1,788
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Antioxidant activity of peptides in postmortem aged duck meat as affected by cooking and in vitro digestion

, , &
Pages 727-736 | Received 20 Oct 2018, Accepted 29 Mar 2019, Published online: 22 Apr 2019

References

  • Cencic, A.; Chingwaru, W. The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health. Nutrients. 2010, 2, 611–625. DOI: 10.3390/nu2060611.
  • Lafarga, T.; Hayes, M. Bioactive Peptides from Meat Muscle and By-Products: Generation, Functionality and Application as Functional Ingredients. Meat Sci. 2014, 98, 227–239. DOI: 10.1016/j.meatsci.2014.05.036.
  • Samaranayaka, A. G. P.; Li-Chan, E. C. Y. Food-Derived Peptidic Antioxidants: A Review of Their Production, Assessment, and Potential Applications. J. Funct. Foods. 2011, 3, 229–254. DOI: 10.1016/j.jff.2011.05.006.
  • Simonian, N.; Coyle, J. Oxidative Stress in Neurodegenerative Diseases. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 83–106. DOI: 10.1146/annurev.pa.36.040196.000503.
  • Wang, L.-S.; Huang, J.-C.; Chen, Y.-L.; Huang, M.; Zhou, G.-H. Identification and Characterization of Antioxidant Peptides from Enzymatic Hydrolysates of Duck Meat. J. Agric. Food Chem. 2015, 63, 3437–3444. DOI: 10.1021/jf506120w.
  • Al Ghouleh, I.; Khoo, N. K. H.; Knaus, U. G.; Griendling, K. K.; Touyz, R. M.; Thannickal, V. J.; Barchowsky, A.; Nauseef, W. M.; Kelley, E. E.; Bauer, P. M.; et al. Oxidases and Peroxidases in Cardiovascular and Lung Disease: New Concepts in Reactive Oxygen Species Signaling. Free. Radical. Biol. Med. 2011, 51, 1271–1288. DOI: 10.1016/j.freeradbiomed.2011.06.011.
  • Liu, Q.; Kong, B. H.; Xiong, Y. L.; Xia, X. F. Antioxidant Activity and Functional Properties of Porcine Plasma Protein Hydrolysate as Influenced by the Degree of Hydrolysis. Food Chem. 2010, 118, 403–410. DOI: 10.1016/j.foodchem.2009.05.013.
  • Ryan, J. T.; Ross, R. P.; Bolton, D.; Fitzgerald, G. F.; Stanton, C.; Serpen, A.; Gökmen, V.; Fogliano, V. Total Antioxidant Capacities of Raw and Cooked Meats. Nutrients. 2012, 3, 60–65. DOI: 10.3390/nu3090765.
  • Korhonen, H.; Pihlanto-Leppäla, A.; Rantamäki, P.; Tupasela, T. Impact of Processing on Bioactive Proteins and Peptides. Trends Food Sci. Technol. 1998, 9, 307–319. DOI: 10.1016/S0924-2244(98)00054-5.
  • Gallego, M.; Mora, L.; Hayes, M.; Reig, M.; Toldrá, F. Effect of Cooking and in Vitro Digestion on the Antioxidant Activity of Dry-Cured Ham By-Products. Food Res. Int. 2017, 97, 296. DOI: 10.1016/j.foodres.2017.04.013.
  • Liu, D.; Chen, X.; Huang, J.; Huang, M.; Zhou, G. Generation of Bioactive Peptides from Duck Meat during Post-Mortem Aging. Food Chem. 2017, 237, 408–415. DOI: 10.1016/j.foodchem.2017.05.094.
  • Fu, Y.; Young, J. F.; Therkildsen, M. Bioactive Peptides in Beef: Endogenous Generation through Postmortem Aging. Meat Sci. 2017, 123, 134–142. DOI: 10.1016/j.meatsci.2016.09.015.
  • Santélhoutellier, V.; Astruc, T.; Marinova, P.; Greve, E.; Gatellier, P. Effect of Meat Cooking on Physicochemical State and in Vitro Digestibility of Myofibrillar Proteins. J. Agric. Food Chem. 2008, 56, 1488–1494. DOI: 10.1021/jf072999g.
  • Simonetti, A.; Gambacorta, E.; Perna, A. Antioxidative and Antihypertensive Activities of Pig Meat before and after Cooking and in Vitro Gastrointestinal Digestion: Comparison between Italian Autochthonous Pig Suino Nero Lucano and a Modern Crossbred Pig. Food Chem. 2016, 212, 590–595. DOI: 10.1016/j.foodchem.2016.06.029.
  • Escudero, E.; Mora, L.; Fraser, P. D.; Aristoy, M. C.; Toldrá, F. Identification of Novel Antioxidant Peptides Generated in Spanish Dry-Cured Ham. Food Chem. 2013, 138, 1282. DOI: 10.1016/j.foodchem.2012.10.133.
  • Sun, Y.; Pan, D.; Guo, Y.; Li, J. Purification of Chicken Breast Protein Hydrolysate and Analysis of Its Antioxidant Activity. Food Chem. Toxicol. 2012, 50, 3397–3404. DOI: 10.1016/j.fct.2012.07.047.
  • Bauchart, C.; Chambon, C.; Mirand, P. P.; Savary, A. I.; Rémond, D.; Morzel, M. Peptides in Rainbow Trout (Oncorhynchus Mykiss) Muscle Subjected to Ice Storage and Cooking. Food Chem. 2007, 100, 1566–1572. DOI: 10.1016/j.foodchem.2005.12.023.
  • Xing, L. J.; Hu, Y. Y.; Hu, H. Y.; Ge, Q. F.; Zhou, G. H.; Zhang, W. G. Purification and Identification of Antioxidative Peptides from Dry-Cured Xuanwei Ham. Food Chem. 2016, 194, 951–958. DOI: 10.1016/j.foodchem.2015.08.101.
  • Benzie, F. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. BiochemI. 1996, 239, 70–76. DOI: 10.1006/abio.1996.0292.
  • You, L.; Zhao, M.; Joem, R.; Ren, J. Changes in the Antioxidant Activity of Loach (Misgurnus Anguillicaudatus) Protein Hydrolysates during a Simulated Gastrointestinal Digestion. Food Chem. 2010, 120, 810–816. DOI: 10.1016/j.foodchem.2009.11.018.
  • Pérez-Jiménez, J.; Saura-Calixto, F. Literature Data May Underestimate the Actual Antioxidant Capacity of Cereals. J. Agric. Food Chem. 2005, 53, 5036–5040. DOI: 10.1021/jf050049u.
  • Serpen, A.; Gökmen, V.; Fogliano, V. Total Antioxidant Capacities of Raw and Cooked Meats. Meat Sci. 2012, 90, 60–65. DOI: 10.1016/j.meatsci.2011.05.027.
  • Escudero, E.; Aristoy, M. C.; Nishimura, H.; Arihara, K.; Toldrá, F. Antihypertensive Effect and Antioxidant Activity of Peptide Fractions Extracted from Spanish Dry-Cured Ham. Meat Sci. 2012, 91, 306–311. DOI: 10.1016/j.meatsci.2012.02.008.
  • Christensen, L.; Ertbjerg, P.; Løje, H.; Risbo, J.; Berg, F. W. J. V. D.; Christensen, M. Relationship between Meat Toughness and Properties of Connective Tissue from Cows and Young Bulls Heat Treated at Low Temperatures for Prolonged Times. Meat Sci. 2013, 93, 787–795. DOI: 10.1016/j.meatsci.2012.12.001.
  • Hartmann, R.; Meisel, H. Food-Derived Peptides with Biological Activity: From Research to Food Applications. Curr. Opin. Biotech. 2007, 18, 163–169. DOI: 10.1016/j.copbio.2007.01.013.
  • Hernándezledesma, B.; Recio, I.; Amigo, L. Beta-Lactoglobulin as Source of Bioactive Peptides. Amino Acids. 2008, 35, 257–265. DOI: 10.1007/s00726-007-0585-1.
  • Zhu, C. Z.; Zhang, W. G.; Kang, Z. L.; Zhou, G. H.; Xu, X. L. Stability of an Antioxidant Peptide Extracted from Jinhua Ham. Meat Sci. 2013, 96, 783–789. DOI: 10.1016/j.meatsci.2013.09.004.
  • Sante-Lhoutellier, V.; Aubry, L.; Gatellier, P. Effect of Oxidation on in Vitro Digestibility of Skeletal Muscle Myofibrillar Proteins. J. Agric. Food Chem. 2007, 55, 5343–5348. DOI: 10.1021/jf070252k.
  • Tironi, V. A.; Tomas, M. C.; Anon, M. C. Structural and Functional Changes in Myofibrillar Proteins of Sea Salmon (Pseudopercis Semifasciata) by Interaction with Malonaldehyde (RI). J.Food Sci. 2002, 67, 929–935. DOI: 10.1111/j.1365-2621.2002.tb09430.x.
  • Elias, R. J.; Mcclements, D. J.; Decker, E. A. Impact of Thermal Processing on the Antioxidant Mechanisms of Continuous Phase β-lactoglobulin in Oil-In-Water Emulsions. Food Chem. 2007, 104, 1402–1409. DOI: 10.1016/j.foodchem.2007.01.072.
  • Serpen, A.; Capuano, E.; Fogliano, V.; Gökmen, V. A New Procedure to Measure the Antioxidant Activity of Insoluble Food Components. J. Agric. Food Chem. 2007, 55, 7676–7681. DOI: 10.1021/jf071291z.
  • Gallego, M.; Mora, L.; Fraser, P. D.; Aristoy, M. C.; Toldrá, F. Degradation of LIM Domain-Binding Protein Three during Processing of Spanish Dry-Cured Ham. Food Chem. 2014, 149, 121–128. DOI: 10.1016/j.foodchem.2013.10.076.
  • Bax, M. L.; Aubry, L.; Ferreira, C.; Daudin, J. D.; Gatellier, P.; Rémond, D.; Santé-Lhoutellier, V. Cooking Temperature Is a Key Determinant of in Vitro Meat Protein Digestion Rate: Investigation of Underlying Mechanisms. J. Agric. Food Chem. 2012, 60, 2569–2576. DOI: 10.1021/jf205280y.
  • Sayd, T.; Chambon, C.; Santé-Lhoutellier, V. Quantification of Peptides Released during in Vitro Digestion of Cooked Meat. Food Chem. 2016, 197, 1311–1323. DOI: 10.1016/j.foodchem.2015.11.020.
  • Zhu, L.; Chen, J.; Tang, X.; Xiong, Y. Reducing, Radical Scavenging, and Chelation Properties of in Vitro Digests of Alcalase-Treated Zein Hydrolysates. J. Agric. Food Chem. 2008, 56, 2714–2721. DOI: 10.1021/jf703697e.
  • Liu, D.; Chen, X.; Huang, J.; Zhou, X.; Huang, M.; Zhou, G. Stability of Antioxidant Peptides from Duck Meat after Post‐Mortem Ageing. Int. J. Food Sci. Tech. 2017, 52, 2513–2521. DOI: 10.1111/ijfs.13536.
  • Benzie, I. F. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. DOI: 10.1006/abio.1996.0292.
  • Mendis, E.; Niranjan Rajapakse, N.; Kim, S.-K. Antioxidant Properties of a Radical-Scavenging Peptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate. J. Agric. Food Chem. 2005, 53, 581–587. DOI: 10.1021/jf048877v.
  • Zhu, C.-Z.; Zhang, W.-G.; Zhou, G.-H.; Xu, X.-L.; Kang, Z.-L.; Yin, Y. Isolation and Identification of Antioxidant Peptides from Jinhua Ham. J. Agric. Food Chem. 2013, 61, 1265–1271. DOI: 10.1021/jf3044764.
  • Majumder, K.; Wu, J. A New Approach for Identification of Novel Antihypertensive Peptides from Egg Proteins by QSAR and Bioinformatics. Food. Res. Int. 2010, 43, 1371–1378. DOI: 10.1016/j.foodres.2010.04.027.