2,511
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Physicochemical properties and bioactive compounds of fermented pomegranate juice as affected by high-pressure processing and thermal treatment

, , , , , , , & show all
Pages 1250-1269 | Received 18 Mar 2019, Accepted 01 Jul 2019, Published online: 18 Jul 2019

References

  • Putnik, P.; Kresoja, Ž.; Bosiljkov, T.; Režek Jambrak, A.; Barba, F. J.; Lorenzo, J. M.; Roohinejad, S.; Granato, D.; Žuntar, I.; Bursać Kovačević, D. Comparing the Effects of Thermal and Non-thermal Technologies on Pomegranate Juice Quality: A Review. Food Chem. 2019, 279, 150–161. DOI: 10.1016/j.foodchem.2018.11.131.
  • Varela-Santos, E.; Ochoa-Martinez, A.; Tabilo-Munizaga, G.; Reyes, J. E.; Pérez-Won, M.; Briones-Labarca, V.; Morales-Castro, J. Effect of High Hydrostatic Pressure (HHP) Processing on Physicochemical Properties, Bioactive Compounds and Shelf-life of Pomegranate Juice. Innovative Food Sci. Emerg. Technol. 2012, 13, 13–22. DOI: 10.1016/j.ifset.2011.10.009.
  • Patras, A.; Brunton, N. P.; Da Pieve, S.; Butler, F. Impact of High Pressure Processing on Total Antioxidant Activity, Phenolic, Ascorbic Acid, Anthocyanin Content and Colour of Strawberry and Blackberry Purees. Innovative Food Sci. Emerg. Technol. 2009, 10(3), 308–313. DOI: 10.1016/j.ifset.2008.12.004.
  • Lan, Y.; Wu, J.; Wang, X.; Sun, X.; Hackman, R. M.; Li, Z.; Feng, X. Evaluation of Antioxidant Capacity and Flavor Profile Change of Pomegranate Wine during Fermentation and Aging Process. Food Chem. 2017, 232, 777–787. DOI: 10.1016/j.foodchem.2017.04.030.
  • Chen, D.; Xi, H.; Guo, X.; Qin, Z.; Pang, X.; Hu, X.; Liao, X.; Wu, J. Comparative Study of Quality of Cloudy Pomegranate Juice Treated by High Hydrostatic Pressure and High Temperature Short Time. Innovative Food Sci. Emerg. Technol. 2013, 19, 85–94. DOI: 10.1016/j.ifset.2013.03.003.
  • Chen, X. H.; Qin, W.; Ma, L.; Xu, F.; Jin, P.; Zheng, Y. Effect of High Pressure Processing and Thermal Treatment on Physicochemical Parameters, Antioxidant Activity and Volatile Compounds of Green Asparagus Juice. LWT Food Sci. Technol. 2015, 62(1), 927–933. DOI: 10.1016/j.lwt.2014.10.068.
  • Wang, F.; Du, B.-L.; Cui, Z.-W.; Xu, L.-P.; Li, C.-Y. Effects of High Hydrostatic Pressure and Thermal Processing on Bioactive Compounds, Antioxidant Activity, and Volatile Profile of Mulberry Juice. Food Sci. Technol. Int. 2017, 23(2), 119–127. DOI: 10.1177/1082013216659610.
  • Vegara, S.; Martí, N.; Mena, P.; Saura, D.; Valero, M. Effect of Pasteurization Process and Storage on Color and Shelf-life of Pomegranate Juices. LWT Food Sci. Technol. 2013, 54(2), 592–596. DOI: 10.1016/j.lwt.2013.06.022.
  • Barba, F. J.; Esteve, M. J.; Frigola, A. Physicochemical and Nutritional Characteristics of Blueberry Juice after High Pressure Processing. Food Res. Int. 2013, 50(2), 545–549. DOI: 10.1016/j.foodres.2011.02.038.
  • Wang, C. Y.; Huang, H- W.; Hsu, C- P.; Yang, B- B. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology. Crit. Rev. Food Sci. Nutr. 2016, 56(4), 527–540.
  • Ferrari, G.; Maresca, P.; Ciccarone, R. The Application of High Hydrostatic Pressure for the Stabilization of Functional Foods: Pomegranate Juice. J. Food Eng. 2010, 100(2), 245–253. DOI: 10.1016/j.jfoodeng.2010.04.006.
  • Mastello, R. B.; Janzantti, N. S.; Bisconsin, A.; Monteiro, M. Impact of HHP Processing on Volatile Profile and Sensory Acceptance of Pera-Rio Orange Juice. Innovative Food Sci. Emerg. Technol. 2018, 45, 106–114. DOI: 10.1016/j.ifset.2017.10.008.
  • Zou, H.; Lin, T.; Bi, X.; Zhao, L.; Wang, Y.; Liao, X. Comparison of High Hydrostatic Pressure, High-Pressure Carbon Dioxide and High-Temperature Short-Time Processing on Quality of Mulberry Juice. Food Bioprocess. Technol. 2016, 9(2), 217–231. DOI: 10.1007/s11947-015-1606-9.
  • Buckow, R.; Kastell, A.; Terefe, N. S.; Versteeg, C. Pressure and Temperature Effects on Degradation Kinetics and Storage Stability of Total Anthocyanins in Blueberry Juice. J. Agric. Food Chem. 2010, 58(18), 10076–10084. DOI: 10.1021/jf1015347.
  • Mousavi, Z. E.; Mousavi, S. M.; Razavi, S. H.; Hadinejad, M.; Emam-Djomeh, Z.; Mirzapour, M. Effect of Fermentation of Pomegranate Juice by Lactobacillus Plantarum and Lactobacillus Acidophilus on the Antioxidant Activity and Metabolism of Sugars, Organic Acids and Phenolic Compounds. Food Biotechnol. 2013, 27(1), 1–13. DOI: 10.1080/08905436.2012.724037.
  • Filannino, P.; Bai, Y.; Di Cagno, R.; Gobbetti, M.; Gänzle, M. G. Metabolism of Phenolic Compounds by Lactobacillus Spp. During Fermentation of Cherry Juice and Broccoli Puree. Food Microbiol. 2015, 46, 272–279. DOI: 10.1016/j.fm.2014.08.018.
  • Valero-Cases, E.; Nuncio-Jauregui, N.; Frutos, M. J. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices. J. Agric. Food Chem. 2017, 65(31), 6488–6496. DOI: 10.1021/acs.jafc.6b04854.
  • Serment-Moreno, V.; Barbosa-Cánovas, G.; Torres, J. A.; Welti-Chanes, J. High-pressure Processing: Kinetic Models for Microbial and Enzyme Inactivation. Food Eng. Rev. 2014, 6(3), 56–88. DOI: 10.1007/s12393-014-9075-x.
  • Kaur, B. P.; Rao, P. S. Modeling the Combined Effect of Pressure and Mild Heat on the Inactivation Kinetics of Escherichia Coli, Listeria Innocua, and Staphylococcus Aureus in Black Tiger Shrimp (penaeus Monodon). Front. Microbiol. 2017, 8. DOI: 10.3389/fmicb.2017.01311.
  • Chen, D.; Pan, S.; Chen, J.; Pang, X.; Guo, X.; Gao, L.; Liao, X.; Wu, J. Comparing the Effects of High Hydrostatic Pressure and Ultrahigh Temperature on Quality and Shelf Life of Cloudy Ginger Juice. Food Bioprocess. Technol. 2016, 9(10), 1779–1793. DOI: 10.1007/s11947-016-1759-1.
  • Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M. T.; Wu, M.; Sackey, A. S.; Xiao, L.; Tahir, H. E. Effect of Lactobacillus Strains on Phenolic Profile, Color Attributes and Antioxidant Activities of Lactic-acid-fermented Mulberry Juice. Food Chem. 2018, 250, 148–154. DOI: 10.1016/j.foodchem.2018.01.009.
  • Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic Acid Fermentation Drives the Optimal Volatile Flavor-aroma Profile of Pomegranate Juice. Int. J. Food Microbiol. 2017, 248, 56–62. DOI: 10.1016/j.ijfoodmicro.2017.02.014.
  • Georget, E.; Sevenich, R.; Reineke, K.; Mathys, A.; Heinz, V.; Callanan, M.; Rauh, C.; Knorr, D. Inactivation of Microorganisms by High Isostatic Pressure Processing in Complex Matrices: A Review. Innovative Food Sci. Emerg. Technol. 2015, 27, 1–14. DOI: 10.1016/j.ifset.2014.10.015.
  • Saucedo-Reyes, D.; Carrillo-Salazar, J. A.; Román-Padilla, L.; Saucedo-Veloz, C.; Reyes-Santamaría, M. I.; Ramírez-Gilly, M.; Tecante, A. Modeling the Pressure Inactivation of Escherichia Coli and Salmonella Typhimurium in Sapote Mamey (pouteria Sapota (jacq.) HE Moore & Stearn) Pulp. Food Sci. Technol. Int. 2018, 24(2), 117–131. DOI: 10.1177/1082013217735472.
  • Shinwari, K. J.; Rao, P. S. Stability of Bioactive Compounds in Fruit Jam and Jelly during Processing and Storage: A Review. Trends Food Sci. Technol. 2018, 75, 181–193. DOI: 10.1016/j.tifs.2018.02.002.
  • Xu, Z. Z.; Wang, Y.; Ren, P.; Ni, Y.; Liao, X. Quality of Banana Puree during Storage: A Comparison of High Pressure Processing and Thermal Pasteurization Methods. Food Bioprocess. Technol. 2016, 9(3), 407–420. DOI: 10.1007/s11947-015-1635-4.
  • Zhang, Y.; Liu, X.; Wang, Y.; Zhao, F.; Sun, Z.; Liao, X. Quality Comparison of Carrot Juices Processed by High-pressure Processing and High-temperature Short-time Processing. Innovative Food Sci. Emerg. Technol. 2016, 33, 135–144. DOI: 10.1016/j.ifset.2015.10.012.
  • Nayak, B.; Liu, R. H.; Tang, J. M. Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains-A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(7), 887–918. DOI: 10.1080/10408398.2011.654142.
  • Nayak, P. K.; Rayaguru, K.; Krishnan, K. R. Quality Comparison of Elephant Apple Juices after High-pressure Processing and Thermal Treatment. J. Sci. Food Agric. 2017, 97(5), 1404–1411. DOI: 10.1002/jsfa.7878.
  • Nowicka, A.; Kucharska, A. Z.; Sokół-Łętowska, A.; Fecka, I. Comparison of Polyphenol Content and Antioxidant Capacity of Strawberry Fruit from 90 Cultivars of Fragaria X Ananassa Duch. Food Chem. 2019, 270, 32–46. DOI: 10.1016/j.foodchem.2018.07.015.
  • Turfan, O.; Türkyılmaz, M.; Yemiş, O.; Özkan, M. Anthocyanin and Colour Changes during Processing of Pomegranate (punica Granatum L., Cv. Hicaznar) Juice from Sacs and Whole Fruit. Food Chem. 2011, 129(4), 1644–1651. DOI: 10.1016/j.foodchem.2011.06.024.
  • Tiwari, B. K.; O’Donnell, C. P.; Cullen, P. J. Effect of Non Thermal Processing Technologies on the Anthocyanin Content of Fruit Juices. Trends Food Sci. Technol. 2009, 20(3–4), 137–145. DOI: 10.1016/j.tifs.2009.01.058.
  • Castaneda-Ovando, A.; Pacheco-Hernández, M. D. L.; Páez-Hernández, M. E.; Rodríguez, J. A.; Galán-Vidal, C. A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113(4), 859–871. DOI: 10.1016/j.foodchem.2008.09.001.
  • Randazzo, W.; Corona, O.; Guarcello, R.; Francesca, N.; Germanà, M. A.; Erten, H.; Moschetti, G.; Settanni, L. Development of New Non-dairy Beverages from Mediterranean Fruit Juices Fermented with Water Kefir Microorganisms. Food Microbiol. 2016, 54, 40–51. DOI: 10.1016/j.fm.2015.10.018.
  • Chen, R-H.; Chen, W-X.; Chen, H-M.; Zhang, G-F.; Chen, W-J. Comparative Evaluation of the Antioxidant Capacities, Organic Acids, and Volatiles of Papaya Juices Fermented by Lactobacillus Acidophilus and Lactobacillus Plantarum. J. Food Qual. 2018, 1-12. DOI: 10.1155/2018/9490435.