2,762
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Characteristics and chemical compositions of Pingwu Fuzhuan brick-tea, a distinctive post-fermentation tea in Sichuan province of China

, , , , , & show all
Pages 878-889 | Received 07 Jan 2019, Accepted 27 Apr 2019, Published online: 13 May 2019

References

  • Li, Q.; Huang, J.; Li, Y.; Zhang, Y.; Luo, Y.; Chen, Y.; Lin, H.; Wang, K.; Liu, Z. Fungal Community Succession and Major Components Change during Manufacturing Process of Fu Brick Tea. Sci. Rep. 2017, 7(1), 6947. DOI: 10.1038/s41598-017-07098-8.
  • Zheng, W.-J.; Wan, X.-C.; Bao, G.-H. Brick Dark Tea: A Review of the Manufacture, Chemical Constituents and Bioconversion of the Major Chemical Components during Fermentation. Phytochem. Rev. 2015, 14(3), 499–523. DOI: 10.1007/s11101-015-9402-8.
  • Xu, A.; Wang, Y.; Wen, J.; Liu, P.; Liu, Z.; Li, Z. Fungal Community Associated with Fermentation and Storage of Fuzhuan Brick-Tea. Int. J. Food Microbiol. 2011, 146(1), 14–22. DOI: 10.1016/j.ijfoodmicro.2011.01.024.
  • Lv, S.; Wu, Y.; Li, C.; Xu, Y.; Liu, L.; Meng, Q. Comparative Analysis of Pu-Erh and Fuzhuan Teas by Fully Automatic Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry and Chemometric Methods. J. Agric. Food Chem. 2014, 62(8), 1810–1818. DOI: 10.1021/jf405237u.
  • Zhu, Y. F.; Chen, J. J.; Ji, X. M.; Hu, X.; Ling, T. J.; Zhang, Z. Z.; Bao, G. H.; Wan, X. C. Changes Of Major Tea Polyphenols And Production Of Four New B-Ring Fission Metabolites Of Catechins From Post-Fermented Jing-Wei Fu Brick Tea. Food Chem. 2015, 170, 110–117. DOI: 10.1016/j.foodchem.2014.08.075.
  • Peng, Y.; Xiong, Z.; Li, J.; Huang, J. A.; Teng, C.; Gong, Y.; Liu, Z. Water Extract of the Fungi from Fuzhuan Brick Tea Improves the Beneficial Function on Inhibiting Fat Deposition. Int. J. Food Sci. Nutr. 2014, 65(5), 610–614. DOI: 10.3109/09637486.2014.898253.
  • Xu, J.; Hu, F. L.; Wang, W.; Wan, X. C.; Bao, G. H. Investigation on Biochemical Compositional Changes during the Microbial Fermentation Process of Fu Brick Tea by LC-MS Based Metabolomics. Food Chem. 2015, 186, 176–184. DOI: 10.1016/j.foodchem.2014.12.045.
  • Wang, K.; Liu, F.; Liu, Z.; Huang, J.; Xu, Z.; Li, Y.; Chen, J.; Gong, Y.; Yang, X. Comparison of Catechins and Volatile Compounds among Different Types of Tea Using High Performance Liquid Chromatograph and Gas Chromatograph Mass Spectrometer. Int. J. Food Sci. Technol. 2011, 46(7), 1406–1412. DOI: 10.1111/j.1365-2621.2011.02629.x.
  • Zuo, Y. G.; Chen, H.; Deng, Y. W. Simultaneous Determination of Catechins, Caffeine and Gallic Acids in Green, Oolong, Black and Pu-Erh Teas Using HPLC with a Photodiode Array Detector. Talanta. 2002, 57, 307–316. DOI: 10.1016/S0039-9140(02)00030-9.
  • Ling, T. J.; Wan, X. C.; Ling, W. W.; Zhang, Z. Z.; Xia, T.; Li, D. X.; Hou, R. Y. New Triterpenoids And Other Constituents From A Special Microbial-Fermented Tea-Fuzhuan Brick Tea. J. Agric. Food Chem. 2010, 58(8), 4945–4950. DOI: 10.1021/jf9043524.
  • McKenzie, J. S.; Jurado, J. M.; de-Pablos, F. Characterisation of Tea Leaves according to Their Total Mineral Content by Means of Probabilistic Neural Networks. Food Chem. 2010, 123(3), 859–864. DOI: 10.1016/j.foodchem.2010.05.007.
  • Liang, Y.; Zhang, L.; Lu, J. A Study on Chemical Estimation of Pu-Erh Tea Quality. J. Sci. Food Agric. 2005, 85(3), 381–390. DOI: 10.1002/(ISSN)1097-0010.
  • Ye, X.; Jin, S.; Wang, D.; Zhao, F.; Yu, Y.; Zheng, D.; Ye, N. Identification of the Origin of White Tea Based on Mineral Element Content. Food Anal. Meth. 2016, 10(1), 191–199. DOI: 10.1007/s12161-016-0568-5.
  • Mohd-Taufek, N.; Cartwright, D.; Davies, M.; Hewavitharana, A. K.; Koorts, P.; Shaw, P. N.; Sumner, R.; Lee, E.; Whitfield, K. The Simultaneous Analysis of Eight Essential Trace Elements in Human Milk by ICP-MS. Food Anal. Methods. 2016, 9, 2068–2075. DOI: 10.1007/s12161-015-0396-z.
  • Guo, H.; Yang, X.; Zhou, H.; Luo, X.; Qin, P.; Li, J.; Ren, G. Comparison of Nutritional Composition, Aroma Compounds, and Biological Activities of Two Kinds of Tartary Buckwheat Tea. J. Food Sci. 2017, 82(7), 1735–1741. DOI: 10.1111/1750-3841.13772.
  • Zhu, Y.; Luo, Y.; Wang, P.; Zhao, M.; Li, L.; Hu, X.; Chen, F. Simultaneous Determination of Free Amino Acids in Pu-Erh Tea and Their Changes during Fermentation. Food Chem. 2016, 194, 643–649. DOI: 10.1016/j.foodchem.2015.08.054.
  • Jimenez-Zamora, A.; Delgado-Andrade, C.; Rufian-Henares, J. A. Antioxidant Capacity, Total Phenols and Color Profile during the Storage of Selected Plants Used for Infusion. Food Chem. 2016, 199, 339–346. DOI: 10.1016/j.foodchem.2015.12.019.
  • Fernandez-Caceres, P. L.; Martin, M. J.; Pablos, F.; Gonzalez, A. G. Differentiation of Tea (Camellia Sinensis) Varieties and Their Geographical Origin according to Their Metal Content. J. Agric. Food Chem. 2001, 49(10), 4775–4779.
  • Matsuura, H.; Hokura, A.; Katsuki, F.; Itoh, A.; Multielement Determination, H. H. And Speciation Of Major-to-Trace Elements In Black Tea Leaves By Icp-Aes And Icp-Ms With The Aid Of Size Exclusion Chromatography. Anal. Sci. 2001, 17(3), 391–398.
  • Bellary, A. N.; Indiramma, A. R.; Prakash, M.; Baskaran, R.; Rastogi, N. K. Anthocyanin Infused Watermelon Rind and Its Stability during Storage. Innov. Food Sci. Emerg. Technol. 2016, 33, 554–562. DOI: 10.1016/j.ifset.2015.10.010.
  • Lv, H. P.; Zhang, Y.; Shi, J.; Lin, Z. Phytochemical Profiles and Antioxidant Activities of Chinese Dark Teas Obtained by Different Processing Technologies. Food Res. Int. 2017, 100(Pt 3), 486–493. DOI: 10.1016/j.foodres.2016.10.024.
  • Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Frankowski, R. Cistus Incanus A Promising Herbal Tea Rich In Bioactive Compounds: Lc–Ms/Ms Determination Of Catechins, Flavonols, Phenolic Acids And alkaloids—A Comparison With Camellia Sinensis, Rooibos And Hoan Ngoc Herbal Tea. J. Food Compos. Anal. 2018, 74, 71–81. DOI: 10.1016/j.jfca.2018.09.003.
  • Boros, K.; Jedlinszki, N.; Csupor, D. Theanine Caffeine Content of Infusions Prepared from Commercial Tea Samples. Pharmacogn. Mag. 2016, 12(45), 75–79. DOI: 10.4103/0973-1296.176061.
  • Wang, X.; Wan, X.; Hu, S.; Pan, C. Study on the Increase Mechanism of the Caffeine Content during the Fermentation of Tea with Microorganisms. Food Chem. 2008, 107(3), 1086–1091. DOI: 10.1016/j.foodchem.2007.09.023.
  • Qin, J. H.; Li, N.; Tu, P. F.; Ma, Z. Z.; Zhang, L. Change in Tea Polyphenol and Purine Alkaloid Composition during Solid-State Fungal Fermentation of Postfermented Tea. J. Agric. Food Chem. 2012, 60(5), 1213–1217. DOI: 10.1021/jf204844g.
  • Horanni, R.; Engelhardt, U. H. Determination of Amino Acids in White, Green, Black, Oolong, Pu-Erh Teas and Tea Products. J. Food Compos. Anal. 2013, 31(1), 94–100. DOI: 10.1016/j.jfca.2013.03.005.
  • Scharbert, S.; Hofmann, T. Molecular Definition of Black Tea Taste by Means of Quantitative Studies, Taste Reconstitution, and Omission Experiments. J. Agric. Food Chem. 2005, 53(13), 5377−5384. DOI: 10.1021/jf050294d.
  • Chevallier, E.; Chekri, R.; Zinck, J.; Guérin, T.; Noël, L. Simultaneous Determination of 31 Elements in Foodstuffs by ICP-MS after Closed-Vessel Microwave Digestion: Method Validation Based on the Accuracy Profile. J. Food Compos. Anal. 2015, 41, 35–41. DOI: 10.1016/j.jfca.2014.12.024.
  • Zhao, M.; Ma, Y.; Wei, Z. Z.; Yuan, W. X.; Li, Y. L.; Zhang, C. H.; Xue, X. T.; Zhou, H. J. Determination and Comparison of Gamma-Aminobutyric Acid (GABA) Content in Pu-Erh and Other Types of Chinese Tea. J. Agric. Food Chem. 2011, 59(8), 3641–3648. DOI: 10.1021/jf104601v.
  • Dhakal, R.; Bajpai, V. K.; Baek, K. H. Production Of Gaba (γ - Aminobutyric Acid) By Microorganisms: A Revew. Braz. J. Microbiol. 2012, 1230–1241. doi:10.1590/S1517-83822012000400001.
  • Xu, X.; Mo, H.; Yan, M.; Zhu, Y. Analysis of Characteristic Aroma of Fungal Fermented Fuzhuan Brick-Tea by Gas Chromatography/Mass Spectrophotometry. J. Sci. Food Agric. 2007, 87(8), 1502–1504. DOI: 10.1002/(ISSN)1097-0010.
  • Cao, L.; Guo, X.; Liu, G.; Song, Y.; Ho, C. T.; Hou, R.; Zhang, L.; Wan, X. A Comparative Analysis for the Volatile Compounds of Various Chinese Dark Teas Using Combinatory Metabolomics and Fungal Solid-State Fermentation. J. Food Drug Anal. 2018, 26(1), 112–123. DOI: 10.1016/j.jfda.2016.11.020.
  • Schuh, C.; Schieberle, P. Characterization of the Key Aroma Compounds in the Beverage Prepared from Darjeeling Black Tea: Quantitative Differences between Tea Leaves and Infusion. J. Agric. Food Chem. 2006, 54(3), 916–924. DOI: 10.1021/jf052495n.
  • Wache, Y.; Bosser-DeRatuld, A.; Lhuguenot, J. C.; Belin, J. M. Effect of Cis/Trans Isomerism of β-Carotene on the Ratios of Volatile Compounds Produced During Oxidative Degradation. J. Agric. Food Chem. 2003, 51(7), 1984−1987. DOI: 10.1021/jf021000g.
  • Lin, J.; Dai, Y.; Guo, Y. N.; Xu, H. R.; Wang, X. C. Volatile Profile Analysis and Quality Prediction of Longjing Tea (Camellia Sinensis) by HS-SPME/GC-MS. J. Zhejiang Univ-Sci. B. 2012, 13(12), 972–980. DOI: 10.1631/jzus.B1200086.
  • Pripdeevech, P.; Machan, T. Fingerprint of Volatile Flavour Constituents and Antioxidant Activities of Teas from Thailand. Food Chem. 2011, 125(2), 797–802. DOI: 10.1016/j.foodchem.2010.09.074.
  • Qin, Z.; Pang, X.; Chen, D.; Cheng, H.; Hu, X.; Wu, J. Evaluation of Chinese Tea by the Electronic Nose and Gas Chromatography–Mass Spectrometry: Correlation with Sensory Properties and Classification according to Grade Level. Food Res. Int. 2013, 53(2), 864–874. DOI: 10.1016/j.foodres.2013.02.005.