J. Agric. Food Chem. 2010, 58, 7383–7388. DOI: 10.1021/jf100385m.
  • Syahariza, Z. A.; Li, E.; Hasjim, J. Extraction and Dissolution of Starch from Rice and Sorghum Grains for Accurate Structural Analysis. Carbohydr. Polym. 2010, 82, 14–20. DOI: 10.1016/j.carbpol.2010.04.014.
  • Lin, L.; Cai, C.; Gilbert, R. G.; Li, E.; Wang, J.; Wei, C. Relationships between Amylopectin Molecular Structures and Functional Properties of Different-Sized Fractions of Normal and High-Amylose Maize Starches. Food Hydrocoll. 2016, 52, 359–368. DOI: 10.1016/j.foodhyd.2015.07.019.
  • Wang, K.; Jovin, H.; Wu, A. C.; Li, E.; Henry, R. J.; Gilbert, R. G. Roles of GBSSI and SSIIa in Determining Amylose Fine Structure. Carbohydr. Polym. 2015, 127, 264–274. DOI: 10.1016/j.carbpol.2015.03.072.
  • Hanashiro, I.; Abe, J.; Hizukuri, S. A. Periodic Distribution of the Chain Length of Amylopectin as Revealed by High-Performance Anion-Exchange Chromatography. Carbohydr. Res. 1996, 283, 151–159. DOI: 10.1016/0008-6215(95)00408-4.
  • Wu, A. C.; Gilbert, R. G. Molecular Weight Distributions of Starch Branches Reveal Genetic Constraints on Biosynthesis. Biomacromolecules. 2010, 11, 3539–3547. DOI: 10.1021/bm1010189.
  • Man, J.; Yang, Y.; Huang, J.; Zhang, C.; Zhang, F.; Wang, Y.; Gu, M.; Liu, Q.; Wei, C. Morphology and Structural Properties of High-Amylose Rice Starch Residues Hydrolysed by Amyloglucosidase. Food Chem. 2013, 138, 2089–2098. DOI: 10.1016/j.foodchem.2012.12.009.
  • Man, J.; Yang, Y.; Zhang, C.; Zhang, F.; Wang, Y.; Gu, M.; Liu, Q.; Wei, C. Morphology and Structural Characterization of High-Amylose Rice Starch Residues Hydrolyzed by Porcine Pancreatic α-amylase. Food Hydrocoll. 2013, 31, 195–203. DOI: 10.1016/j.foodhyd.2012.11.003.
  • Blazek, J.; Gilbert, E. P. Effect of Enzymatic Hydrolysis on Native Starch Granule Structure. Biomacromolecules. 2010, 11, 3275–3289. DOI: 10.1021/bm101124t.
  • Sasaki, T.; Kohyama, K.; Suzuki, Y.; Okamoto, K.; Noel, T. Y.; Ring, S. G. Physicochemical Characteristics of Waxy Rice Starch Influencing the in Vitro Digestibility of a Starch Gel. Food Chem. 2009, 116, 137–142. DOI: 10.1016/j.foodchem.2009.02.024.
  • Tester, R. F.; Qi, X.; Karkalas, J. Hydrolysis of Native Starches with Amylases. Anim. Feed Sci. Technol. 2006, 130, 39–54. DOI: 10.1016/j.anifeedsci.2006.01.016.
  • Chung, H. J.; Liu, Q.; Donner, E.; Hoover, R.; Warkentin, T. D.; Vandenberg, B. Composition, Molecular Structure, Properties, and in Vitro Digestibility of Starches from Newly Released Canadian Pulse Cultivars. Cereal Chem. 2008, 85, 471–479. DOI: 10.1094/CCHEM-85-4-0471.
  • Srichuwong, S.; Sunarti, T. C.; Mishima, T.; Isono, N.; Hisamatsu, M. Starches from Different Botanical Sources I: Contribution of Amylopectin Finestructure to Thermal Properties and Enzyme Digestibility. Carbohydr. Polym. 2005, 60, 529–538. DOI: 10.1016/j.carbpol.2005.03.004.
  • Chung, H. J.; Lim, H. S.; Lim, S. T. Effect of Partial Gelatinization and Retrogradation on the Enzymatic Digestion of Waxy Rice Starch. J. Cereal Sci. 2006, 43, 353–359. DOI: 10.1016/j.jcs.2005.12.001.
  • Srichuwong, S.; Jane, J. Physicochemical Properties of Starch Affected by Molecular Composition and Structure: A Review. Food Sci. Biotechnol. 2007, 16, 663–674.
  • Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q.; Jaiswal, S.; Chibbar, R.; Nantanga, K. K. M.; Seetharaman, K. Structure of Faba Bean, Black Bean and Pinto Bean Starches at Different Levels of Granule Organization and Their Physicochemical Properties. Food Res. Int. 2011, 44, 2962–2974. DOI: 10.1016/j.foodres.2011.07.006.
  • Jane, J.; Wong, K. S.; McPherson, A. E. Branch-Structure Difference in Starches of A- and B-Type X-Ray Patterns Revealed by Their Naegeli Dextrins. Carbohydr. Res. 1997, 300, 219–227. DOI: 10.1016/S0008-6215(97)00056-6.
  • You, S. Y.; Oh, S. K.; Kim, H. S.; Chung, H. J. Influence of Molecular Structure on Physicochemical Properties and Digestibility of Normal Rice Starches. Int. J. Biol. Macromol. 2015, 77, 375–382. DOI: 10.1016/j.ijbiomac.2015.02.054.
  • You, S. Y.; Lim, S. T.; Lee, J. H.; Chung, H. J. Impact of Molecular and Crystalline Structures on in Vitro Digestibility of Waxy Rice Starches. Carbohydr. Polym. 2014, 112, 729–735. DOI: 10.1016/j.carbpol.2014.05.096.
  • Cheetham, N. W. H.; Tao, L. Variation in Crystalline Type with Amylose Content in Maize Starch Granules: An X-Ray Powder Diffraction Study. Carbohydr. Polym. 1998, 36, 277–284. DOI: 10.1016/S0144-8617(98)00007-1.