7,005
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Characterization and stability of pitaya pearls from hydrocolloids by reverse spherification

, , , , , & show all
Pages 1353-1364 | Received 18 Apr 2019, Accepted 19 Jul 2019, Published online: 05 Aug 2019

References

  • Xu, J. B.; Bartley, J. P.; Johnson, R. A. Preparation and Characterization of Alginate-carreegenan Hydrogel Films Crosslinked Using a Water-soluble Carbodimide (WSC). J. Membr. Sci. 2003, 218, 131–136. DOI: 10.1016/S0376-7388(03)00165-0.
  • Min, J. E.; Green, D. B.; Kim, L. Calories and Sugars in Boba Milk Tea: Implications for Obesity Risk in Asian Pacific Islanders. Food Sci. Nutr. 2016, 5, 38–45. DOI: 10.1002/fsn3.362.
  • Malik, V. S.; Popkin, B. M.; Bray, G. A.; Despres, J. P.; Hu, F. B. Sugar-sweetened Beverages, Obesity, Type 2 Diabetes Mellitus and Cardiovascular Disease Risk. Circulation. 2010, 121, 1356–2364. DOI: 10.1161/CIRCULATIONAHA.109.876185.
  • Wong, P. K.; (2013) Local Bubble Tea Shops Assure Customers on Safety with Lab Test Results. The Star online web. https://www.thestar.com.my/news/nation/2013/05/31/our-pearls-safe-to-consume-local-bubble-tea-shops-assure-customers-with-lab-test-results/ (accessed Nov 20, 2017).
  • Fu, H. Y.; Li, H. D.; Xu, L.; Yin, Q. B.; Yang, T. M.; Ni, C.; Cai, C. B.; Yang, J.; She, Y. B. Detection of Unexpected Frauds: Screening and Quantification of Maleic in Cassava Starch by Fourier Transform Near-infrared Spectroscopy. Food Chem. 2017, 227, 322–328. DOI: 10.1016/j.foodchem.2017.01.096.
  • Benzing, D. H.;. Vascular Epiphytes, General Biology and Related Biodata; Cambridge University Press: Cambridge, 1990.
  • Haber, W. A.;. Hylocereus Costaricensis (Pitahaya Silvestre), Wild Pitahaya. In Costarican Natural History; Janzen, D. H., Ed.; University of Chicago Press: Chicago, 1983; pp 252–253).
  • Jaafar, A.; Nazri, M.; Khairuddin, W. Proximate Analysis of Dragon Fruit (hylecereus Polyhizus). Am. J. Appl. Sci. 2009, 6, 1341–1346. DOI: 10.3844/ajassp.2009.1341.1346.
  • Nurul, S. R.; Asmah, R. Variability in Nutritional Composition and Phytochemical Properties of Red Pitaya (hylocereus Polyrhizus) from Malaysia and Australia. Int. Food Res. J. 2014, 21, 1689–1697.
  • Wichienchot, S.; Jatupornpipat, M.; Rastali, R. A. Oligosaccharides of Pitaya (dragon Fruit) Flesh and Their Prebiotic Properties. Food Chem. 2010, 120, 850–857. DOI: 10.1016/j.foodchem.2009.11.026.
  • Tenore, G. C.; Novellino, E.; Basile, A. Nutraceutical Potential and Antioxidant Benefits of Red Pitaya (hylocereus Polyrhizus) Extracts. J. Funct. Foods. 2012, 4, 129–134. DOI: 10.1016/j.jff.2011.09.003.
  • Minh, N. P.;. Various Factors Influencing to Red Dragon Fruit (hylocereus Polyrhizus) Wine Fermentation. Int. J. Multidiscip. Res. Dev. 2014, 1, 94–98.
  • Luders, L.; McMahon, G. The Pitaya or Dragon Fruit (hylocereus Undatus). In Crops. Forestry and Horticulture, Darwin, Department of Primary Industry, Fisheries and Mines, Northern Territory Government, Australia, 2006; pp 1–4.
  • Tze, N. G.; Han, C. P.; Yusof, Y. A.; Ling, C. N.; Talib, R.; Taip, S. F.; Aziz, M. G. Physicochemical and Nutritional Properties of Spray Dried Pitaya Fruit Powder as Natural Colorant. Food Sci. Biotechnol. 2012, 21, 675–682. DOI: 10.1007/s10068-012-0088-z.
  • Moshfeghi, N.; Mahdavi, O.; Shahhosseini, F.; Malekifar, S.; Taghizadeh, S. K. Introducing a New Natural Product from Dragon Fruit into the Market. Int. J. Res. Rev. Appl. Sci. 2013, 15, 269–272.
  • Safura, S.; Hasanah, M. G.; Syed Hamed, M.; Kharidah, M. Stability of Betanin in Pitaya Powder and Confection as Affected by Resistant Maltodextrin. LWT Food Sci. Technol. 2017, 84, 129–134. DOI: 10.1016/j.lwt.2017.05.031.
  • Tsai, F. H.; Chiang, P. Y.; Kitmura, Y.; Kokowa, M.; Islam, M. Z. Producing Liquid-core Hydrogel Beads by Reverse Spherification: Effect of Secondary Gelation on Physical Properties and Release Characteristics. Food Hydrocolloids. 2017, 62, 140–148. DOI: 10.1016/j.foodhyd.2016.07.002.
  • Lee, P. M.; Rogers, A. Effect of Calcium Source and Exposure Time on Basic Caviar Spherification Using Sodium Alginate. Int. J. Gastronomy Food Sci. 2012, 1, 96–100. DOI: 10.1016/j.ijgfs.2013.06.003.
  • Draget, K. I.; Taylor, C. Chemical, Physical and Biological Properties of Alginates and Their Biomedical Implications. Food Hydrocolloids. 2011, 25, 251–256. DOI: 10.1016/j.foodhyd.2009.10.007.
  • Ching, S. H.; Bansal, N.; Bhandari, B. Alginate Gel Particles – A Review of Production Techniques and Physical Properties. Crit. Rev. Food Sci. Nutr. 2015, 57, 1133–1152. DOI: 10.1080/10408398.2014.965773.
  • Anderson, T.; Melvik, J. E.; Gaserod, O.; Alsberg, E.; Christensen, B. E. Ionically Gelled Alginate Foams: Physical Properties Controlled by Operational and Macromelecular Parameters. Biol. Macromol. 2012, 13, 3703–3710.
  • Keppeler, A.; Ellis, A.; Jacquier, J. C. Cross-linked Carrageenan Beads for Controlled Release Delivery System. Carbohydr. Polym. 2009, 78, 973–977. DOI: 10.1016/j.carbpol.2009.07.029.
  • Anbinder, P. S.; Deladino, L.; Navarro, A. S.; Amalvy, J. I.; Martino, M. N. Yerba Mate Extract Encapsulation with Alginate and Chitosan Systems: Interactions between Active Compound Encapsulation Polymers. J. Encapsulation Adsorpt. Sci. 2011, 1, 80–87. DOI: 10.4236/jeas.2011.14011.
  • Belščak-Cvitanović, A.; Stojanović, R.; Manojlović, V.; Komes, D.; Juranović Cindrić, I.; Nedović, V.; Bugarski, B. Encapsulation of Polyphenolic Antioxidants from Medicinal Plant Extracts in Alginate-chitosan System Enhanced with Ascorbic Acid by Electrostatic Extrusion. Food Res. Int. 2011, 44, 1094–1101. DOI: 10.1016/j.foodres.2011.03.030.
  • Mohamadnia, Z.; Zohuriaan-Mehr, M. J.; Kabiri, K.; Jamshidi, A.; Mobedi, H. Ionically Cross-linked Carrageenan-alginate Hydrogel Beads. J. Biomater. Sci., Polym. Ed. 2008, 19, 47–59. DOI: 10.1163/156856208783227640.
  • Popa, E. G.; Gomes, M. E.; Reis, R. L. Cell Delivery Systems Using Alginate_carrageenan Hydrogel Beads and Fibers for Regenerative Medicine Applications. Biomacromolecules. 2011, 12, 3952–3961. DOI: 10.1021/bm200965x.
  • Torres, M. D.; Chenlo, F.; Moreira, R. Structural Features and Water Sorption Isotherms of Carrageenans: A Prediction Model for Hybrid Carrageenans. Carbohydr. Polym. 2018, 180, 72–80. DOI: 10.1016/j.carbpol.2017.10.010.
  • Stenner, R.; Matubayasi, N.; Shimizu, S. Gelation of Carrageenan: Effects of Sugars and Polyols. Food Hydrocolloids. 2016, 54, 284–292. DOI: 10.1016/j.foodhyd.2015.10.007.
  • Mangione, M. R.; Giacomazza, D.; Bilone, D.; Martorana, V.; Biaro, P. L. Thermoreversible Gelation of K-carrageenan: Relation between Conformational Transition and Aggregation. Biophys. Chem. 2003, 104, 95–105. DOI: 10.1016/S0301-4622(02)00341-1.
  • JECFA. Carrageenan. In FAO JECFA Monographs 16: Compedium of Food Additives Specifications (79th Meeting) FAO/WHO, Food and Agriculture Organization of the United Nations, World Health Organizations, Rome, 2014; pp 7–12.
  • Paula, G. A.; Benevides, N. M. B.; Cunha, A. P.; Oliveira, A. P.; Pinto, A. M. B.; Morais, P. S.; Azeredo, H. M. C. Development and Characterization of Edible Films from Mixtures of κ-carrageenan, ι-carrageenan and Alginate. Food Hydrocolloids. 2015, 47, 140–145. DOI: 10.1016/j.foodhyd.2015.01.004.
  • Kolesnyk, I.; Konovalova, V.; Burban, A. Alginate/κ-carrageenan Microspheres and Their Application for Protein Drug Controlled Release. Chem. Chem. Technol. 2015, 9, 486–492. DOI: 10.23939/chcht09.04.485.
  • Belščak-Cvitanović, A.; Komesa, D.; Karlović, S.; Djaković, S.; Igor, Š.; Gordan, M.; Ježeka, M. Improving the Controlled Delivery Formulations of Caffeine in Alginate Hydrogel Beads Combined with Pectin, Carrageenan, Chitosan and Psyllium. Food Chem. 2015, 167, 378–386. DOI: 10.1016/j.foodchem.2014.07.011.
  • Krishnamoorthy, B.; Basu, S. K. Chitosan Coated Alginate-carrageenan Particulate Systems for Sustained Release of Naproxen. Int. J. Pharm. Health Care. 2013, 1, 96–108.
  • Lin, W. T.; Huang, H. L.; Chan, T. F.; Ciou, S. Y.; Lee, C. Y.; Chiu, Y. W.; Duh, T. H.; Lin, P. L.; Wang, T. N.; Liu, T. Y.; et al. Effect on Uric Acid, Body Mass Index and Blood Pressure in Adolescents of Consuming Beverages Sweetened with High-fructose Corn Syrup. Int. J. Obes. 2013, 37, 532–539. DOI: 10.1038/ijo.2012.48.
  • Chan, T. F.; Lin, W. T.; Chen, Y. L.; Huang, H. L.; Yang, W. Z.; Lee, C. Y.; Chen, M. H.; Wang, T. N.; Huang, M. C.; Chiu, Y. W.; et al. Elevated Serum Triglyceride and Retinol-binding Protein 4 Levels Associated with Fructose-sweetened Beverages in Adolescents. Plos One. 2014, 9, 1–9.
  • Wong, Y. M.; Siow, L. F. Effects of Heat, pH, Antioxidant, Agitation and Light on Betacyanin Stability Using Red-fleshed Dragon Fruit (hylocereus Polyrhizus) Juice and Concentrate as Models. J. Food Sci. Technol. 2015, 5, 3086–3092. DOI: 10.1007/s13197-014-1362-2.
  • Shurikhin, I. M.; Tutelian, V. A. Chemical Composition of Russian Food Products: Handbook; DeLi Print: Moscow, Russia, 2002.
  • Krisnaiah, D.; Sarbatly, R.; Prasad, D. M. R.; Bono, A. Mineral Content of Some Seaweeds from Sabah’s South China Sea. Asian J. Sci. Res. 2008, 1, 166–170. DOI: 10.3923/ajsr.2008.166.170.
  • Mohammadi, M.; Tajik, H.; Hajeb, P. Nutritional Composition of Seaweeds from the Northern Persian Gulf. Iran. J. Fish. Sci. 2013, 12, 232–240.
  • Saha, D.; Bhattacharya, S. Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. J. Food Sci. Technol. 2010, 47, 587–597. DOI: 10.1007/s13197-010-0114-1.
  • Istini, S.; Ohno, M.; Kushunose, M. Methods of Analysis for Agar, Carrageenan and Alginate in Seaweed. Bull. Dep. Mar. Sci. Univ. Cochin. 1994, 14, 49–55.
  • Mangione, M. R.; Giacomazza, D.; Bulone, D.; Martorana, V.; Cavallaro, G.; San Biago, P. L. K (+) and Na (+) Effects on the Gelation Properties of Kappa-carrageenan. Biophys. Chem. 2005, 113, 129–135. DOI: 10.1016/j.bpc.2004.08.005.
  • Castellar, M. R.; Obón, J. M.; Fernández-López, J. A. The Isolation and Properties of Red-purple Betacyanin Food Colourant from Opuntia Stricta Fruits. J. Sci. Food Agric. 2006, 86, 122–128. DOI: 10.1002/jsfa.2285.
  • Xu, A.; Bartley, J. P.; Johnson, R. A. Preparation and Characterization of Alginate–Carrageenan Hydrogel Films Crosslinked Using a Water-soluble Carbodiimide (WSC). J. Membr. Sci. 2003, 218, 131–146. DOI: 10.1016/S0376-7388(03)00165-0.