1,282
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Geographical traceability of Boletaceae mushrooms using data fusion of FT-IR, UV, and ICP-AES combined with SVM

, , , &
Pages 414-426 | Received 17 Nov 2018, Accepted 22 Feb 2019, Published online: 28 Mar 2019

References

  • Turkekul, I.; Elmastas, M.; Tüzen, M. Determination of Iron, Copper, Manganese, Zinc, Lead, and Cadmium in Mushroom Samples from Tokat, Turkey. Food Chem. 2004, 84(3), 389–392. DOI: 10.1016/S0308-8146(03)00245-0.
  • Frankowska, A.; Ziółkowska, J.; Bielawski, L.; Falandysz, J. Profile and Bioconcentration of Minerals by King Bolete (Boletus Edulis) from the Płocka Dale in Poland. Food Addit. Contam. Part B. 2010, 3(1), 1–6. DOI: 10.1080/19440040903505232.
  • Wang, X.; Liu, H.; Zhang, J.; Li, T.; Wang, Y. Evaluation of Heavy Metal Concentrations of Edible Wild-Grown Mushrooms from China. J. Environ. Sci. Health Part B. 2017, 52(3), 178–183. DOI: 10.1080/03601234.2017.1261545.
  • Ulziijargal, E.; Mau, J. L. Nutrient Compositions of Culinary-Medicinal Mushroom Fruiting Bodies and Mycelia. Int. J. Med. Mushrooms. 2011, 13(4), 343–349.
  • Wang, X. M.; Zhang, J.; Wu, L. H.; Zhao, Y. L.; Li, T.; Li, J. Q.; Wang, Y. Z.; Liu, H. G. A Mini-Review of Chemical Composition and Nutritional Value of Edible Wild-Grown Mushroom from China. Food Chem. 2014, 151, 279–285. DOI: 10.1016/j.foodchem.2013.11.062.
  • Lau, B. F.; Abdullah, N. Bioprospecting of Lentinus Squarrosulus Mont., An Underutilized Wild Edible Mushroom, as A Potential Source of Functional Ingredients: A Review. Trends Food Sci. Technol. 2017, 61, 116–131. DOI: 10.1016/j.tifs.2016.11.017.
  • Elmastas, M.; Isildak, O.; Turkekul, I.; Temur, N. Determination of Antioxidant Activity and Antioxidant Compounds in Wild Edible Mushrooms. J. Food Compost. Anal. 2007, 20(3), 337–345. DOI: 10.1016/j.jfca.2006.07.003.
  • Lu, J.; Qin, J. Z.; Chen, P.; Chen, X.; Zhang, Y. Z.; Zhao, S. J. Quality Difference Study of Six Varieties of Ganoderma Lucidum with Different Origins. Front. Pharmacol. 2012, 3, 3321521. DOI: 10.3389/fphar.2012.00057.
  • Kojta, A. K.; Falandysz, J. Metallic Elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the Fruiting Bodies of Boletus Badius. Food Chem. 2016, 200, 206–214. DOI: 10.1016/j.foodchem.2016.01.006.
  • Zhang, J.; Li, T.; Yang, Y. L.; Liu, H. G.; Wang, Y. Z. Arsenic Concentrations and Associated Health Risks in Laccaria Mushrooms from Yunnan (SW China). Biol. Trace Elem. Res. 2015, 164(2), 261–266. DOI: 10.1007/s12011-014-0213-3.
  • Falandysz, J.; Borovička, J. Macro and Trace Mineral Constituents and Radionuclides in Mushrooms: Health Benefits and Risks. Appl. Microbiol. Biotechnol. 2013, 97(2), 477–501. DOI: 10.1007/s00253-012-4552-8.
  • Zhu, F.; Qu, L.; Fan, W.; Qiao, M.; Hao, H.; Wang, X. Assessment of Heavy Metals in Some Wild Edible Mushrooms Collected from Yunnan Province, China. Environ. Monit. Assess. 2011, 179(1), 191–199. DOI: 10.1007/s10661-010-1728-5.
  • Li, Y.; Zhang, J.; Zhao, Y.; Liu, H.; Wang, Y.; Jin, H. Exploring Geographical Differentiation of the Hoelen Medicinal Mushroom, Wolfiporia Extensa (Agaricomycetes), Using Fourier-Transform Infrared Spectroscopy Combined with Multivariate Analysis. Int. J. Med. Mushrooms. 2016, 18(8), 721–731. DOI: 10.1615/IntJMedMushrooms.v18.i8.80.
  • Júnior, P. H. R.; de Sá Oliveira, K.; de Almeida, C. E. R.; De Oliveira, L. F. C.; Stephani, R.; Da Silva Pinto, M.; De Carvalho, A. F.; Perrone, Í. T. FT-Raman and Chemometric Tools for Rapid Determination of Quality Parameters in Milk Powder: Classification of Samples for the Presence of Lactose and Fraud Detection by Addition of Maltodextrin. Food Chem. 2016, 196, 584–588. DOI: 10.1016/j.foodchem.2015.09.055.
  • Falandysz, J.; Saba, M.; Liu, H. G.; Li, T.; Wang, J. P.; Wiejak, A.; Zhang, J.; Wang, Y. Z.; Zhang, D. Mercury in Forest Mushrooms and Topsoil from the Yunnan Highlands and the Subalpine Region of the Minya Konka Summit in the Eastern Tibetan Plateau. Environ. Sci. Pollut. Res. 2016, 23(23), 23730–23741. DOI: 10.1007/s11356-016-7580-6.
  • Wiśniewska, P.; Boqué, R.; Borràs, E.; Busto, O.; Wardencki, W.; Namieśnik, J.; Dymerski, T. Authentication of Whisky Due to its Botanical Origin and Way of Production by Instrumental Analysis and Multivariate Classification Methods. Spectrochim. Acta Part A. 2017, 173, 849–853. DOI: 10.1016/j.saa.2016.10.042.
  • Wang, X. M.; Zhang, J.; Li, T.; Li, J. Q.; Wang, Y. Z.; Liu, H. G. ICP-AES Determination of Mineral Content in Boletus Tomentipes Collected from Different Sites of China. Spectrosc. Spectral Anal. 2015, 35(5), 1398–1403.
  • Li, Y.; Zhang, J.; Li, T.; Liu, H.; Wang, Y. A Comprehensive and Comparative Study of Wolfiporia Extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-Fast Liquid Chromatography. PLOS One. 2016, 11(12), e0168998. DOI: 10.1371/journal.pone.0168998.
  • Buckley, K.; Ryder, A. G. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review. Appl. Spectrosc. 2017, 71(6), 1085–1116. DOI: 10.1177/0003702817703270.
  • Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication and Quality Assessment–A Review. Anal. Chim. Acta. 2015, 891, 1–14. DOI: 10.1016/j.aca.2015.04.042.
  • Dankowska, A. Data Fusion of Fluorescence and UV Spectroscopies Improves the Detection of Cocoa Butter Adulteration. Eur. J. Lipid Sci. Technol. 2017, 119, 1600268. DOI: 10.1002/ejlt.v119.8.
  • Pizarro, C.; Rodríguez-Tecedor, S.; Pérez-del-Notario, N.; Esteban-Díez, I.; González-Sáiz, J. M. Classification of Spanish Extra Virgin Olive Oils by Data Fusion of Visible Spectroscopic Fingerprints and Chemical Descriptors. Food Chem. 2013, 138(2), 915–922. DOI: 10.1016/j.foodchem.2012.11.087.
  • Wang, X.; Huang, J.; Fan, W.; Lu, H. Identification of Green Tea Varieties and Fast Quantification of Total Polyphenols by Near-Infrared Spectroscopy and Ultraviolet-Visible Spectroscopy with Chemometric Algorithms. Anal. Methods. 2015, 7(2), 787–792. DOI: 10.1039/C4AY02106A.
  • Wu, S. R.; Luo, X. L.; Liu, B.; Gui, M. Y. Analyse and Advise to Research and Development of Wild Edible Fungi. Food Sci. Technol. 2010, 35(4), 100–103.
  • Roy, I. G. On Computing First and Second Order Derivative Spectra. J. Comput. Phys. 2015, 295, 307–321. DOI: 10.1016/j.jcp.2015.04.015.
  • Chen, H.; Song, Q.; Tang, G.; Feng, Q.; Lin, L. The Combined Optimization of Savitzky-Golay Smoothing and Multiplicative Scatter Correction for FT-NIR PLS Models. ISRN Spectrosc. 2013, 2013, 642190. DOI: 10.1155/2013/642190.
  • Biancolillo, A.; Bucci, R.; Magrì, A. L.; Magrì, A. D.; Marini, F. Data-Fusion for Multiplatform Characterization of an Italian Craft Beer Aimed at its Authentication. Anal. Chim. Acta. 2014, 820, 23–31. DOI: 10.1016/j.aca.2014.02.024.
  • Vera, L.; Aceña, L.; Boqué, R.; Guasch, J.; Mestres, M.; Busto, O. Application of an Electronic Tongue Based on FT-MIR to Emulate the Gustative Mouthfeel “Tannin Amount” in Red Wines. Anal. Bioanal. Chem. 2010, 397(7), 3043–3049. DOI: 10.1007/s00216-010-3852-z.
  • Šamec, D.; Maretić, M.; Lugarić, I.; Mešić, A.; Salopek-Sondi, B.; Duralija, B. Assessment of the Differences in the Physical, Chemical and Phytochemical Properties of Four Strawberry Cultivars Using Principal Component Analysis. Food Chem. 2016, 194, 828–834. DOI: 10.1016/j.foodchem.2015.08.095.
  • Saptoro, A.; Tadé, M. O.; Vuthaluru, H. A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models. Chem. Prod. Process Model. 2012, 7(1), 1–14. DOI: 10.1515/1934-2659.1645.
  • Pouladzadeh, P.; Shirmohammadi, S.; Bakirov, A.; Bulut, A.; Yassine, A. Cloud-Based SVM for Food Categorization. Multimedia Tools Appl. 2015, 74(14), 5243–5260. DOI: 10.1007/s11042-014-2116-x.
  • Bougrini, M.; Tahri, K.; Haddi, Z.; Saidi, T.; El Bari, N.; Bouchikhi, B. Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue. J. Sens. 2014, 2014, 1–10. DOI: 10.1155/2014/245831.
  • Devos, O.; Downey, G.; Duponchel, L. Simultaneous Data Pre-Processing and SVM Classification Model Selection Based on a Parallel Genetic Algorithm Applied to Spectroscopic Data of Olive Oils. Food Chem. 2014, 148, 124–130. DOI: 10.1016/j.foodchem.2013.10.020.
  • Choong, Y. K.; Xu, C. H.; Lan, J.; Chen, X. D.; Jamal, J. A. Identification of Geographical Origin of Lignosus Samples using Fourier Transform Infrared and Two-Dimensional Infrared Correlation Spectroscopy. J. Mol. Struct. 2014, 1069, 188–195. DOI: 10.1016/j.molstruc.2014.04.001.
  • Zhu, Y.; Tan, A. T. L. Discrimination of Wild-Grown and Cultivated Ganoderma Lucidum by Fourier Transform Infrared Spectroscopy and Chemometric Methods. Am. J. Anal. Chem. 2015, 6(05), 480–491. DOI: 10.4236/ajac.2015.65047.
  • O’Gorman, A.; Downey, G.; Gowen, A. A.; Barry-Ryan, C.; Frias, J. M. Use of Fourier Transform Infrared Spectroscopy and Chemometric Data Analysis to Evaluate Damage and Age in Mushrooms (Agaricus Bisporus) Grown in Ireland. J. Agric. Food Chem. 2010, 58(13), 7770–7776. DOI: 10.1021/jf101123a.
  • Gonzaga, M. L. C.; Ricardo, N. M.; Heatley, F.; Soares, S. D. A. Isolation and Characterization of Polysaccharides from Agaricus Blazei Murill. Carbohydr. Polym. 2005, 60(1), 43–49. DOI: 10.1016/j.carbpol.2004.11.022.
  • Anghileri, A.; Lantto, R.; Kruus, K.; Arosio, C.; Freddi, G. Tyrosinase-Catalyzed Grafting of Sericin Peptides onto Chitosan and Production of Protein–Polysaccharide Bioconjugates. J. Biotechnol. 2007, 127(3), 508–519. DOI: 10.1016/j.jbiotec.2006.07.021.
  • Kalač, P. Trace Element Contents in European Species of Wild Growing Edible Mushrooms: A Review for the Period 2000–2009. Food Chem. 2010, 122(1), 2–15. DOI: 10.1016/j.foodchem.2010.02.045.
  • Jarzyńska, G.; Chojnacka, A.; Dryżałowska, A.; Nnorom, I. C.; Falandysz, J. Concentrations and Bioconcentration Factors of Minerals in Yellow-Cracking Bolete (Xerocomus Subtomentosus) Mushroom Collected in Noteć Forest, Poland. J. Food Sci. 2012, 77(9), H202–H206. DOI: 10.1111/j.1750-3841.2012.02876.x.
  • Wang, X. M.; Zhang, J.; Li, T.; Li, J. Q.; Wang, Y. Z.; Liu, H. G. Variations in Element Levels Accumulated in Different Parts of Boletus Edulis Collected from Central Yunnan Province, China. J. Chem. 2015, 2015, 1–7. DOI: 10.1155/2015/372152.
  • Tüzen, M. Determination of Heavy Metals in Soil, Mushroom and Plant Samples by Atomic Absorption Spectrometry. Microchem. J. 2003, 74(3), 289–297. DOI: 10.1016/S0026-265X(03)00035-3.
  • Qureshi, N. A.; Suthar, V.; Magsi, H.; Sheikh, M. J.; Pathan, M.; Qureshi, B. Application of Principal Component Analysis (PCA) to Medical Data. Indian J. Sci. Technol. 2017, 10(20), 1–9. DOI: 10.17485/ijst/2017/v10i20/91294.
  • Kaiser, H. F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20(1), 141–151.
  • Yao, S.; Li, T.; Liu, H. G.; Li, J. Q.; Wang, Y. Z. Geographic Characterization of Leccinum Rugosiceps by Ultraviolet and Infrared Spectral Fusion. Anal. Lett. 2017, 50(14), 2257–2269. DOI: 10.1080/00032719.2017.1279172.