3,394
Views
6
CrossRef citations to date
0
Altmetric
Review

Chemopreventive effect of coffee against colorectal cancer and hepatocellular carcinoma

, , &
Pages 536-555 | Received 03 Dec 2018, Accepted 06 Mar 2019, Published online: 01 Apr 2019

References

  • Poole, R.; Kennedy, O. J.; Roderick, P.; Fallowfield, J. A.; Hayes, P. C.; Parkes, J. Coffee Consumption and Health: Umbrella Review of Meta-Analyses of Multiple Health Outcomes. Br. Med. J. 2017, 359, 1–17. DOI: 10.1136/bmj.j5024.
  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492.
  • Dunn, B. K.; Umar, A.; Richmond, E. Introduction: Cancer Chemoprevention and Its Context. Semin. Oncol. 2016, 43, 19–21. DOI: 10.1053/j.seminoncol.2015.11.002.
  • Gaascht, F.; Dicato, M.; Diederich, M. Coffee Provides a Natural Multitarget Pharmacopeia against the Hallmarks of Cancer. Genes Nutr. 2015, 10, 1–17. DOI: 10.1007/s12263-015-0501-3.
  • Thorn, C. F.; Aklillu, E.; McDonagh, E. M.; Klein, T. E.; Altman, R. B. PharmGKB Summary: Caffeine Pathway. Pharmacogenet. Genomics. 2012, 22, 389–395. DOI: 10.1097/FPC.0b013e3283505d5e.
  • Miller, M. G.; Shukitt-Hale, B. Coffee and Alzheimer’s Disease: Animal and Cellular Evidence; Wiley-Blackwell: Coffee, 2012, pp 77–96. DOI: 10.1002/9781119949893.ch4.
  • Farah, A.;. Coffee Constituents. In Coffe Emerg. Heal. Eff. Dis. Prev. First Edit; John Wiley & Sons I, Ed.; Blackwell Publishing Ltd:Hoboken, NJ 2012; pp 21–58
  • Furihata, K.; Tanokura, M.; Koda, M.; Wei, F.; Hu, F.; Miyakawa, T. Roasting Process of Coffee Beans as Studied by Nuclear Magnetic Resonance: Time Course of Changes in Composition. J. Agric. Food Chem. 2012, 60, 1005–1012. DOI: 10.1021/jf205315r.
  • Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse M-L, Schreiber S, Schäfer H. Inhibition of the Nrf2 Transcription Factor by the Alkaloid Trigonelline Renders Pancreatic Cancer Cells More Susceptible to Apoptosis through Decreased Proteasomal Gene Expression and Proteasome Activity. Oncogene 2013, 32, 4825–4835. DOI: 10.1038/onc.2012.493.
  • Lee, K.-A.; Chae, J.-I.; Shim, J.-H. Natural Diterpenes from Coffee, Cafestol and Kahweol Induce Apoptosis through Regulation of Specificity Protein 1 Expression in Human Malignant Pleural Mesothelioma. J. Biomed. Sci. 2012, 19, 60. DOI: 10.1186/1423-0127-19-60.
  • Moeenfard M, Cortez A, Machado V, Costa R, Luís C, Coelho P, Soares R, Alves A, Borges N, Santos A. Anti-Angiogenic Properties of Cafestol and Kahweol Palmitate Diterpene Esters. J. Cell. Biochem. 2016, 117, 2748–2756. DOI: 10.1002/jcb.25573.
  • Lee, K. J.; Choi, J. H.; Jeong, H. G. Hepatoprotective and Antioxidant Effects of the Coffee Diterpenes Kahweol and Cafestol on Carbon Tetrachloride-Induced Liver Damage in Mice. Food Chem. Toxicol. 2007, 45, 2118–2125. DOI: 10.1016/j.fct.2007.05.010.
  • Crozier, A.; Jaganath, I. B.; Clifford, M. N. Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Nat. Prod. Rep. 2009, 26, 1001. DOI: 10.1039/b802662a.
  • Perrone, D.; Donangelo, R.; Donangelo, C. M.; Farah, A. Modeling Weight Loss and Chlorogenic Acids Content in Coffee during Roasting. J. Agric. Food Chem. 2010, 58, 12238–12243. DOI: 10.1021/jf102110u.
  • Liang, N.; Kitts, D. D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients. 2015, 8. DOI: 10.3390/nu8010016.
  • Bekedam, E. K.; Loots, M. J.; Schols, H. A.; Van Boekel, M. A.; Smit, G. Roasting Effects on Formation Mechanisms of Coffee Brew Melanoidins. J. Agric. Food Chem. 2008, 56, 7138–7145. DOI: 10.1021/jf800999a.
  • Moreira, A. S. P.; Nunes, F. M.; Domingues, M. R.; Coimbra, M. A. Coffee Melanoidins: Structures, Mechanisms of Formation and Potential Health Impacts. Food Funct. 2012, 3, 903. DOI: 10.1039/c2fo30048f.
  • Mundade, R.; Imperiale, T. F.; Prabhu, L.; Loehrer, P. J.; Lu, T. Genetic Pathways, Prevention, and Treatment of Sporadic Colorectal Cancer. Oncoscience. 2014, 1, 400–406. DOI: 10.18632/oncoscience.
  • Arvelo, F.; Sojo, F.; Cotte, C. Biology of Colorectal Cancer. Ecancermedicalscience. 2015, 9, 520. DOI: 10.3332/ecancer.2015.520.
  • Watson, A. J. M.;. Apoptosis and Colorectal Cancer. Gut. 2004, 53, 1701–1709. DOI: 10.1136/gut.2004.052704.
  • Willett, W. C.;. Diet and Cancer: An Evolving Picture. JAMA. 2005, 293, 233–234. DOI: 10.1001/jama.293.2.233.
  • Tricker, A. R.;. N-Nitroso Compounds and Man: Sources of Exposure, Endogenous Formation and Occurrence in Body Fluids. Eur. J. Cancer Prev. 1997, 6, 226–268. DOI: 10.1097/00008469-199706000-00003.
  • Loh, Y. H.; Jakszyn, P.; Luben, R. N.; Mulligan, A. A.; Mitrou, P. N.; Khaw, K.-T. N-Nitroso Compounds and Cancer Incidence: The European Prospective Investigation into Cancer and Nutrition (Epic)–Norfolk Study. Am. J. Clin. Nutr. 2011, 93, 1053–1061. DOI: 10.3945/ajcn.111.012377.
  • Santarelli, R. L.; Pierre, F.; Corpet, D. E. Processed Meat and Colorectal Cancer: A Review of Epidemiologic and Experimental Evidence. Nutr. Cancer. 2008, 60, 131–144. DOI: 10.1080/01635580701684872.
  • Aune, D.; Chan, D. S. M.; Lau, R.; Vieira, R.; Greenwood, D. C.; Kampman, E.; Norat, T. Dietary Fibre, Whole Grains, and Risk of Colorectal Cancer: Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. BMJ. 2011, 343, d6617. DOI: 10.1136/bmj.d6617.
  • Wang, Z.-J.; Ohnaka, K.; Morita, M.; Toyomura, K.; Kono, S.; Ueki, T.; Tanaka, M.; Kakeji, Y.; Maehara, Y.; Okamura, T.;, et al. Dietary Polyphenols and Colorectal Cancer Risk: The Fukuoka Colorectal Cancer Study. World J. Gastroenterol. 2013, 19, 2683–2690. DOI: 10.3748/wjg.v19.i17.2683.
  • Nakagawa-Senda, H.; Ito, H.; Hosono, S.; Oze, I.; Tanaka, H.; Matsuo, K. Coffee Consumption and the Risk of Colorectal Cancer by Anatomical Subsite in Japan: Results from the HERPACC Studies. Int. J. Cancer. 2017, 141, 298–308. DOI: 10.1002/ijc.30746.
  • Sinha, R.; Cross, A. J.; Daniel, C. R.; Graubard, B. I.; Wu, J. W.; Hollenbeck, A. R.; Gunter, M. J.; Park, Y.; Freedman, N. D. Caffeinated and Decaffeinated Coffee and Tea Intakes and Risk of Colorectal Cancer in a Large Prospective Study. Am. J. Clin. Nutr. 2012, 96, 374–381. DOI: 10.3945/ajcn.111.031328.
  • Gapstur, S. M.; Anderson, R. L.; Campbell, P. T.; Jacobs, E. J.; Hartman, T. J.; Hildebrand, J. S.; Wang, Y.; McCullough, M. L. Associations of Coffee Drinking and Cancer Mortality in the Cancer Prevention study-II. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 1477–1486. DOI: 10.1158/1055-9965.EPI-17-0353.
  • Gan, Y.; Wu, J.; Zhang, S.; Li, L.; Cao, S.; Mkandawire, N.; Ji, K.; Herath, C.; Gao, C.; Xu, H.; et al. Association of Coffee Consumption with Risk of Colorectal Cancer: A Meta-Analysis of Prospective Cohort Studies. Oncotarget. 2017, 8, 18699–18711. DOI: 10.18632/oncotarget.8627.
  • Schmit, S. L.; Rennert, H. S.; Rennert, G.; Gruber, S. B. Coffee Consumption and the Risk of Colorectal Cancer. Cancer Epidemiol. Biomarkers Prev. 2016, 25, 634–639. DOI: 10.1158/1055-9965.EPI-15-0924.
  • Horisaki, K.; Takahashi, K.; Ito, H.; Matsui, S. A Dose-Response Meta-Analysis of Coffee Consumption and Colorectal Cancer Risk in the Japanese Population: Application of A Cubic-Spline Model. J. Epidemiol. 2018, 28, 503–509. DOI: 10.2188/jea.je20170201.
  • Wang A, Wang S, Zhu C, Huang H, Wu L, Wan X, Yang X, Zhang H, Miao R, He L, Sang X, Zhao H. Coffee and Cancer Risk: A Meta-Analysis of Prospective Observational Studies. Sci. Rep. 2016, 6. DOI: 10.1038/srep33711.
  • Lee, K.-J.; Inoue, M.; Otani, T.; Iwasaki, M.; Sasazuki, S.; Tsugane, S. Coffee Consumption and Risk of Colorectal Cancer in a Population-Based Prospective Cohort of Japanese Men and Women. Int. J. Cancer. 2007, 121, 1312–1318. DOI: 10.1002/ijc.22778.
  • Larson, J. C.; Groessl, E. J.; Snetslaar, L. G.; Allison, M. A.; Tharp, K. M.; Stefanick, M. L. Coffee Consumption and the Incidence of Colorectal Cancer in Women. J. Cancer Epidemiol. 2016, 2016, 1–8. DOI: 10.1155/2016/6918431.
  • Guercio, B. J.; Sato, K.; Niedzwiecki, D.; Ye, X.; Saltz, L. B.; Mayer, R. J.; Mowat, R. B.; Whittom, R.; Hantel, A.; Benson, A.; et al. Coffee Intake, Recurrence, and Mortality in Stage III Colon Cancer: Results from CALGB 89803 (Alliance). J. Clin. Oncol.. 2015, 33, 3598–3607. DOI: 10.1200/JCO.2015.61.5062.
  • Isshiki, M.; Ohta, H.; Tamura, H. Coffee Reduces SULT1E1 Expression in Human Colon Carcinoma Caco-2 Cells. Biol. Pharm. Bull. 2013, 36, 299–304. DOI: 10.1248/bpb.b12-00902.
  • Nkondjock, A.;. Coffee Consumption and the Risk of Cancer: An Overview. Cancer Lett. 2009, 277, 121–125. DOI: 10.1016/j.canlet.2008.08.022.
  • Olthof, M. R.; Hollman, P. C. H.; Buijsman, M. N. C. P.; van Amelsvoort, J. M. M.; Katan, M. B. Chlorogenic Acid, Quercetin-3-Rutinoside and Black Tea Phenols are Extensively Metabolized in Humans. J. Nutr. 2003, 133, 1806–1814. DOI: 10.1093/jn/133.8.2622.
  • Monteiro, M.; Farah, A.; Perrone, D.; Trugo, L. C.; Donangelo, C. Chlorogenic Acid Compounds from Coffee are Differentially Absorbed and Metabolized in Humans. J. Nutr. 2007, 137, 2196–2201. DOI: 10.1093/jn/137.10.2196.
  • Oleaga, C.; Ciudad, C. J.; Noé, V.; Izquierdo-Pulido, M. Coffee Polyphenols Change the Expression of STAT5B and ATF-2 Modifying Cyclin D1 Levels in Cancer Cells. Oxid. Med. Cell. Longev. 2012, 2012, 390385. DOI: 10.1155/2012/390385.
  • Nakayama, T.; Funakoshi-Tago, M.; Tamura, H. Coffee Reduces KRAS Expression in Caco-2 Human Colon Carcinoma Cells via Regulation of miRNAs. Oncol. Lett. 2017, 14, 1109–1114. DOI: 10.3892/ol.2017.6227.
  • Sharma, S. H.; Rajamanickam, V.; Nagarajan, S. Supplementation of P-Coumaric Acid Exhibits Chemopreventive Effect via Induction of Nrf2 in a Short-Term Preclinical Model of Colon Cancer. Eur. J. Cancer Prev. 2018. DOI: 10.1097/cej.0000000000000496.
  • Jaganathan, S. K.; Supriyanto, E.; Mandal, M. Events Associated with Apoptotic Effect of P -Coumaric Acid in HCT-15 Colon Cancer Cells. World J. Gastroenterol. 2013, 19, 7726–7734. DOI: 10.3748/wjg.v19.i43.7726.
  • Park, G. H.; Song, H. M.; Jeong, J. B. Kahweol from Coffee Induces Apoptosis by Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells. Biomol. Ther. 2017, 25, 337–343. DOI: 10.4062/biomolther.2016.114.
  • Choi, D. W.; Lim, M. S.; Lee, J. W.; Chun, W.; Lee, S. H.; Nam, Y. H.; Park, J. M.; Choi, D. H.; Kang, C. D.; Lee, S. J.; et al. The Cytotoxicity of Kahweol in HT-29 Human Colorectal Cancer Cells Is Mediated by Apoptosis and Suppression of Heat Shock Protein 70 Expression. Biomol. Ther. 2015, 23, 128–133. DOI: 10.4062/biomolther.2014.133.
  • Chiang EPI, Tsai SY, Kuo YH, Pai MH, Chiu HL, Rodriguez RL, Tang FY. Caffeic Acid Derivatives Inhibit the Growth of Colon Cancer: Involvement of the PI3-K/Akt and AMPK Signaling Pathways. PLoS One. 2014, 9. DOI: 10.1371/journal.pone.0099631.
  • Liang, N.; Kitts, D. D. Amelioration of Oxidative Stress in Caco-2 Cells Treated with Pro-Inflammatory Proteins by Chlorogenic Acid Isomers via Activation of the Nrf2–Keap1–ARE-Signaling Pathway. J. Agric. Food Chem. 2018, 66, 11008–11017. DOI: 10.1021/acs.jafc.8b03983.
  • Bedoya-Ramírez, D.; Cilla, A.; Contreras-Calderón, J.; Alegría-Torán, A. Evaluation of the Antioxidant Capacity, Furan Compounds and Cytoprotective/Cytotoxic Effects upon Caco-2 Cells of Commercial Colombian Coffee. Food Chem. 2017, 219, 364–372. DOI: 10.1016/j.foodchem.2016.09.159.
  • Shin, H. S.; Satsu, H.; Bae, M. J.; Totsuka, M.; Shimizu, M. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells. Nutrients. 2017, 9. DOI: 10.3390/nu9020165.
  • Shin HS, Satsu H, Bae MJ, Zhao Z, Ogiwara H, Totsuka M, Shimizu M. Anti-Inflammatory Effect of Chlorogenic Acid on the IL-8 Production in Caco-2 Cells and the Dextran Sulphate Sodium-Induced Colitis Symptoms in C57BL/6 Mice. Food Chem. 2015, 168, 167–175. DOI: 10.1016/j.foodchem.2014.06.100.
  • Cicenas, J.; Tamosaitis, L.; Kvederaviciute, K.; Tarvydas, R.; Staniute, G.; Kalyan, K.; Meskinyte-Kausiliene, E.; Stankevicius, V.; Valius, M. KRAS, NRAS and BRAF Mutations in Colorectal Cancer and Melanoma. Med. Oncol. 2017, 34, 26. DOI: 10.1007/s12032-016-0879-9.
  • Govaere, O.; Roskams, T. Pathogenesis and Prognosis of Hepatocellular Carcinoma at the Cellular and Molecular Levels. Clin. Liver Dis. 2015, 19, 261–276. DOI: 10.1016/j.cld.2015.01.002.
  • Nault, J. C.;. Pathogenesis of Hepatocellular Carcinoma according to Aetiology. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 937–947. DOI: 10.1016/j.bpg.2014.08.006.
  • Dhanasekaran, R.; Limaye, A.; Cabrera, R. Hepatocellular Carcinoma: Current Trends in Worldwide Epidemiology, Risk Factors, Diagnosis, and Therapeutics. Hepat. Med. 2012, 4, 19–37. DOI: 10.2147/HMER.S16316.
  • Ding, J.; Wang, H. Multiple Interactive Factors in Hepatocarcinogenesis. Cancer Lett. 2014, 346, 17–23. DOI: 10.1016/j.canlet.2013.12.024.
  • Mallat, A.; Lotersztajn, S. Cellular Mechanisms of Tissue Fibrosis. 5. Novel Insights into Liver Fibrosis. Am. J. Physiol. Cell Physiol. 2013, 305, C789–99. DOI: 10.1152/ajpcell.00230.2013.
  • Higashi, T.; Friedman, S. L.; Hoshida, Y. Hepatic Stellate Cells as Key Target in Liver Fibrosis. Adv. Drug Deliv. Rev. 2017, 121, 27–42. DOI: 10.1016/j.addr.2017.05.007.
  • Salomone, F.; Galvano, F.; Volti, G. L. Molecular Bases Underlying the Hepatoprotective Effects of Coffee. Nutrients. 2017, 9. DOI: 10.3390/nu9010085.
  • Arab, L.;. Epidemiologic Evidence on Coffee and Cancer. Nutr. Cancer. 2010, 62, 271–283. DOI: 10.1080/01635580903407122.
  • Inoue M, Yoshimi I, Sobue T, Tsugane S, Hanaoka T, Ogata J, JPHC Study Group. Influence of Coffee Drinking on Subsequent Risk of Hepatocellular Carcinoma: A Prospective Study in Japan. J. Natl. Cancer Inst. 2005, 97, 293–300. DOI: 10.1093/jnci/dji040.
  • Larsson, S. C.; Wolk, A. Coffee Consumption and Risk of Liver Cancer: A Meta-Analysis. Gastroenterology. 2007, 132, 1740–1745. DOI: 10.1053/j.gastro.2007.03.044.
  • Bravi, F.; Bosetti, C.; Tavani, A.; Gallus, S.; La Vecchia, C. Coffee Reduces Risk for Hepatocellular Carcinoma: An Updated Meta-Analysis. Clin. Gastroenterol. Hepatol. 2013, 11, 1413–1421.e1. DOI: 10.1016/j.cgh.2013.04.039.
  • Bravi, F.; Tavani, A.; Bosetti, C.; Boffetta, P.; La Vecchia, C. Coffee and the Risk of Hepatocellular Carcinoma and Chronic Liver Disease: A Systematic Review and Meta-Analysis of Prospective Studies. Eur. J. Cancer Prev. 2017, 26, 368–377. DOI: 10.1097/CEJ.0000000000000252.
  • Kennedy, O. J.; Roderick, P.; Buchanan, R.; Fallowfield, J. A.; Hayes, P. C.; Parkes, J. Coffee, Including Caffeinated and Decaffeinated Coffee, and the Risk of Hepatocellular Carcinoma: A Systematic Review and Dose-Response meta-Analysis. BMJ Open. 2017, 7. DOI: 10.1136/bmjopen-2016-013739.
  • Aleksandrova, K.; Bamia, C.; Drogan, D.; Lagiou, P.; Trichopoulou, A.; Jenab, M.; Fedirko, V.; Romieu, I.; Bueno-de-Mesquita, H. B.; Pischon, T.; et al. The Association of Coffee Intake with Liver Cancer Risk Is Mediated by Biomarkers of Inflammation and Hepatocellular Injury: Data from the European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 2015, 102, 1498–1508. DOI: 10.3945/ajcn.115.116095.
  • Freedman, N. D.; Everhart, J. E.; Lindsay, K. L.; Ghany, M. G.; Curto, T. M.; Shiffman, M. L.; Lee, W. M.; Lok, A. S.; Di Bisceglie, A. M.; Bonkovsky, H. L.; et al. Coffee Intake Is Associated with Lower Rates of Liver Disease Progression in Chronic Hepatitis C. Hepatology. 2009, 50, 1360–1369. DOI: 10.1002/hep.23162.
  • Shim, S. G.; Jun, D. W.; Kim, E. K.; Saeed, W. K.; Lee, K. N.; Lee, H. L.; Lee, O. Y.; Choi, H. S.; Yoon, B. C. Caffeine Attenuates Liver Fibrosis via Defective Adhesion of Hepatic Stellate Cells in Cirrhotic Model. J. Gastroenterol. Hepatol. 2013, 28, 1877–1884. DOI: 10.1111/jgh.12317.
  • Elmotasem, H.; Farag, H. K.; Salama, A. A. A. In Vitro and in Vivo Evaluation of an Oral Sustained Release Hepatoprotective Caffeine Loaded W/O Pickering Emulsion Formula – Containing Wheat Germ Oil and Stabilized by Magnesium Oxide Nanoparticles. Int. J. Pharm. 2018, 547, 83–96. DOI: 10.1016/j.ijpharm.2018.05.038.
  • Baeza, G.; Amigo-Benavent, M.; Sarriá, B.; Goya, L.; Mateos, R.; Bravo, L. Green Coffee Hydroxycinnamic Acids but Not Caffeine Protect Human HepG2 Cells against Oxidative Stress. Food Res. Int. 2014, 62, 1038–1046. DOI: 10.1016/j.foodres.2014.05.035.
  • Seo, H.-Y.; Kim, M.-K.; Lee, S.-H.; Hwang, J. S.; Park, K.-G.; Jang, B. K. Kahweol Ameliorates the Liver Inflammation through the Inhibition of NF-κB and STAT3 Activation in Primary Kupffer Cells and Primary Hepatocytes. Nutrients. 2018, 10, 863. DOI: 10.3390/nu10070863.
  • Seo, H.-Y.; Jung, Y.-A.; Lee, S.-H.; Hwang, J. S.; Park, K.-G.; Kim, M.-K.; Jang, B. K. Kahweol Decreases Hepatic Fibrosis by Inhibiting the Expression of Connective Tissue Growth Factor via the Transforming Growth Factor-Beta Signaling Pathway. Oncotarget. 2017, 8, 87086–87094. DOI: 10.18632/oncotarget.19756.
  • Yan, Y.; Liu, N.; Hou, N.; Dong, L.; Li, J. Chlorogenic Acid Inhibits Hepatocellular Carcinoma in Vitro and in Vivo. J. Nutr. Biochem. 2017, 46, 68–73. DOI: 10.1016/j.jnutbio.2017.04.007.
  • Yan Y, Li J, Han J, Hou N, Song Y, Dong L. Chlorogenic Acid Enhances the Effects of 5-Fluorouracil in Human Hepatocellular Carcinoma Cells through the Inhibition of Extracellular Signal-Regulated Kinases. Anticancer Drugs 2015, 26, 540–546. DOI: 10.1097/CAD.0000000000000218.
  • Tunde Olayinka, E.; Solomon Ola, O.; Ore, A.; Adewumi Adeyemo, O. Ameliorative Effect of Caffeic Acid on Capecitabine- Induced Hepatic and Renal Dysfunction: Involvement of the Antioxidant Defence System. Medicines. 2017, 4. DOI: 10.3390/medicines4040078.
  • Wilkins, L. R.; Brautigan, D. L.; Wu, H.; Yarmohammadi, H.; Kibicka, E. Cinnamic Acid Derivatives Enhance Efficacy of Transarterial Embolization in a Rat Model of Hepatocellular Carcinoma. Cardiovasc. Interv. Radiol. 2017, 40, 430–437. DOI: 10.1111/pan.12678.Revisiting.
  • Brautigan, D. L.; Gielata, M.; Heo, J.; Kubicka, E.; Wilkins, L. R. Selective Toxicity of Caffeic Acid in Hepatocellular Carcinoma Cells. Biochem. Biophys. Res. Commun.. 2018, 505, 612–617. DOI: 10.1016/j.bbrc.2018.09.155.
  • Ezhuthupurakkal PB, Ariraman S, Arumugam S, Subramaniyan N, Muthuvel SK, Kumpati P, Rajamani B, Chinnasamy T. Anticancer Potential of ZnO Nanoparticle-Ferulic Acid Conjugate on Huh-7 and HepG2 Cells and Diethyl Nitrosamine Induced Hepatocellular Cancer on Wistar Albino Rat. Nanomedicine Nanotechnology. Biol. Med. 2017, 14, 415–428. DOI: 10.1016/j.nano.2017.11.003.