2,073
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Lipolytic degradation, water and flavor properties of low sodium dry cured beef

, , , , , , & show all
Pages 1322-1339 | Received 23 Feb 2019, Accepted 01 Jul 2019, Published online: 23 Jul 2019

References

  • Flores, M.;. Understanding the Implications of Current Health Trends on the Aroma of Wet and Dry Cured Meat Products. Meat Sci. 2018, 144, 53–61. DOI: 10.1016/j.meatsci.2018.04.016.
  • Candek-Potokar, M.; Skrlep, M. Factors in Pig Production that Impact the Quality of Dry-cured Ham: A Review. Animal. 2012, 6(2), 327–338. DOI: 10.1017/S1751731111001625.
  • Du, X. J.; Sun, Y. Y.; Pan, D. D.; Wang, Y.; Ou, C. R.; Cao, J. X. The Effect of Structural Change on the Digestibility of Sarcoplasmic Proteins in Nanjing Dry-cured Duck during Processing. Poultr. Sci. 2018, 97(12), 4450–4457. DOI: 10.3382/ps/pey316.
  • Du, X.; Sun, Y.; Pan, D.; Wang, Y.; Ou, C.; Cao, J. Change of the Structure and the Digestibility of Myofibrillar Proteins in Nanjing Dry-cured Duck during Processing. J. Sci. Food Agric. 2018, 98(8), 3140–3147. DOI: 10.1002/jsfa.8815.
  • Inguglia, E. S.; Zhang, Z.; Tiwari, B. K.; Kerry, J. P.; Burgess, C. M. Salt Reduction Strategies in Processed Meat Products – A Review. Trends Food Sci. Technol. 2017, 59, 70–78. DOI: 10.1016/j.tifs.2016.10.016.
  • Fellendorf, S.; Kerry, J. P.; Hamill, R. M.; O’Sullivan, M. G. Impact on the Physicochemical and Sensory Properties of Salt Reduced Corned Beef Formulated with and without the Use of Salt Replacers. LWT. 2018, 92, 584–592. DOI: 10.1016/j.lwt.2018.03.001.
  • Armenteros, M.; Aristoy, M.-C.; Barat, J. M.; Toldrá, F. Biochemical and Sensory Changes in Dry-cured Ham Salted with Partial Replacements of NaCl by Other Chloride Salts. Meat Sci. 2012, 90(2), 361–367. DOI: 10.1016/j.meatsci.2011.07.023.
  • Zhou, C. Y.; Wang, Y.; Cao, J. X.; Chen, Y. J.; Liu, Y.; Liu, Y.; Sun, Y. Y.; Pan, D. D.; Ou, C. R. The Effect of Dry-cured Salt Contents on Accumulation of Non-volatile Compounds during Dry-cured Goose Processing. Poultr. Sci. 2016, 95(9), 2160–2166. DOI: 10.3382/ps/pew128.
  • Zhang, Y. W.; Cheng, Q. F.; Yao, Y.; Guo, X. Y.; Wang, R. R.; Peng, Z. Q. A Preliminary Study: Saltiness and Sodium Content of Aqueous Extracts from Plants and Marine Animal Shells. Eur. Food Res. Technol. 2014, 238(4), 565–571. DOI: 10.1007/s00217-013-2136-1.
  • Campagnol, P. C. B.; Santos, B. A. D.; Morgano, M. A.; Terra, N. N. Application of Lysine, Taurine, Disodium Inosinate and Disodium Guanylate in Fermented Cooked Sausages with 50% Replacement of NaCl by KCl. Meat Sci. 2011, 87(3), 239–243. DOI: 10.1016/j.meatsci.2010.10.018.
  • Campagnol, P. C. B.; Santos, B. A. D.; Terra, N. N.; Pollonio, M. A. R. Lysine, Disodium Guanylate and Disodium Inosinate as Flavor Enhancers in Low-sodium Fermented Sausages. Meat Sci. 2012, 91(3), 334–338. DOI: 10.1016/j.meatsci.2012.02.012.
  • Dos Santos Alves, L. A. A.; Lorenzo, J. M.; Gonçalves, C. A. A.; Dos Santos, B. A.; Heck, R. T.; Cichoski, A. J.; Campagnol, P. C. B. Impact of Lysine and Liquid Smoke as Flavor Enhancers on the Quality of Low-fat Bologna-type Sausages with 50% Replacement of NaCl by KCl. Meat Sci. 2017, 123(Supplement C), 50–56. DOI: 10.1016/j.meatsci.2016.09.001.
  • Zhu, C. Z.; Zhao, J. L.; Tian, W.; Liu, Y. X.; Li, M.; Zhao, G. M. Contribution of Histidine and Lysine to the Generation of Volatile Compounds in Jinhua Ham Exposed to Ripening Conditions via Maillard Reaction. J. Food Sci. 2018, 83(1), 46–52. DOI: 10.1111/1750-3841.13996.
  • Xie, C.; Wang, -H.-H.; Nie, X.-K.; Chen, L.; Deng, S.-L.; Xu, X.-L. Reduction of Biogenic Amine Concentration in Fermented Sausage by Selected Starter Cultures. CyTA - J. Food. 2015, 13(4), 491–497. DOI: 10.1080/19476337.2015.1005027.
  • Anastasio, A.; Draisci, R.; Pepe, T.; Mercogliano, R.; Quadri, F. D.; Luppi, G.; Cortesi, M. L. Development of Biogenic Amines during the Ripening of Italian Dry Sausages. J. Food Prot. 2010, 73(1), 114–118. DOI: 10.4315/0362-028X-73.1.114.
  • Xu, P.; Zheng, Y.; Zhu, X.; Li, S.; L-lysine, Z. C. And L-arginine Inhibit the Oxidation of Lipids and Proteins of Emulsion Sausage by Chelating Iron Ion and Scavenging Radical. Asian-australas. J. Anim. Sci. 2018, 31(6), 905–913. DOI: 10.5713/ajas.17.0617.
  • Zhang, Y. W.; Zhang, L.; Hui, T.; Guo, X. Y.; Peng, Z. Q. Influence of Partial Replacement of NaCl by KCl, L-histidine and L-lysine on the Lipase Activity and Lipid Oxidation in Dry-cured Loin Process. LWT - Food Sci. Technol. 2015, 64(2), 966–973. DOI: 10.1016/j.lwt.2015.06.073.
  • Li, W. M.; Wang, P.; Xu, X. L.; Xing, T.; Zhou, G. H. Use of Low-field Nuclear Magnetic Resonance to Characterize Water Properties in Frozen Chicken Breasts Thawed under High Pressure. Eur. Food Res. Technol. 2014, 239(2), 183–188. DOI: 10.1007/s00217-014-2189-9.
  • McDonnell, C. K.; Allen, P.; Duggan, E.; Arimi, J. M.; Casey, E.; Duane, G.; Lyng, J. G. The Effect of Salt and Fibre Direction on Water Dynamics, Distribution and Mobility in Pork Muscle: A Low Field NMR Study. Meat Sci. 2013, 95(1), 51–58. DOI: 10.1016/j.meatsci.2013.04.012.
  • Tahergorabi, R.; Beamer, S. K.; Matak, K. E.; Jaczynski, J. Salt Substitution in Surimi Seafood and Its Effects on Instrumental Quality Attributes. LWT - Food Sci. Technol. 2012, 48(2), 175–181. DOI: 10.1016/j.lwt.2012.03.004.
  • Lu, S.; Xu, X.; Zhou, G.; Zhu, Z.; Meng, Y.; Sun, Y. Effect of Starter Cultures on Microbial Ecosystem and Biogenic Amines in Fermented Sausage. Food Control. 2010, 21(4), 444–449. DOI: 10.1016/j.foodcont.2009.07.008.
  • Folch, J.; Lees, M.; Sloane-Stanley, G. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226(1), 497–509.
  • Kaluzny, M.; Duncan, L.; Merritt, M.; Epps, D. Rapid Separation of Lipid Classes in High Yield and Purity Using Bonded Phase Columns. J. Lipid Res. 1985, 26(1), 135–140. DOI: 10.1089/jir.1985.5.651.
  • Wang, Y.; Jiang, Y. T.; Cao, J. X.; Chen, Y. J.; Sun, Y. Y.; Zeng, X. Q.; Pan, D. D.; Ou, C. R.; Gan, N. Study on Lipolysis-oxidation and Volatile Flavour Compounds of Dry-cured Goose with Different Curing Salt Content during Production. Food Chem. 2016, 190, 33–40. DOI: 10.1016/j.foodchem.2015.05.048.
  • Harlina, P. W.; Shahzad, R.; Ma, M.; Geng, F.; Wang, Q.; He, L.; Ding, S.; Qiu, N. Effect of Garlic Oil on Lipid Oxidation, Fatty Acid Profiles and Microstructure of Salted Duck Eggs. J. Food Process. Preserv. 2015, 39(6), 2897–2911. DOI: 10.1111/jfpp.12541.
  • Hui, T.; Zhang, Y. W.; Jamali, M. A.; Peng, Z. Q. Incorporation of Pig Back Fat in Restructured Dry Cured Ham to Facilitate the Release of Unsaturated Fatty Acids and Generation of Volatile Compounds. Eur. J. Lipid Sci. Technol. 2017, 119(2), 1600025. DOI: 10.1002/ejlt.201600025.
  • Harlina, P. W.; Ma, M.; Shahzad, R.; Gouda, M. M.; Qiu, N. Effect of Clove Extract on Lipid Oxidation, Antioxidant Activity, Volatile Compounds and Fatty Acid Composition of Salted Duck Eggs. J. Food Sci. Technol. 2018, 55(12), 4719–4734. DOI: 10.1007/s13197-018-3367-8.
  • Xing, T.; Zhao, X.; Han, M. Y.; Cai, L. L.; Deng, S. L.; Zhou, G. H.; Xu, X. L. A Comparative Study of Functional Properties of Normal and Wooden Breast Broiler Chicken Meat with NaCl Addition. Poultr. Sci. 2017, 96(9), 3473. DOI: 10.3382/ps/pex116.
  • Mokrini, F.; Waeyenberge, L.; Viaene, N.; Moens, M. WHO Guideline: Potassium intake for adults and children. 2012.
  • Huang, Y. C.; Li, H. J.; Huang, T.; Li, F.; Sun, J. Lipolysis and Lipid Oxidation during Processing of Chinese Traditional Smoke-cured Bacon. Food Chem. 2014, 149(15), 31–39. DOI: 10.1016/j.foodchem.2013.10.081.
  • Li, S.; Zheng, Y.; Xu, P.; Zhu, X.; Zhou, C. l-Lysine and L-arginine Inhibit Myosin Aggregation and Interact with Acidic Amino Acid Residues of Myosin: The Role in Increasing Myosin Solubility. Food Chem. 2018, 242, 22–28. DOI: 10.1016/j.foodchem.2017.09.033.
  • Bardócz, S.;. Polyamines in Food and Their Consequences for Food Quality and Human Health. Trends Food Sci. Technol. 1995, 6(10), 341–346. DOI: 10.1016/S0924-2244(00)89169-4.
  • Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M. T.; Mariné-Font, A.; Vidal-Carou, M. C. Biogenic Amine and Polyamine Contents in Meat and Meat Products. J. Agric. Food Chem. 1997, 45(6), 2098–2102. DOI: 10.1021/jf960790p.
  • Ten Brink, B.; Damink, C.; Joosten, H. M. L. J.; Huis in ‘t Veld, J. H. J. Occurrence and Formation of Biologically Active Amines in Foods. Int. J. Food Microbiol. 1990, 11(1), 73–84. DOI: 10.1016/0168-1605(90)90040-C.
  • Eerola, S.; Maijala, R.; Sagués, A.-X. R.; Salminen, M.; Hirvi, T. Biogenic Amines in Dry Sausages as Affected by Starter Culture and Contaminant Amine-Positive Lactobacillus. J. Food Sci. 1996, 61(6), 1243–1246. DOI: 10.1111/j.1365-2621.1996.tb10970.x.
  • Yang, Y.; Sun, Y.; Pan, D.; Wang, Y.; Cao, J. Effects of High Pressure Treatment on Lipolysis-oxidation and Volatiles of Marinated Pork Meat in Soy Sauce. Meat Sci. 2018, 145, 186–194. DOI: 10.1016/j.meatsci.2018.06.036.
  • Buscailhon, S.; Gandemer, G.; Monin, G. Time-related Changes in Intramuscular Lipids of French Dry-cured Ham. Meat Sci. 1994, 37(2), 245. DOI: 10.1016/0309-1740(94)90084-1.
  • Ripollés, S.; Campagnol, P. C. B.; Armenteros, M.; Aristoy, M. C.; Toldrá, F. Influence of Partial Replacement of NaCl with KCl, CaCl2 and MgCl2 on Lipolysis and Lipid Oxidation in Dry-cured Ham. Meat Sci. 2011, 89(1), 58–64. DOI: 10.1016/j.meatsci.2011.03.021.
  • Jin, G.; Zhang, J.; Yu, X.; Lei, Y.; Wang, J. Crude Lipoxygenase from Pig Muscle: Partial Characterization and Interactions of Temperature, NaCl and pH on Its Activity. Meat Sci. 2011, 87(3), 257–263. DOI: 10.1016/j.meatsci.2010.09.012.
  • Liu, D. C.; Wu, S. W.; Tan, F. J. Effects of Addition of Anka Rice on the Qualities of Low-nitrite Chinese Sausages. Food Chem. 2010, 118(2), 245–250. DOI: 10.1016/j.foodchem.2009.04.114.
  • Zhang, W.; Xiao, S.; Ahn, D. U. Protein Oxidation: Basic Principles and Implications for Meat Quality. Crit. Rev. Food Sci. Nutr. 2013, 53(11), 1191–1201. DOI: 10.1080/10408398.2011.577540.
  • Lorenzo, J. M.; Cittadini, A.; Bermúdez, R.; Munekata, P. E.; Domínguez, R. Influence of Partial Replacement of NaCl with KCl, CaCl2 and MgCl2 on Proteolysis, Lipolysis and Sensory Properties during the Manufacture of Dry-cured Lacòn. Food Control. 2015, 55, 90–96. DOI: 10.1016/j.foodcont.2015.02.035.
  • Jin, G. F.; Zhang, J. H.; Yu, X.; Zhang, Y. P.; Lei, Y. X.; Wang, J. M. Lipolysis and Lipid Oxidation in Bacon during Curing and Drying–Ripening. Food Chem. 2010, 123(2), 465–471. DOI: 10.1016/j.foodchem.2010.05.031.
  • García-González, D. L.; Aparicio, R.; Aparicio-Ruiz, R. Volatile and Amino Acid Profiling of Dry Cured Hams from Different Swine Breeds and Processing Methods. Molecules. 2013, 18(4), 3927–3947. DOI: 10.3390/molecules18043927.
  • Yang, Y.; Zhang, X.; Wang, Y.; Pan, D.; Sun, Y.; Cao, J. Study on the Volatile Compounds Generated from Lipid Oxidation of Chinese Bacon (unsmoked) during Processing. Eur. J. Lipid Sci. Technol. 2017, 119(10), 1600512. DOI: 10.1002/ejlt.201600512.
  • Muriel, E.; Antequera, T.; Petrón, M. J.; Andrés, A. I.; Ruiz, J. Volatile Compounds in Iberian Dry-cured Loin. Meat Sci. 2004, 68(3), 391–400. DOI: 10.1016/j.meatsci.2004.04.006.
  • Purriños, L.; Franco, D.; Carballo, J.; Lorenzo, J. M. Influence of the Salting Time on Volatile Compounds during the Manufacture of Dry-cured Pork Shoulder “lacón”. Meat Sci. 2012, 92(4), 627–634. DOI: 10.1016/j.meatsci.2012.06.010.
  • Barbosa, P. T.; Santos, I. C. V.; Ferreira, V. C. S.; Fragoso, S. P.; Araújo, Í. B. S.; Costa, A. C. V.; Araújo, L. C.; Silva, F. A. P. Physicochemical Properties of Low Sodium Goat Kafta. LWT - Food Sci. Technol. 2017, 76, 314–319. DOI: 10.1016/j.lwt.2016.06.071.
  • García-González, D. L.; Tena, N.; Aparicio-Ruiz, R.; Morales, M. T. Relationship between Sensory Attributes and Volatile Compounds Qualifying Dry-cured Hams. Meat Sci. 2008, 80(2), 315–325. DOI: 10.1016/j.meatsci.2007.12.015.
  • Ghita Studsgaard, N.; Lone Melchior, L.; Leif, P. Formation of Volatile Compounds in Model Experiments with Crude Leek (allium Ampeloprasum Var. Lancelot) Enzyme Extract and Linoleic Acid or Linolenic Acid. J. Agric. Food Chem. 2004, 52(8), 2315–2321. DOI: 10.1021/jf030600s.
  • Marcone, M. F.; Wang, S.; Albabish, W.; Nie, S.; Somnarain, D.; Hill, A. Diverse Food-based Applications of Nuclear Magnetic Resonance (NMR) Technology. Food Res. Int. 2013, 51(2), 729–747. DOI: 10.1016/j.foodres.2012.12.046.
  • Bertram, H. C.; Karlsson, A. H.; Andersen, H. J. The Significance of Cooling Rate on Water Dynamics in Porcine Muscle from Heterozygote Carriers and Non-carriers of the Halothane Gene—A Low-field NMR Relaxation Study. Meat Sci. 2003, 65(4), 1281–1291. DOI: 10.1016/s0309-1740(03)00038-x.
  • Li, X.; Ma, L. Z.; Tao, Y.; Kong, B. H.; Li, P. J. Low field-NMR in Measuring Water Mobility and Distribution in Beef Granules during Drying Process. Adv. Mater. Res. 2012, 550, 3406–3410. DOI: 10.4028/www.scientific.net/AMR.550-553.3406.
  • Volkov, A. G.; Paula, S.; Deamer, D. W. Two Mechanisms of Permeation of Small Neutral Molecules and Hydrated Ions across Phospholipid Bilayers. Bioelectrochem. Bioenerg. 1997, 42(2), 153–160. DOI: 10.1016/S0302-4598(96)05097-0.