5,241
Views
52
CrossRef citations to date
0
Altmetric
Original Article

Color and flavor of flaxseed protein hydrolysates Maillard reaction products: effect of cysteine, initial pH, and thermal treatment

ORCID Icon, , ORCID Icon, , &
Pages 84-99 | Received 14 Sep 2018, Accepted 03 Jan 2019, Published online: 14 Feb 2019

References

  • Keunhee, C.; Hyojeong, H.; Kyungok, S.; Woomin, J.; Kyungsoon, C. Effects of Perilla Oil on Plasma Concentrations of Cardioprotective (N-3) Fatty Acids and Lipid Profiles in Mice. Nutr. Res. Pract. 2013, 7, 256–261. DOI: 10.4162/nrp.2013.7.4.256.
  • Bekhit, E. D. A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Ahmed, I. A. M.; Al-Juhaimi, F. Y.; Saeedi, P.; Bekhit, A. A. Flaxseed: Composition, Detoxification, Utilization, and Opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. DOI: 10.1016/j.bcab.2017.11.017.
  • Peksa, A.; Miedzianka, J. Amino Acid Composition of Enzymatically Hydrolysed Potato Protein Preparations. Czech J. Food Sci. 2014, 32, 265–272. DOI: 10.17221/286/2013-CJFS.
  • Arena, S.; Renzone, G.; D’Ambrosio, C.; Salzano, A. M.; Scaloni, A. Dairy Products and the Maillard Reaction: A Promising Future for Extensive Food Characterization by Integrated Proteomics Studies. Food Chem. 2017, 219, 477–489. DOI: 10.1016/j.foodchem.2016.09.165.
  • Stadler, R. H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P. A.; Robert, M.; Riediker, S. Food Chemistry: Acrylamide from Maillard Reaction Products. Nature. 2002, 419, 449–450. DOI: 10.1038/419449a.
  • Tamanna, N.; Mahmood, N. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition. Int. J. Food Sci. 2015, 2015, 526762. DOI: 10.1155/2015/526762.
  • Wei, C. K.; Thakur, K.; Liu, D. H.; Zhang, J. G.; Wei, Z. J. Enzymatic Hydrolysis of Flaxseed (Linum Usitatissimum L.) Protein and Sensory Characterization of Maillard Reaction Products. Food Chem. 2018, 263, 186–193. DOI: 10.1016/j.foodchem.2018.04.120.
  • AOAC, Association of Official Analytical Chemists. Official Methods of Analysis of the Association Analytical Chemists, 18th ed.; Gaithersburg
  • Li, L.; Liao, B. Y.; Thakur, K.; Zhang, J. G.; Wei, Z. J. The Rheological Behavior of Polysaccharides Sequential Extracted from Polygonatum Cyrtonema Hua. Int. J. Biol. Macromol. 2017, 109, 761–771. DOI: 10.1016/j.ijbiomac.2017.11.063.
  • Karangwa, E.; Zhang, X.; Murekatete, N.; Masamba, K.; Raymond, L. V.; Shabbar, A.; Zhang, Y.; Duhoranimana, E.; Muhoza, B.; Song, S. Effect of Substrate Type on Sensory Characteristics and Antioxidant Capacity of Sunflower Maillard Reaction Products. Eur. Food Res. Technol. 2015, 240, 939–960. DOI: 10.1007/s00217-014-2398-2.
  • Huang, M.; Liu, P.; Song, S.; Zhang, X.; Hayat, K.; Xia, S.; Jia, C.; Gu, F. Contribution of Sulfur-Containing Compounds to the Colour-Inhibiting Effect and Improved Antioxidant Activity of Maillard Reaction Products of Soybean Protein Hydrolysates. J. Sci. Food Agric. 2011, 91, 710–720. DOI: 10.1002/jsfa.4240.
  • Ogasawara, M.; Katsumata, T.; Egi, M. Taste Properties of Maillard-Reaction Products Prepared from 1000 to 5000 Da Peptide. Food Chem. 2006, 99, 600–604. DOI: 10.1016/j.foodchem.2005.08.040.
  • Ogasawara, M.; Yamada, Y.; Egi, M. Taste Enhancer from the Long-Term Ripening of Miso (Soybean Paste). Food Chem. 2006, 99, 736–741. DOI: 10.1016/j.foodchem.2005.08.051.
  • Song, S. Q.; Zhang, X. M.; Hayat, K.; Huang, M. G.; Liu, P.; Karangwa, E.; Gu, F.; Jia, C.; Xia, S.; Xiao, Z.; et al. Contribution of Beef Base to Aroma Characteristics of Beeflike Process Flavour Assessed by Descriptive Sensory Analysis and Gas Chromatography Olfactometry and Partial Least Squares Regression. J. Chromatogr. A. 2010, 1217, 7788–7799. DOI: 10.1016/j.chroma.2010.10.046.
  • Checa-Moreno, R.; Manzano, E.; Mirón, G.; Capitán-Vallvey, L. F. Revisitation of the Phenylisothiocyanate-Derivatives Procedure for Amino Acid Determination by HPLC-UV. J. Sep. Sci. 2008, 31, 3817–3828. DOI: 10.1002/jssc.200800363.
  • Lertittikul, W.; Benjakul, S.; Tanaka, M. Characteristics and Antioxidative Activity of Maillard Reaction Products from a Porcine Plasma Protein–Glucose Model System as Influenced by pH. Food Chem. 2007, 100, 669–677. DOI: 10.1016/j.foodchem.2005.09.085.
  • Kim, J. S.; Lee, Y. S. Characteristics and Antioxidant Activity of Maillard Reaction Products from Fructose-Glycine Oligomer. Food Sci. Biotechnol. 2010, 19, 929–940. DOI: 10.1007/s10068-010-0131-x.
  • Matmaroh, K.; Benjakul, S.; Tanaka, M. Effect of Reactant Concentrations on the Maillard Reaction in a Fructose-Glycine Model System and the Inhibition of Black Tiger Shrimp Polyphenoloxidase. Food Chem. 2006, 98, 1–8. DOI: 10.1016/j.foodchem.2005.05.029.
  • Lund, M. N.; Ray, C. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric Food Chemi. 2017, 65, 4537–4552. DOI: 10.1021/acs.jafc.7b00882.
  • Liu, J.; Liu, M.; He, C.; Song, H.; Chen, F. Effect of Thermal Treatment on the Flavor Generation from Maillard Reaction of Xylose and Chicken Peptide. LWT – Food Sci. Technol. 2015, 64, 316–325. DOI: 10.1016/j.lwt.2015.05.061.
  • Delgadoandrade, C.; Morales, F. J.; Seiquer, I.; Navarro, M. P. Maillard Reaction Products Profile and Intake from Spanish Typical Dishes. Food Res. Int. 2010, 43, 1304–1311. DOI: 10.1016/j.foodres.2010.03.018.
  • Kumar, R.; Rajamanickam, R.; Nadanasabapathi, S. Effect of Maillard Reaction Products (Mrp) on Chlorophyll Stability in Green Peas. Food Nutr. Sci. 2013, 4, 879–883. DOI: 10.4236/fns.2013.49115.
  • Lan, X. H.; Liu, P.; Xia, S. Q.; Jia, C. S.; Mukunzi, D.; Zhang, X. M.; Xia, W.; Tian, H.; Xiao, Z. Temperature Effect on the Non-Volatile Compounds of Maillard Reaction Products Derived from Xylose-Soybean Peptide System: Further Insights into Thermal Degradation and Cross-Linking. Food Chem. 2010, 120, 967–972. DOI: 10.1016/j.foodchem.2009.11.033.
  • Eric, K.; Raymond, L. V.; Abbas, S.; Song, S.; Zhang, Y.; Masamba, K.; Zhang, X. Temperature and Cysteine Addition Effect on Formation of Sunflower Hydrolysate Maillard Reaction Products and Corresponding Influence on Sensory Characteristics Assessed by Partial Least Square Regression. Food Res. Int. 2014, 57, 242–258. DOI: 10.1016/j.foodres.2014.01.030.
  • Cui, H.; Jia, C.; Hayat, K.; Yu, J.; Deng, S.; Karangwa, E.; Duhoranimana, E.; Xia, S.; Zhang, X. Controlled Formation of Flavor Compounds by Preparation and Application of Maillard Reaction Intermediate (Mri) Derived from Xylose and Phenylalanine. RSC Adv. 2017, 7, 45442–45451. DOI: 10.1039/C7RA09355A.
  • Rizzi, G. P.;. The Strecker Degradation of Amino Acids: Newer Avenues for Flavor Formation. Food Rev. Int. 2008, 24, 416–435. DOI: 10.1080/87559120802306058.
  • Hou, L.; Xie, J.; Zhao, J.; Zhao, M.; Fan, M.; Xiao, Q.; Liang, J.; Chen, F. Roles of Different Initial Maillard Intermediates and Pathways in Meat Flavor Formation for Cysteine-Xylose-Glycine Model Reaction Systems. Food Chem. 2017, 232, 135–144. DOI: 10.1016/j.foodchem.2017.03.133.
  • Blank, I.; Devaud, S.; Matthey-Doret, W.; Robert, F. Formation of Odorants in Maillard Model Systems Based on L-Proline as Affected by pH. J. Agric. Food Chem. 2003, 51, 3643–3650. DOI: 10.1021/jf034077t.
  • Shibamoto, T.;. Heterocyclic Compounds Found in Cooked Beef. J. Agric Food Chemi. 1980, 28, 237–243. DOI: 10.1021/jf60228a031.
  • Stetzer, A. J.; Cadwallader, K.; Singh, T. K.; Mckeith, F. K.; Brewer, M. S. Effect of Enhancement and Ageing on Flavor and Volatile Compounds in Various Beef Muscles. Meat Sci. 2008, 79, 13–19. DOI: 10.1016/j.meatsci.2007.07.025.
  • Wang, R.; Yang, C.; Song, H. Key Meat Flavour Compounds Formation Mechanism in a Glutathione-Xylose Maillard Reaction. Food Chem. 2012, 131, 280–285. DOI: 10.1016/j.foodchem.2011.08.079.
  • Liu, Q.; Niu, H.; Zhao, J.; Han, J.; Kong, B. Effect of the Reactant Ratio on the Characteristics and Antioxidant Activities of Maillard Reaction Products in a Porcine Plasma Protein Hydrolysate-Galactose Model System. Int. J. Food Prop. 2016, 19, 99–110. DOI: 10.1080/10942912.2015.1017048.
  • Van, L. F.; Adams, A.; De Kimpe, N. De, K. N. Impact of the N-Terminal Amino Acid on the Formation of Pyrazines from Peptides in Maillard Model Systems. J. Agric Food Chemi. 2012, 60(18), 4697–4708. DOI: 10.1021/jf301315b.
  • Xu, Q.; Liu, J.; Song, H.; Zou, T.; Liu, Y.; Zhang, S. Formation Mechanism of Volatile and Non-Volatile Compounds in Peptide-Xylose Maillard Reaction. Food Res. Int. 2013, 54, 683–690. DOI: 10.1016/j.foodres.2013.07.066.
  • Yu, M.; He, S.; Tang, M.; Zhang, Z.; Zhu, Y.; Sun, H. Antioxidant Activity and Sensory Characteristics of Maillard Reaction Products Derived from Different Peptide Fractions of Soybean Meal Hydrolysate. Food Chem. 2018, 243, 249–257. DOI: 10.1016/j.foodchem.2017.09.139.
  • Coleman, W.; Perfetti, T. The Roles of Amino Acids and Sugars in the Production of Volatile Materials in Microwave Heated Tobacco Dust Suspensions. Beiträge Zur Tabakforschung. 1997, 17, 75–95. DOI: 10.2478/cttr-2013-0660.
  • Kocadağlı, T.; Žilić, S.; Taş, N. G.; Vančetović, J.; Dodig, D.; Gökmen, V. Formation of α-dicarbonyl Compounds in Cookies Made from Wheat, Hull-Less Barley and Colored Corn and Its Relation with Phenolic Compounds, Free Amino Acids and Sugars. Eur. Food Res. Technol. 2016, 242, 51–60. DOI: 10.1007/s00217-015-2517-8.