9,902
Views
105
CrossRef citations to date
0
Altmetric
Research Article

Antioxidant and antibacterial activity of seven predominant terpenoids

, &
Pages 230-238 | Received 16 Oct 2018, Accepted 08 Feb 2019, Published online: 22 Feb 2019

References

  • Mateo, J. J.; Jiménez, M. Monoterpenes in grape juice and wines. Journal of Chromatography A 2000, 881 (1), 557-567 DOI: 10.1016/S0021-9673(99)01342-4.
  • Vilanova, M.; Genisheva, Z.; Bescansa, L.; Masa, A.; Oliveira, J. M. Changes in Free and Bound Fractions of Aroma Compounds of Four Vitis Vinifera Cultivars at the Last Ripening Stages. Phytochemistry. 2012, 74, 196–205. DOI: 10.1016/j.phytochem.2011.10.004.
  • Skinkis, P. A.; Bordelon, B. P.; Wood, K. V. Comparison of Monoterpene Constituents in Traminette, Gewürztraminer, and Riesling Winegrapes. Am. J. Enol. Vitic. 2008, 59(4), 440.
  • Rapp, A. Wine Analysis; Springer-Verlag: Berlin, 1988; Vol. 6. pp 28.
  • Cheng, G.; Liu, Y.; Yue, T.-X.; Zhang, Z.-W. Comparison between Aroma Compounds in Wines from Four Vitis Vinifera Grape Varieties Grown in Different Shoot Positions. Food Sci. Technol. 2015, 35, 237–246. DOI: 10.1590/1678-457X.6438.
  • Zhang, P.; Fuentes, S.; Siebert, T.; Krstic, M.; Herderich, M.; Barlow, E. W. R.; Howell, K. Terpene Evolution during the Development of Vitis Vinifera L. Cv. Shiraz Grapes. Food Chem. 2016, 204, 463–474. DOI: 10.1016/j.foodchem.2016.02.125.
  • Kiyama, R. Estrogenic Terpenes and Terpenoids: Pathways, Functions and Applications. Eur. J. Pharmacol. 2017, 815, 405–415. DOI: 10.1016/j.ejphar.2017.09.049.
  • Friedman, M. Antibacterial, Antiviral, and Antifungal Properties of Wines and Winery Byproducts in Relation to Their Flavonoid Content. J. Agric. Food Chem. 2014, 62(26), 6025–6042. DOI: 10.1021/jf501266s.
  • Cueva, C.; Mingo, S.; Muñoz-González, I.; Bustos, I.; Requena, T.; Del Campo, R.; Martín-Álvarez, P. J.; Bartolomé, B.; Moreno-Arribas, M. V. Antibacterial Activity of Wine Phenolic Compounds and Oenological Extracts against Potential Respiratory Pathogens. Lett Appl. Microbiol. 2012, 54(6), 557–563. DOI: 10.1111/j.1472-765X.2012.03248.x.
  • Carmona-Jiménez, Y.; García-Moreno, M. V.; Igartuburu, J. M.; Garcia Barroso, C. Simplification of the DPPH Assay for Estimating the Antioxidant Activity of Wine and Wine By-Products. Food Chem. 2014, 165, 198–204. DOI: 10.1016/j.foodchem.2014.05.106.
  • Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M. G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of Four Monoterpenes Contained in Essential Oils with Model Membranes: Implications for Their Antibacterial Activity. J. Agric. Food Chem. 2007, 55(15), 6300–6308. DOI: 10.1021/jf070094x.
  • Kabara, J.J. Phenols and Chelators. In Food Preservatives; Russell, N.J., Gould, G.W., Eds.; Blackie: London, UK, 1991, 200-214
  • Joshi, S.; Chanotiya, C. S.; Agarwal, G.; Prakash, O.; Pant, A. K.; Mathela, C. S. Terpenoid Compositions, and Antioxidant and Antimicrobial Properties of the Rhizome Essential Oils of Different Hedychium Species. Chem. Biodiversity. 2008, 5(2), 299–309. DOI: 10.1002/cbdv.200890027.
  • Zengin, H.; Baysal, H. A. Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy. Molecules. 2014, 19(11). DOI: 10.3390/molecules190811211.
  • Genovese, A.; Gambuti, A.; Piombino, P.; Moio, L. Sensory Properties and Aroma Compounds of Sweet Fiano Wine. Food Chem. 2007, 103(4), 1228–1236. DOI: 10.1016/j.foodchem.2006.10.027.
  • Wiegand, I.; Hilpert, K.; Hancock, R. E. W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163. DOI: 10.1038/nprot.2007.521.
  • Olajuyigbe, O. O.; Afolayan, A. J. In Vitro Antibacterial and Time-Kill Evaluation of the Erythrina Caffra Thunb. Extract against Bacteria Associated with Diarrhoea. Sci. World J. 2012, 2012, 738314. DOI: 10.1100/2012/738314.
  • May, J.; Chan, C. H.; King, A.; Williams, L.; French, G. L. Time–Kill Studies of Tea Tree Oils on Clinical Isolates. J. Antimicrob. Chemother. 2000, 45(5), 639–643.
  • Foerster, S.; Unemo, M.; Hathaway, L. J.; Low, N.; Althaus, C. L. Time-Kill Curve Analysis and Pharmacodynamic Modelling for in Vitro Evaluation of Antimicrobials against Neisseria Gonorrhoeae. BMC Microbiol. 2016, 16, 216. DOI: 10.1186/s12866-016-0838-9.
  • Yen, G. C.; Duh, P. D. Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species. J. Agric. Food Chem. 1994, 42(3), 629–632. DOI: 10.1021/jf00039a005.
  • Sebaugh, J. L. Guidelines for Accurate EC50/IC50 Estimation. Pharm. Stat. 2011, 10(2), 128–134. DOI: 10.1002/pst.426.
  • Espina, L.; Gelaw, T. K.; de Lamo-Castellví, S.; Pagán, R.; García-Gonzalo, D.; Hozbor, D. F. Mechanism of Bacterial Inactivation by (+)-Limonene and Its Potential Use in Food Preservation Combined Processes. PLoS ONE. 2013, 8(2), e56769. DOI: 10.1371/journal.pone.0056769.
  • Banthorpe, D. V.; Le Patourel, G. N. J.; Francis, M. J. O. Biosynthesis of Geraniol and Nerol and Their β-d-glucosides in Perlargonium Graveolens and Rosa Dilecta. Biochem. J. 1972, 130(4), 1045–1054.
  • Jimenez-Aleman, G. H.; Machado, R. A. R.; Görls, H.; Baldwin, I. T.; Boland, W. Synthesis, Structural Characterization and Biological Activity of Two Diastereomeric JA-Ile Macrolactones. Org. Biomol. Chem. 2015, 13(21), 5885–5893. DOI: 10.1039/C5OB00362H.
  • Silhavy, T. J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harbor Perspect .Biol. 2010, 2(5), a000414. DOI: 10.1101/cshperspect.a000414.
  • Beveridge, T. J. Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles. J. Bacteriol. 1999, 181(16), 4725–4733.
  • Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4(8), 118–126. DOI: 10.4103/0973-7847.70902.
  • Zweier, J. L.; Talukder, M. A. H. The Role of Oxidants and Free Radicals in Reperfusion Injury. Cardiovasc. Res. 2006, 70(2), 181–190. DOI: 10.1016/j.cardiores.2006.02.025.
  • Pham-Huy, L. A.; He, H.; Pham-Huy, C.; Radicals, F. Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4(2), 89–96.
  • Kedare, S. B.; Singh, R. P. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48(4), 412–422. DOI: 10.1007/s13197-011-0251-1.
  • Hidalgo, G.-I.; Almajano, M. P. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants. 2017, 6(1), 7. DOI: 10.3390/antiox6010007.
  • Lim, Y.; Theng, L. I. M.; Tee, T.; Jhi, J. Antioxidant Properties of Guava Fruit: Comparison with Some Local Fruits. Sunway Acad. J.. 2006, 3, 9–20.
  • Oyaizu, M. Studies on Products of Browning Reaction Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. Diet. 1986, 44(6), 307–315. DOI: 10.5264/eiyogakuzashi.44.307.
  • Rahman, M. M.; Islam, M. B.; Biswas, M.; Khurshid Alam, A. H. M. In Vitro Antioxidant and Free Radical Scavenging Activity of Different Parts of Tabebuia Pallida Growing in Bangladesh. BMC Res. Notes. 2015, 8, 621. DOI: 10.1186/s13104-015-1618-6.
  • Silva, A. C. R. D.; Lopes, P. M.; Azevedo, M. M. B. D.; Costa, D. C. M.; Alviano, C. S.; Alviano, D. S. Biological Activities of a-Pinene and β-Pinene Enantiomers. Molecules. 2012, 17(6). DOI: 10.3390/molecules17066305.
  • Yu, L.; Yan, J.; Sun, Z. D-Limonene Exhibits Anti-Inflammatory and Antioxidant Properties in an Ulcerative Colitis Rat Model via Regulation of iNOS, COX-2, PGE2 and ERK Signaling Pathways. Mol. Med. Rep. 2017, 15(4), 2339–2346. DOI: 10.3892/mmr.2017.6241.