6,645
Views
65
CrossRef citations to date
0
Altmetric
Original Article

Physical, thermal, morphological, and tensile properties of cornstarch-based films as affected by different plasticizers

, ORCID Icon, &
Pages 925-941 | Received 08 Feb 2019, Accepted 26 Apr 2019, Published online: 21 May 2019

References

  • Razali, N.; Salit, M. S.; Jawaid, M.; Ishak, M. R.; Lazim, Y. A Study on Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre: Effect of Fibre Maturity. Bio. Resources. 2015, 10(1), 1803–1824.
  • Shimao, M.;. Biodegradation of Plastics. Curr. Opin. Biotechnol. 2001, 12(3), 242–247.
  • Myllärinen, P.; Partanen, R.; Seppälä, J.; Forssell, P. Effect of Glycerol on the Behavior of Amylose and Amylopectin Films. Carbohydr. Polym. 2002, 50(4), 355–361. DOI: 10.1016/S0144-8617(02)00042-5.
  • Ma, X. F.; Yu, J.; Wan, J. Urea and Ethanolamine as a Mixed Plasticizer for Thermoplastic Starch. Carbohydr. Polym. 2006, 64(2), 267–273. DOI: 10.1016/j.carbpol.2005.11.042.
  • Edhirej, A.; Sapuan, S. M.; Jawaid, M.; Zahari, N. I. Cassava: Its Polymer, Fiber, Composite, and Application. Polym. Compos. 2017, 38(3), 555–570. DOI: 10.1002/pc.v38.3.
  • Bertoft, E.;. Understanding Starch Structure: Recent Progress. Agronomy. 2017, 7(3), 56. DOI: 10.3390/agronomy7030056.
  • Ghanbarzadeh, B.; Almasi, H.; Entezami, A. A. Improving the Barrier and Mechanical Properties of Corn Starch-Based Edible Films: Effect of Citric Acid and Carboxymethyl Cellulose. Ind. Crops Prod. 2011, 33(1), 229–235. DOI: 10.1016/j.indcrop.2010.10.016.
  • Waterschoot, J.; Gomand, S. V.; Fierens, E.; Delcour, J. A. Production, Structure, Physicochemical and Functional Properties of Maize, Cassava, Wheat, Potato and Rice Starches. Starch‐Stärke. 2015, 67(1–2), 14–29. DOI: 10.1002/star.v67.1-2.
  • McAloon, A.; Taylor, F.; Yee, W.; Ibsen, K.; Wooley, R. Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks, National Renewable Energy Laboratory Report (2000).
  • Averous, L.; Boquillon, N. Biocomposites Based on Plasticized Starch: Thermal and Mechanical Behaviours. Carbohydr. Polym. 2004, 56(2), 111–122. DOI: 10.1016/j.carbpol.2003.11.015.
  • Sanyang, M.; Sapuan, S.; Jawaid, M.; Ishak, M.; Sahari, J. Effect Of Plasticizer Type And Concentration On Dynamic Mechanical Properties Of Sugar Palm Starch–Based Films. Int. J. Polym. Anal. Charact. 2015, 20(7), 627–636. DOI: 10.1080/1023666X.2015.1054107.
  • Sanyang, M. L.; Sapuan, S. M.; Jawaid, M.; Ishak, M. R.; Sahari, J. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga Pinnata) Starch. Polymers. 2015, 7(6), 1106–1124. DOI: 10.3390/polym7061106.
  • Wang, J. L.; Cheng, F.; Zhu, P. X. Structure and Properties of Urea-Plasticized Starch Films with Different Urea Contents. Carbohydr. Polym. 2014, 101, 1109–1115. DOI: 10.1016/j.carbpol.2013.10.050.
  • Cao, N.; Yang, X.; Fu, Y. Effects of Various Plasticizers on Mechanical and Water Vapor Barrier Properties of Gelatin Films. Food Hydrocolloids. 2009, 23(3), 729–735. DOI: 10.1016/j.foodhyd.2008.07.017.
  • Jouki, M.; Khazaei, N.; Ghasemlou, M.; HadiNezhad, M. Effect of Glycerol Concentration on Edible Film Production from Cress Seed Carbohydrate Gum. Carbohydr. Polym. 2013, 96(1), 39–46. DOI: 10.1016/j.carbpol.2013.03.077.
  • Versino, F.; López, O. V.; García, M. A. Sustainable Use of Cassava (Manihot Esculenta) Roots as Raw Material for Biocomposites Development. Ind. Crops Prod. 2015, 65, 79–89. DOI: 10.1016/j.indcrop.2014.11.054.
  • Mantzari, G.; Raphaelides, S. N.; Exarhopoulos, S. Effect of Sorbitol Addition on the Physicochemical Characteristics of Starch–Fatty Acid Systems. Carbohydr. Polym. 2010, 79(1), 154–163. DOI: 10.1016/j.carbpol.2009.07.043.
  • Müller, C. M.; Yamashita, F.; Laurindo, J. B. Evaluation of the Effects of Glycerol and Sorbitol Concentration and Water Activity on the Water Barrier Properties of Cassava Starch Films through a Solubility Approach. Carbohydr. Polym. 2008, 72(1), 82–87. DOI: 10.1016/j.carbpol.2007.07.026.
  • Fishman, M.; Coffin, D.; Konstance, R.; Onwulata, C. Extrusion of Pectin/Starch Blends Plasticized with Glycerol. Carbohydr. Polym. 2000, 41(4), 317–325. DOI: 10.1016/S0144-8617(99)00117-4.
  • Veiga-Santos, P.; Oliveira, L.; Cereda, M.; Scamparini, A. R. P. Sucrose and Inverted Sugar as Plasticizer. Effect on Cassava Starch–Gelatin Film Mechanical Properties, Hydrophilicity and Water Activity. Food Chem. 2007, 103(2), 255–262. DOI: 10.1016/j.foodchem.2006.07.048.
  • Galdeano, M. C.; Mali, S.; Grossmann, M. V. E.; Yamashita, F.; García, M. A. Effects of Plasticizers on the Properties of Oat Starch Films. Mater. Sci. Eng C. 2009, 29(2), 532–538. DOI: 10.1016/j.msec.2008.09.034.
  • Audic, J.-L.; Chaufer, B. Influence of Plasticizers and Crosslinking on the Properties of Biodegradable Films Made from Sodium Caseinate. Eur. Polym. J. 2005, 41(8), 1934–1942. DOI: 10.1016/j.eurpolymj.2005.02.023.
  • Ali, A.; Wani, T. A.; Wani, I. A.; Masoodi, F. A. Comparative Study of the Physico-Chemical Properties of Rice and Corn Starches Grown in Indian Temperate Climate. J. Saudi Soc. Agric. Sci. 2016, 15(1), 75–82. DOI: 10.1016/j.jssas.2014.04.002.
  • Alzorqi, I.; Sudheer, S.; Lu, T. J.; Manickam, S. Ultrasonically Extracted β-d-glucan From Artificially Cultivated Mushroom, Characteristic Properties And Antioxidant Activity. Ultrason. Sonochem. 2017, 35, 531–540. DOI: 10.1016/j.ultsonch.2016.04.017.
  • James, C. S.. Analytical Chemistry of Foods; Springer Science & Business Media B. V: Dordrecht, Netherlands, 2013.
  • Petrie, E. M. Plasticizers for Adhesives and Sealants. Select Plasticizers according to Base Polymer. SpecialChem. [Online] 2019. https://adhesives.specialchem.com/selection-guide/plasticizers-for-adhesives-and-sealants/according-to-your-base-polymer
  • Siebenmorgen, T. J.; Jindal, V. K. Airflow Resistance of Rough Rice as Affected by Moisture Content, Fines Concentration and Bulk Density. Trans. ASAE. 1987, 30(4), 1138–1143. DOI: 10.13031/2013.30533.
  • Shogren, R. L.;. Effect of Moisture Content on the Melting and Subsequent Physical Aging of Cornstarch. Carbohydr. Polym. 1992, 19(2), 83–90. DOI: 10.1016/0144-8617(92)90117-9.
  • Edhirej, A.; Sapuan, S. M.; Jawaid, M.; Zahari, N. I. Effect of Various Plasticizers and Concentration on the Physical, Thermal, Mechanical, and Structural Properties of Cassava‐Starch‐Based Films. Starch‐Stärke. 2017, 69(1–2), 1500366. DOI: 10.1002/star.v69.1-2.
  • Sanyang, M.; Sapuan, S.; Jawaid, M.; Ishak, M.; Sahari, J. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga Pinnata) Starch. Polymers. 2015, 7(6), 1106–1124. DOI: 10.3390/polym7061106.
  • Sood, A.; Ramarao, S.; Carounanidy, U. Influence of Different Crosshead Speeds on Diametral Tensile Strength of a Methacrylate Based Resin Composite: An In-Vitro Study. J. Conservative Dent. 2015, 18(3), 214. DOI: 10.4103/0972-0707.157253.
  • Ahmadi, R.; Kalbasi-Ashtari, A.; Oromiehie, A.; Yarmand, M.-S.; Jahandideh, F. Development and Characterization of a Novel Biodegradable Edible Film Obtained from Psyllium Seed (Plantago Ovata Forsk). J. Food Eng. 2012, 109(4), 745–751. DOI: 10.1016/j.jfoodeng.2011.11.010.
  • Razavi, S. M. A.; Amini, A. M.; Zahedi, Y. Characterisation of a New Biodegradable Edible Film Based on Sage Seed Gum: Influence of Plasticiser Type and Concentration. Food Hydrocolloids. 2015, 43, 290–298. DOI: 10.1016/j.foodhyd.2014.05.028.
  • Imran, M.; El-Fahmy, S.; Revol-Junelles, A.-M.; Desobry, S. Cellulose Derivative Based Active Coatings: Effects of Nisin and Plasticizer on Physico-Chemical and Antimicrobial Properties of Hydroxypropyl Methylcellulose Films. Carbohydr. Polym. 2010, 81(2), 219–225. DOI: 10.1016/j.carbpol.2010.02.021.
  • Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A. Physical, Mechanical, Barrier, and Thermal Properties of Polyol-Plasticized Biodegradable Edible Film Made from Kefiran. Carbohydr. Polym. 2011, 84(1), 477–483. DOI: 10.1016/j.carbpol.2010.12.010.
  • Cerqueira, M. A.; Souza, B. W.; Teixeira, J. A.; Vicente, A. A. Effect Of Glycerol And Corn Oil On Physicochemical Properties Of Polysaccharide films–A Comparative Study. Food Hydrocolloids. 2012, 27(1), 175–184. DOI: 10.1016/j.foodhyd.2011.07.007.
  • Sanyang, M. L.; Sapuan, S. M.; Jawaid, M.; Ishak, M. R.; Sahari, J. Effect of Plasticizer Type and Concentration on Physical Properties of Biodegradable Films Based on Sugar Palm (Arenga Pinnata) Starch for Food Packaging. J. Food Sci. Technol. 2016, 53(1), 326–336. DOI: 10.1007/s13197-015-2009-7.
  • Bertuzzi, M.; Armada, M.; Gottifredi, J. Physicochemical Characterization of Starch Based Films. J. Food Eng. 2007, 82(1), 17–25. DOI: 10.1016/j.jfoodeng.2006.12.016.
  • Perez‐Gago, M.; Krochta, J. Denaturation Time and Temperature Effects on Solubility, Tensile Properties, and Oxygen Permeability of Whey Protein Edible Films. J. Food Sci. 2001, 66(5), 705–710. DOI: 10.1111/jfds.2001.66.issue-5.
  • Yin, S.-W.; Tang, C.-H.; Wen, Q. B.; Yang, X.-Q. Properties of Cast Films from Hemp (Cannabis Sativa L.) And Soy Protein Isolates. A Comparative Study. J. Agric. Food Chem. 2007, 55(18), 7399–7404. DOI: 10.1021/jf071117a.
  • Liu, X.; Wang, Y.; Yu, L.; Tong, Z.; Chen, L.; Liu, H.; Li, X. Thermal Degradation and Stability of Starch under Different Processing Conditions. Starch‐Stärke. 2013, 65(1‐2), 48–60. DOI: 10.1002/star.v65.1/2.
  • Guinesi, L. S.; Da Róz, A. L.; Corradini, E.; Mattoso, L. H. C.; Teixeira, E. D. M.; Curvelo, A. A. D. S. Kinetics of Thermal Degradation Applied to Starches from Different Botanical Origins by Non-Isothermal Procedures. Thermochim. Acta. 2006, 447(2), 190–196. DOI: 10.1016/j.tca.2006.06.002.
  • Soares, R.; Lima, A.; Oliveira, R.; Pires, A.; Soldi, V. Thermal Degradation of Biodegradable Edible Films Based on Xanthan and Starches from Different Sources. Polym. Degrad. Stab. 2005, 90(3), 449–454. DOI: 10.1016/j.polymdegradstab.2005.04.007.
  • Dang, K. M.; Yoksan, R. Development of Thermoplastic Starch Blown Film by Incorporating Plasticized Chitosan. Carbohydr. Polym. 2015, 115, 575–581. DOI: 10.1016/j.carbpol.2014.09.005.
  • Suppakul, P.; Chalernsook, B.; Ratisuthawat, B.; Prapasitthi, S.; Munchukangwan, N. Empirical Modeling of Moisture Sorption Characteristics and Mechanical and Barrier Properties of Cassava Flour Film and Their Relation to Plasticizing–Antiplasticizing Effects. LWT Food Sci. Technol. 2013, 50(1), 290–297. DOI: 10.1016/j.lwt.2012.05.013.
  • Vega, D.; Villar, M. A.; Failla, M. D.; Vallés, E. M. Thermogravimetric Analysis of Starch-Based Biodegradable Blends. Polym. Bull. 1996, 37(2), 229–235. DOI: 10.1007/BF00294126.
  • Nascimento, T.; Calado, V.; Carvalho, C. Development and Characterization of Flexible Film Based on Starch and Passion Fruit Mesocarp Flour with Nanoparticles. Food Res. Int. 2012, 49(1), 588–595. DOI: 10.1016/j.foodres.2012.07.051.
  • Mano, J.; Koniarova, D.; Reis, R. Thermal Properties of Thermoplastic Starch/Synthetic Polymer Blends with Potential Biomedical Applicability. J. Mater. Sci.: Mater. Med. 2003, 14(2), 127–135.
  • Isotton, F.; Bernardo, G.; Baldasso, C.; Rosa, L.; Zeni, M. The Plasticizer Effect on Preparation and Properties of Etherified Corn Starchs Films. Ind. Crops Prod. 2015, 76, 717–724. DOI: 10.1016/j.indcrop.2015.04.005.
  • Dai, H.; Yu, J.; Geng, F.; Ma, X. Preparation and Properties of Starch-Based Film Using N-(2-Hydroxyethyl) Formamide as a New Plasticizer. Polym.-Plast. Technol. Eng. 2009, 48(8), 866–870. DOI: 10.1080/03602550902994938.
  • Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization Of Irradiated Starches By Using FT-Raman And Ftir Spectroscopy. J. Agric. Food Chem. 2002, 50(14), 3912–3918.
  • Cael, J. J.; Koenig, J. L.; Blackwell, J. Infrared and Raman Spectroscopy of Carbohydrates. Part VI: Normal Coordinate Analysis of V‐Amylose. Biopolymers. 1975, 14(9), 1885–1903. DOI: 10.1002/(ISSN)1097-0282.
  • Santha, N.; Sudha, K.; Vijayakumari, K.; Nayar, V.; Moorthy, S. Raman and Infrared Spectra of Starch Samples of Sweet Potato and Cassava. J. Chem. Sci. 1990, 102(5), 705–712. DOI: 10.1007/BF03040801.
  • Wilson, R.; Goodfellow, B.; Belton, P.; Osborne, B.; Oliver, G.; Russell, P. Comparison of Fourier Transform Mid Infrared Spectroscopy and near Infrared Reflectance Spectroscopy with Differential Scanning Calorimetry for the Study of the Staling of Bread. J. Sci. Food Agric. 1991, 54(3), 471–483. DOI: 10.1002/(ISSN)1097-0010.
  • Pi-Xin, W.; Xiu-Li, W.; Xue, D. H.; Xu, K.; Tan, Y.; Du, X.-B.; Li, W.-B. Preparation And Characterization Of Cationic Corn Starch With A High Degree Of Substitution In dioxane–THF–Water Media. Carbohydr. Res. 2009, 344(7), 851–855. DOI: 10.1016/j.carres.2009.02.023.
  • Sahari, J.; Sapuan, S.; Zainudin, E.; Maleque, M. Mechanical and Thermal Properties of Environmentally Friendly Composites Derived from Sugar Palm Tree. Mater. Des. 2013, 49, 285–289. DOI: 10.1016/j.matdes.2013.01.048.
  • Sakina, H.; Sarani, Z.; Khairul, D. Oil Palm Biomass: Opportunities and Challenges in Commercial Exploitation. Symposium on Utilisation of Oil Palm Tree Kuala Lumpur 2000.
  • Paraginski, R. T.; Vanier, N. L.; Moomand, K.; de Oliveira, M.; Da Rosa Zavareze, E.; E Silva, R. M.; Ferreira, C. D.; Elias, M. C. Characteristics of Starch Isolated from Maize as a Function of Grain Storage Temperature. Carbohydr. Polym. 2014, 102, 88–94. DOI: 10.1016/j.carbpol.2013.11.019.
  • Debiagi, F.; Marim, B. M.; Mali, S. Properties of Cassava Bagasse and Polyvinyl Alcohol Biodegradable Foams. J. Polym. Environ. 2015, 23(2), 269–276. DOI: 10.1007/s10924-014-0705-4.
  • Gutiérrez, T. J.; Tapia, M. S.; Pérez, E.; Famá, L. Structural and Mechanical Properties of Edible Films Made from Native and Modified Cush-Cush Yam and Cassava Starch. Food Hydrocolloids. 2015, 45, 211–217. DOI: 10.1016/j.foodhyd.2014.11.017.
  • Hu, G.; Chen, J.; Gao, J. Preparation and Characteristics of Oxidized Potato Starch Films. Carbohydr. Polym. 2009, 76(2), 291–298. DOI: 10.1016/j.carbpol.2008.10.032.
  • Fama, L.; Rojas, A. M.; Goyanes, S.; Gerschenson, L. Mechanical Properties of Tapioca-Starch Edible Films Containing Sorbates. LWT Food Sci. Technol. 2005, 38(6), 631–639. DOI: 10.1016/j.lwt.2004.07.024.
  • Muscat, D.; Adhikari, B.; Adhikari, R.; Chaudhary, D. Comparative Study of Film Forming Behaviour of Low and High Amylose Starches Using Glycerol and Xylitol as Plasticizers. J. Food Eng. 2012, 109(2), 189–201. DOI: 10.1016/j.jfoodeng.2011.10.019.
  • Adhikari, B.; Chaudhary, D.; Clerfeuille, E. Effect of Plasticizers on the Moisture Migration Behavior of Low-Amylose Starch Films during Drying. Drying Technol. 2010, 28(4), 468–480. DOI: 10.1080/07373931003613593.
  • López, O. V.; Lecot, C. J.; Zaritzky, N. E.; García, M. A. Biodegradable Packages Development from Starch Based Heat Sealable Films. J. Food Eng. 2011, 105(2), 254–263. DOI: 10.1016/j.jfoodeng.2011.02.029.
  • Dias, A. B.; Müller, C. M.; Larotonda, F. D.; Laurindo, J. B. Biodegradable Films Based on Rice Starch and Rice Flour. J. Cereal Sci. 2010, 51(2), 213–219. DOI: 10.1016/j.jcs.2009.11.014.
  • Smits, A.; Kruiskamp, P.; Van Soest, J.; Vliegenthart, J. Interaction between Dry Starch and Plasticisers Glycerol or Ethylene Glycol, Measured by Differential Scanning Calorimetry and Solid State NMR Spectroscopy. Carbohydr. Polym. 2003, 53(4), 409–416. DOI: 10.1016/S0144-8617(03)00119-X.
  • Mikkonen, K. S.; Heikkinen, S.; Soovre, A.; Peura, M.; Serimaa, R.; Talja, R. A.; Helén, H.; Hyvönen, L.; Tenkanen, M. Films from Oat Spelt Arabinoxylan Plasticized with Glycerol and Sorbitol. J. Appl. Polym. Sci. 2009, 114(1), 457–466. DOI: 10.1002/app.v114:1.
  • Turhan, K. N.; Şahbaz, F. Water Vapor Permeability, Tensile Properties and Solubility of Methylcellulose-Based Edible Films. J. Food Eng. 2004, 61(3), 459–466. DOI: 10.1016/S0260-8774(03)00155-9.
  • Dai, H.; Chang, P. R.; Yu, J.; Ma, X.; N‐Bis, N. (2‐Hydroxyethyl) Formamide as a New Plasticizer for Thermoplastic Starch. Starch‐Stärke. 2008, 60(12), 676–684. DOI: 10.1002/star.200800017.
  • Pushpadass, H. A.; Bhandari, P.; Hanna, M. A. Effects of LDPE and Glycerol Contents and Compounding on the Microstructure and Properties of Starch Composite Films. Carbohydr. Polym. 2010, 82(4), 1082–1089. DOI: 10.1016/j.carbpol.2010.06.032.
  • Fu, Z.-Q.; Wang, L.-J.; Li, D.; Wei, Q.; Adhikari, B. Effects of High-Pressure Homogenization on the Properties of Starch-Plasticizer Dispersions and Their Films. Carbohydr. Polym. 2011, 86(1), 202–207. DOI: 10.1016/j.carbpol.2011.04.032.
  • Yan, Q.; Hou, H.; Guo, P.; Dong, H. Effects of Extrusion and Glycerol Content on Properties of Oxidized and Acetylated Corn Starch-Based Films. Carbohydr. Polym. 2012, 87(1), 707–712. DOI: 10.1016/j.carbpol.2011.08.048.
  • López, O. V.; Versino, F.; Villar, M. A.; Garcia, M. A. Agro-Industrial Residue from Starch Extraction of Pachyrhizus Ahipa as Filler of Thermoplastic Corn Starch Films. Carbohydr. Polym. 2015, 134, 324–332. DOI: 10.1016/j.carbpol.2015.07.081.
  • Yu, L.; Dean, K.; Li, L. Polymer Blends and Composites from Renewable Resources. Prog. Polym. Sci. 2006, 31(6), 576–602. DOI: 10.1016/j.progpolymsci.2006.03.002.