2,578
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Structure and functional properties of protein from defatted Camellia oleifera seed cake: Effect of hydrogen peroxide decolorization

, , , , &
Pages 1283-1295 | Received 25 Mar 2019, Accepted 07 Jul 2019, Published online: 15 Jul 2019

References

  • Chen, J. H.; Wu, H. Y.; Liau, B. C.; Chang, C. M. J.; Jong, T. T.; Wu, L. C. Identification and Evaluation of Antioxidants Defatted Camellia Oleifera Seeds by Isopropanol Salting-out Pretreatment. Food Chem. 2010, 121(4), 1246–1254. DOI: 10.1016/j.foodchem.2010.01.015.
  • Hu, J. L.; Nie, S. P.; Huang, D. F.; Li, C.; Xie, M. Y.; Wan, Y. Antimicrobial Activity of Saponin-rich Fraction from Camellia Oleifera Cake and Its Effect on Cell Viability of Mouse Macrophage RAW 264.7. J. Sci. Food Agric. 2012, 92(12), 2443–24449. DOI: 10.1002/jsfa.5650.
  • Li, X.; Shen, S.; Deng, J.; Li, T.; Ding, C. Antioxidant Activities and Functional Properties of Tea Seed Protein Hydrolysates (camellia Oleifera Abel.) Influenced by the Degree of Enzymatic Hydrolysis. Food Sci. Biotechnol. 2014, 23(6), 2075–2082. DOI: 10.1007/s10068-014-0282-2.
  • Wu, Y. F.; Da, S.; Hao, C.; Lisheng, Q.; Ping, X. Fatty Acid Composition and Antioxidant Activity of Tea (camellia Sinensis L.) Seed Oil Extracted by Optimized Supercritical Carbon Dioxide. Int. J. Mol. Sci. 2011, 12(11), 7708–7719. DOI: 10.3390/ijms12117708.
  • Li, T. T.; Zhang, H.; Wu. Screening of Antioxidant and Antitumor Activities of Major Ingredients from Defatted Camellia Oleifera Seeds. Food Sci. Biotechnol. 2014, 23(3), 873–880. DOI: 10.1007/s10068-014-0117-1.
  • Ahmedna, M.; Marshall, W. E.; Rao, R. M. Surface Properties of Granular Activated Carbons from Agricultural By-products and Their Effects on Raw Sugar Decolorization. Bioresour. Technol. 2000, 71(2), 103–112. DOI: 10.1016/S0960-8524(99)90069-X.
  • Simaratanamongkol, A.; Thiravetyan, P. Decolorization of Melanoidin by Activated Carbon Obtained from Bagasse Bottom Ash. J. Food Eng. 2010, 96(1), 14–17. DOI: 10.1016/j.jfoodeng.2009.06.033.
  • Lijuan, Z.; Jie, C.; Xueyan, T.; Xiong, Y. L. Reducing, Radical Scavenging, and Chelation Properties of in Vitro Digests of Alcalase-treated Zein Hydrolysate. J. Agric Food Chemi. 2008, 56(8), 2714–2721. DOI: 10.1021/jf703697e.
  • Xueyan, T.; Zhiyong, H.; Yanfeng, D.; Xiong, Y. L.; Mingyong, X.; Jie, C. Peptide Fractionation and Free Radical Scavenging Activity of Zein Hydrolysate. J. Agric. Food Chem. 2010, 58(1), 587–593. DOI: 10.1021/jf9028656.
  • Achaerandio, I.; Güell, C.; López, F. Continuous Vinegar Decolorization with Exchange Resins. J. Food Eng. 2002, 51(4), 311–317. DOI: 10.1016/S0260-8774(01)00073-5.
  • Xie, J. H.; Shen, M. Y.; Nie, S. P.; Li, C.; Xie, M. Y. Decolorization of Polysaccharides Solution from Cyclocarya Paliurus (batal.) Iljinskaja Using ultrasound/H₂O₂ Process. Carbohydr. Polym. 2011, 84(1), 255–261. DOI: 10.1016/j.carbpol.2010.11.030.
  • CFR (2014) 21CFR184.1366: Listing of Specific Substances Affirmed as GRAS:Hydrogen Peroxide. Code of Federal Regulations (vol. 3) MD 20993: Silver Spring.
  • Mustapha, N. A.; Ruttarattanamongkol, K.; Rizvi, S. S. H. The Effects of Supercritical Fluid Extrusion Process on Surface Hydrophobicity of Whey Protein Concentrate and Its Relation to Storage and Heat Stability of Concentrated Emulsions. Food Res. Int. 2012, 48(2), 470–477. DOI: 10.1016/j.foodres.2012.05.015.
  • Zilic, S.; Akllioglu, G.; Serpen, A.; Barac, M.; Gokmen, V. Effects of Isolation, Enzymatic Hydrolysis, Heating, Hydratation and Maillard Reaction on the Antioxidant Capacity of Cereal and Legume Proteins. Food Res. Int. 2012, 49(1), 1–6. DOI: 10.1016/j.foodres.2012.06.031.
  • Salwi, H.;. Biuret Method for Soluble Whey Proteins in Nonfat Dry Milk Solids. J. Food Sci. 2010, 19(1–6), 235–245. DOI: 10.1111/j.1365-2621.1954.tb17445.x.
  • Khatkar, B. S.; Barak, S.; Mudgil, D. Effects of Gliadin Addition on the Rheological, Microscopic and Thermal Characteristics of Wheat Gluten. Int. J. Biol. Macromol. 2013, 53(2), 38–41. DOI: 10.1016/j.ijbiomac.2012.11.002.
  • Lee, M. K.; Kim, J. K.; Lee, S. Y. Effects of Fermentation on Sds-page Patterns, Total Peptide, Isoflavone Contents and Antioxidant Activity of Freeze-thawed Tofu Fermented with Bacillus Subtilis. Food Chem. 2017, 249, 60–65. DOI: 10.1016/j.foodchem.2017.12.045.
  • Latif, M. H.; PS, B.; Pfannstiel. Amino Acid Composition, Antinutrients and Allergens in the Peanut;protein Fraction Obtained by an Aqueous Enzymatic Process. Food Chem. 2013, 136(1), 213–217. DOI: 10.1016/j.foodchem.2012.07.120.
  • Kyomugasho, C.; Christiaens, S.; Shpigelman, A.; Loey, A. M. V.; Hendrickx, M. E. FT-IR Spectroscopy, a Reliable Method for Routine Analysis of the Degree of Methylesterification of Pectin in Different Fruit- and Vegetable-based Matrices. Food Chem. 2015, 176, 82–90. DOI: 10.1016/j.foodchem.2014.12.033.
  • Chen, L.; Tian, Y.; Tong, Q.; Zhang, Z.; Jin, Z. Effect of Pullulan on the Water Distribution, Microstructure and Textural Properties of Rice Starch Gels during Cold Storage. Food Chem. 2017, 214, 702–709. DOI: 10.1016/j.foodchem.2016.07.122.
  • Joshi, M.; Adhikari, B.; Aldred, P.; Panozzo, J. F.; Kasapis, S. Physicochemical and Functional Properties of Lentil Protein Isolates Prepared by Different Drying Methods. Food Chem. 2011, 129(4), 1513–1522. DOI: 10.1016/j.foodchem.2011.05.131.
  • Hung, S. C.; Zayas, J. F. Emulsifying Capacity and Emulsion Stability of Milk Proteins and Corn Germ Protein Flour. J. Food Sci. 2010, 56(5), 1216–1218. DOI: 10.1111/j.1365-2621.1991.tb04737.x.
  • Sathe, S. K.; Salunkhe, D. K. Functional Properties of the Great Northern Bean (phaseolus Vulgaris L.) Proteins: Emulsion, Foaming, Viscosity, and Gelation Properties. J. Food Sci. 2010, 46(1), 71–81. DOI: 10.1111/j.1365-2621.1981.tb14533.x.
  • Wang, W.; Xue, W.; Ma, F.; Xu, X.; Jin, B. Candidate Gene Expression Affects Intramuscular Fat Content and Fatty;acid Composition in Pigs. J. Appl. Genet. 2013, 54(1), 113–118. DOI: 10.1007/s13353-012-0131-z.
  • Pacifici, R. E.; Kono, Y.; KJ, D. Hydrophobicity as the Signal for Selective Degradation of Hydroxyl Radical-modified Hemoglobin by the Multicatalytic Proteinase Complex, Proteasome. J. Biol. Chem. 1993, 268(21), 15405–15411.
  • Li, Y.; Kong, B.; Xia, X.; Qian, L.; Diao, X. Structural Changes of the Myofibrillar Proteins in Common Carp (cyprinus Carpio) Muscle Exposed to a Hydroxyl Radical-generating System. Process Biochem. 2013, 48(5–6), 863–870. DOI: 10.1016/j.procbio.2013.03.015.
  • Morzel, M.; Gatellier, P.; Sayd, T.; Renerre, M.; Laville, E. Chemical Oxidation Decreases Proteolytic Susceptibility of Skeletal Muscle Myofibrillar Proteins. Meat Sci. 2006, 73(3), 536–543. DOI: 10.1016/j.meatsci.2006.02.005.
  • Thomas, J. A.; Mallis, R. J. Aging and Oxidation of Reactive Protein Sulfhydryls. Exp. Gerontology. 2001, 36(9), 1519–1526.
  • Davies, K. J.; Goldberg, A. L. Proteins Damaged by Oxygen Radicals are Rapidly Degraded in Extracts of Red Blood Cells. J.biol.chem. 1987, 262(17), 8227–8234.