1,582
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Rheological properties and structure of myofibrillar protein extracted from Oratosquilla oratoria muscle as affected by ultra-high pressure

, , , , , , & show all
Pages 1310-1321 | Received 27 Mar 2019, Accepted 07 Jul 2019, Published online: 18 Jul 2019

References

  • Yan, H., Cui, X., Shen, X., Wang, L., Jiang, L.; Liu, H.; Liu, Y.; Liu, Q.; Jiang, C. De Novo Transcriptome Analysis and Differentially Expressed Genes in the Ovary and Testis of the Japanese Mantis Shrimp Oratosquilla Oratoria by Rna-seq. Comparative Biochemistry & Physiology Part D. Genomics Proteomics. 2018, 26, 69–78.
  • Morita, M.;. Reproductive Biology of the Japanese Mantis Shrimp (crustacea Stomatopoda): Annual Cycle of Gonadal Development and Copulation. Mar. Biol. Res. 2009, 5(5), 415–426. DOI: 10.1080/17451000802644714.
  • Wang, Z.; Yang, W.; Zhou, G.; Xu, D.; Lou, Q.; Zhang, J.; Cui, Y. Shelling of Solenocera Melantho Using Ultra High Pressure and Its Effect on the Quality of Muscle. Food Sci. 2017, 38(07), 43–48.
  • Xi, X. X.; Xu, B. C.; Xu, S. C.; Liu, T.; Huang, J. Effects of Ultra-high Pressure Processing on Survival of Microorganisms in Meat Products and Microbial Inactivation Mechanisms: A Review. Meat Res. 2016, 30(8), 39–43.
  • Jantakoson, T.; Kijroongrojana, K.; Benjakul, S. Effect of High Pressure and Heat Treatments on Black Tiger Shrimp (penaeus Monodon Fabricius) Muscle Protein. Int. Aquat. Res. 2012, 4(1), 1–12. DOI: 10.1186/2008-6970-4-19.
  • Gómez-Estaca, J.; Montero, P.; Fernández-Martín, F.; Calvo, M. M.; Gómez-Guillén, M. C. The Effect of High-pressure Treatment on Functional Components of Shrimp (litopenaeus Vannamei) Cephalothorax. Innovative Food Sci. Emerg. Technol. 2016, 34, 154–160. DOI: 10.1016/j.ifset.2016.01.017.
  • Zhang, Z. Y.; Yang, Y. L.; Zhou, P.; Zhang, X.; Wang, J. Y. Effects of High Pressure Modification on Conformation and Gelation Properties of Myofibrillar Protein. Food Chem. 2017, 217, 678–686. DOI: 10.1016/j.foodchem.2016.09.040.
  • Ahmed, J.; Al-Ruwaih, N.; Mulla, M.; Rahman, M. H. Effect of High Pressure Treatment on Functional, Rheological and Structural Properties of Kidney Bean Protein Isolate. LWT- Food Sci. Technol. 2018, 91, 191–197. DOI: 10.1016/j.lwt.2018.01.054.
  • Lin, X.; Zhen, J. I.; Shu, Y.; Yang, W.; Xu, D. L.; Yan, X. Cryoprotective Effects of Mackerel Hydrolysate Addition on the Hairtail Surimi during Frozen Storage. J. Nucl. Agric. Sci. 2015, 29(5), 940–945.
  • Delgado-Pando, G.; Cofrades, S.; Ruiz-Capillas, C.; Triki, M.; Jiménez-Colmenero, F. Low-fat Pork Liver Pâtés Enriched with N-3 Pufa/konjac Gel: Dynamic Rheological Properties and Technological Behaviour during Chill Storage. Meat Sci. 2012, 92(1), 44–52. DOI: 10.1016/j.meatsci.2012.04.002.
  • Laemmli, U. K.;. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970, 227, 680–685. DOI: 10.1038/227680a0.
  • Gómez-Guillén, M. C.; Borderı́As, A. J.; Montero, P. Chemical Interactions of Non-Muscle Proteins in the Network of Sardine (sardina Pilchardus) Muscle Gels ☆. LWT - Food Sci. Technol. 1997, 30(6), 602–608. DOI: 10.1006/fstl.1997.0239.
  • Careche, M.; Alvarez, C.; Tejada, M. Suwari and Kamaboko Sardine Gels: Effect of Heat Treatment on Solubility of Networks. J.Agric.Food Chem. 1995, 43(4), 1002–1010. DOI: 10.1021/jf00052a030.
  • Wang, W.; Ge, Q.; Chen, Y.; Xu, X. L.; zhou, G. H. Effect of Ultra-high Pressure Treatments on the Activity and Secondary Structure of Metmyoglobin Reductase (metmbase). J. Chin. Inst. Food Sci. Technol. 2015, 15(10), 134–140.
  • Saricaoglu, F. T.; Gul, O.; Tural, S.; Turhan, S. Potential Application of High Pressure Homogenization (hph) for Improving Functional and Rheological Properties of Mechanically Deboned Chicken Meat (mdcm) Proteins. J. Food Eng. 2017, 215, 161–171. DOI: 10.1016/j.jfoodeng.2017.07.029.
  • Song, X.; Zhou, C.; Fu, F.; Chen, Z.; Wu, Q. Effect of High-pressure Homogenization on Particle Size and Film Properties of Soy Protein Isolate. Ind. Crops Prod. 2013, 43(1), 538–544. DOI: 10.1016/j.indcrop.2012.08.005.
  • Ahmed, J.; Thomas, L.; Arfat, Y. A.; Joseph, A. Rheological, Structural and Functional Properties of High-pressure Treated Quinoa Starch in Dispersions. Carbohydr. Polym. 2018, 197, 649–657. DOI: 10.1016/j.carbpol.2018.05.081.
  • Zhao, Y. L.; Wang, J. B.; Shan, L. M.; Jin, C.; Ma, L.; Xiao, X. H. Effect of Radix Isatidis, Polysaccharides on Immunological Function and Expression of Immune Related Cytokines in Mice. Chin. J. Integr. Med. 2008, 14(3), 207–211. DOI: 10.1007/s11655-008-0207-2.
  • Yong, L. I.; Cheng, Y. D. Rheological Properties of Silver Carp Surimi. Food Sci. 2007, 28(10), 100–104.
  • Leite, T. S.; Augusto, P. E. D.; Cristianini, M. Processing Frozen Concentrated Orange Juice (fcoj) by High Pressure Homogenization (hph) Technology: Changes in the Viscoelastic Properties. Food Eng. Rev. 2014, 7(2), 1–10.
  • Gul, O.; Saricaoglu, F. T.; Mortas, M.; Atalar, I.; Yazici, F. Effect of High Pressure Homogenization (hph) on Microstructure and Rheological Properties of Hazelnut Milk. Innovative Food Sci. Emerg. Technol. 2017, 41, 411–420. DOI: 10.1016/j.ifset.2017.05.002.
  • Moreno, H. M.; Bargiela, V.; Tovar, C. A.; Cando, D.; Borderias, A. J.; Herranz, B. High Pressure Applied to Frozen Flying Fish (parexocoetus Brachyterus) Surimi: Effect on Physicochemical and Rheological Properties of Gels. Food Hydrocolloids. 2015, 48(4), 127–134. DOI: 10.1016/j.foodhyd.2015.01.029.
  • Qiu, C.; Xia, W.; Jiang, Q. Effect of High Hydrostatic Pressure (HHP) on Myofibril-bound Serine Proteinases and Myofibrillar Protein in Silver Carp (hypophthalmichthys Molistrix). Food Res. Int. 2013, 52, 199–205. DOI: 10.1016/j.foodres.2013.03.014.
  • Cando, D.; Herranz, B.; Borderías, A. J.; Moreno, H. M. Effect of High Pressure on Reduced Sodium Chloride Surimi Gels. Food Hydrocolloids. 2015, 51, 176–187. DOI: 10.1016/j.foodhyd.2015.05.016.
  • Xue, S.; Xu, X.; Shan, H.; Wang, H.; Yang, J.; Zhou, G. Effects of High-intensity Ultrasound, High-pressure Processing, and High-pressure Homogenization on the Physicochemical and Functional Properties of Myofibrillar Proteins. Innovative Food Sci. Emerg. Technol. 2018, 45, 354–360. DOI: 10.1016/j.ifset.2017.12.007.
  • Chen, X.; Zhou, R.; Xu, X.; Zhou, G.; Liu, D. Structural Modification by High-pressure Homogenization for Improved Functional Properties of Freeze-dried Myofibrillar Proteins Powder. Food Res. Int. 2017, 100(Pt 1), 193–200. DOI: 10.1016/j.foodres.2017.07.007.
  • Martínez, M. A.; Velazquez, G.; Cando, D.; Núñez-Flores, R.; Borderías, A. J.; Moreno, H. M. Effects of High Pressure Processing on Protein Fractions of Blue Crab (callinectes Sapidus) Meat. Innovative Food Sci. Emerg. Technol. 2017, 41, 323–329. DOI: 10.1016/j.ifset.2017.04.010.
  • Cao, Y. Y.; Zhang, L.; Wang, P.; Zhou, G. H.; Xing-Lian, X. U. Combined Effect of Ultra High Pressure and Heating on Gel Properties and Secondary Structure of Myosin. Meat Res. 2013, 27(1), 1–7.
  • Bulaj, G.;. Formation of Disulfide Bonds in Proteins and Peptides. Biotechnol. Adv. 2005, 23(1), 87–92. DOI: 10.1016/j.biotechadv.2004.09.002.
  • Cao, Y.; Xia, T.; Zhou, G.; Xu, X. The Mechanism of High Pressure-induced Gels of Rabbit Myosin. Innovative Food Sci. Emerg. Technol. 2012, 16(39), 41–46. DOI: 10.1016/j.ifset.2012.04.005.
  • Ding, X. L.; Gao, H. Q. Applications and Experimental Methods of Circular Dichroism Spectroscopy. Exp. Technol. Manage. 2008, 25(10), 48–52.
  • Saricaoglu, F. T.; Tural, S.; Gul, O.; Turhan, S. High Pressure Homogenization of Mechanically Deboned Chicken Meat Protein Suspensions to Improve Mechanical and Barrier Properties of Edible Films. Food Hydrocolloids. 2018, 84, 135–145. DOI: 10.1016/j.foodhyd.2018.05.058.
  • Feng, Y.; Lee, Y. Microfluidic Fabrication of Wrinkled Protein Microcapsules and Their Nanomechanical Properties Affected by Protein Secondary Structure. J. Food Eng. 2018, 246, 102–110. DOI: 10.1016/j.jfoodeng.2018.10.028.
  • Nan, J.; Zou, M.; Wang, H.; Xu, C.; Zhang, J.; Wei, B.; He, L.; Xu, Y. Effect of Ultra-high Pressure on Molecular Structure and Properties of Bullfrog Skin Collagen. Int. J. Biol. Macromol. 2018, 111, 200–207. DOI: 10.1016/j.ijbiomac.2017.12.163.