2,875
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Nitrite accumulation during storage of tomato fruit as prevented by hydrogen gas

, , , , , , , & show all
Pages 1425-1438 | Received 21 Apr 2019, Accepted 30 Jul 2019, Published online: 13 Aug 2019

References

  • Banihani, S. A.;. Tomato (solanum Lycopersicum L.) And Type 2 Diabetes. Int. J. Food Prop. 2018, 21(1), 99–105. DOI: 10.1080/10942912.2018.1439959.
  • Santamaria, P.;. Nitrate in Vegetables: Toxicity, Content, Intake and EC Regulation. J. Sci. Food Agric. 2006, 86(1), 10–17. DOI: 10.1002/(ISSN)1097-0010.
  • Zhong, W.; Hu, C.; Wang, M. Nitrate and Nitrite in Vegetables from North China: Content and Intake. Food Addit. Contam. 2002, 19(12), 1125–1129. DOI: 10.1080/0265203021000014806.
  • Zhang, W. F.; Dou, Z. X.; He, P.; Ju, X.-T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.-L.; Zhang, Y.; Wu, L.; et al. New Technologies Reduce Greenhouse Gas Emissions from Nitrogenous Fertilizer in China. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(21), 8375–8380. DOI: 10.1073/pnas.1210447110.
  • Tomato Genome Consortium. The Tomato Genome Sequence Provides Insights into Fleshy Fruit Evolution. Nature. 2012, 485, 635–641. DOI: 10.1038/nature11096.
  • Shpaizer, A.; Nussinovich, A.; Kanner, J.; Tirosh, O. S-Nitroso-N-acetylcysteine Generates Less Carcinogenic N-Nitrosamines in Meat Products than Nitrite. J. Agric. Food Chem. 2018, 66(43), 11459–11467. DOI: 10.1021/acs.jafc.8b04549.
  • Kohn, M. C.; Melnick, R. L.; Ye, F.; Portier, C. J. Pharmacokinetics of Sodium Nitrite-induced Methemoglobinemia in the Rat. Drug Metab. Dispos. 2002, 30(6), 676–683. DOI: 10.1124/dmd.30.6.676.
  • Ghasemi, A.; Jeddi, S. Anti-obesity and Anti-diabetic Effects of Nitrate and Nitrite. Nitric Oxide. 2017, 70, 9–24. DOI: 10.1016/j.niox.2017.08.003.
  • Pimková, K.; Chrastinová, L.; Suttnar, J.; Štikarová, J.; Kotlín, R.; Čermák, J.; Dyr, J. E. Plasma Levels of Aminothiols, Nitrite, Nitrate, and Malondialdehyde in Myelodysplastic Syndromes in the Context of Clinical Outcomes and as a Consequence of Iron Overload. Oxid. Med. Cell. Longev. 2014, 2014, 1–10. DOI: 10.1155/2014/416028.
  • Sellimi, S.; Ksouda, G.; Benslima, A.; Nasri, R.; Rinaudo, M.; Nasri, M.; Hajji, M. Enhancing Colour and Oxidative Stabilities of Reduced-nitrite Turkey Meat Sausages during Refrigerated Storage Using Fucoxanthin Purified from the Tunisian Seaweed Cystoseira Barbata. Food Chem. Toxicol. 2017, 107, 620–629. DOI: 10.1016/j.fct.2017.04.001.
  • Toyoizumi, T.; Sekiguchi, H.; Takabayashi, F.; Deguchi, Y.; Masuda, S.; Kinae, N. Induction Effect of Coadministration of Soybean Isoflavones and Sodium Nitrite on DNA Damage in Mouse Stomach. Food Chem. Toxicol. 2010, 48(10), 2585–2591. DOI: 10.1016/j.fct.2010.06.015.
  • Villaverde, A.; Parra, V.; Estévez, M. Oxidative and Nitrosative Stress Induced in Myofibrillar Proteins by a Hydroxyl-radical-generating System: Impact of Nitrite and Ascorbate. J. Agric. Food Chem. 2014, 62(10), 2158–2164. DOI: 10.1021/jf405705t.
  • Herraiz, T.; Galisteo, J. Nitrosative Deamination of 2ʹ-deoxyguanosine and DNA by Nitrite, and Antinitrosating Activity of β-carboline Alkaloids and Antioxidants. Food Chem. Toxicol. 2018, 112, 282–289. DOI: 10.1016/j.fct.2017.12.042.
  • Kim, S. H.; Kang, K. H.; Kim, S. H.; Lee, S.; Lee, S.-H.; Ha, E.-S.; Sung, N.-J.; Kim, J. G.; Chung, M. J. Lactic Acid Bacteria Directly Degrade N-nitrosodimethylamine and Increase the Nitrite-scavenging Ability in Kimchi. Food Control. 2017, 71, 101–109. DOI: 10.1016/j.foodcont.2016.06.039.
  • Mirvish, S. S.;. Effects of Vitamins C and E on N-nitroso Compound Formation, Carcinogenesis, and Cancer. Cancer. 1986, 58(S8), 1842–1850.
  • Van Hecke, T.; Bussche, J. V.; Vanhaecke, L.; Vossen, E.; Van Camp, J.; De Smet, S. Nitrite Curing of Chicken, Pork, and Beef Inhibits Oxidation but Does Not Affect N-nitroso Compound (noc)-specific DNA Adduct Formation during in Vitro Digestion. J. Agric. Food Chem. 2014, 62(8), 1980–1988. DOI: 10.1021/jf4057583.
  • Li, L.; Ji, H. Protective Effects of Epicatechin on the Oxidation and N-nitrosamine Formation of Oxidatively Stressed Myofibrillar Protein. Int. J. Food Prop. 2019, 22(1), 185–196. DOI: 10.1080/10942912.2019.1578792.
  • Hsu, J.; Arcot, J.; Lee, N. A. Nitrate and Nitrite Quantification from Cured Meat and Vegetables and Their Estimated Dietary Intake in Australians. Food Chem. 2009, 115, 334–339. DOI: 10.1016/j.foodchem.2008.11.081.
  • Mirvish, S. S.;. Role of N-nitroso Compounds (NOC) and N-nitrosation in Etiology of Gastric, Esophageal, Nasopharyngeal and Bladder Cancer and Contribution to Cancer of Known Exposures to NOC. Cancer Lett. 1995, 93(1), 17–48. DOI: 10.1016/0304-3835(95)03786-V.
  • Prasad, S.; Chetty, A. A. Nitrate-N Determination in Leafy Vegetables: Study of the Effects of Cooking and Freezing. Food Chem. 2008, 106(2), 772–780. DOI: 10.1016/j.foodchem.2007.06.005.
  • Rathod, K. S.; Velmurugan, S.; Ahluwalia, A. A ‘green’ Diet-based Approach to Cardiovascular Health? Is Inorganic Nitrate the Answer? Mol. Nutr. Food Res. 2016, 60(1), 185–202. DOI: 10.1002/mnfr.201500313.
  • Zhang, P.; Lee, J.; Kang, G.; Li, Y.; Yang, D.; Pang, B.; Zhang, Y. Disparity of Nitrate and Nitrite in Vivo in Cancer Villages as Compared to Other Areas in Huai River Basin, China. Sci. Total Environ. 2018, 612, 966–974. DOI: 10.1016/j.scitotenv.2017.08.245.
  • Cemek, M.; Akkaya, L.; Birdane, Y. O.; Seyrek, K.; Bulut, S.; Konuk, M. Nitrate and Nitrite Levels in Fruity and Natural Mineral Waters Marketed in Western Turkey. J. Food Compost. Anal. 2007, 20(3–4), 236–240. DOI: 10.1016/j.jfca.2006.12.003.
  • Mirvish, S. S.; Wallcave, L.; Eagen, M.; Shubik, P. Ascorbate-nitrite Reaction: Possible Means of Blocking the Formation of Carcinogenic N-nitroso Compounds. Science. 1972, 177(4043), 65–68. DOI: 10.1126/science.177.4051.788.
  • Ohshima, H.; Bartsch, H. Quantitative Estimation of Endogenous Nitrosation in Humans by Monitoring N-nitrosoproline Excreted in the Urine. Cancer Res. 1981, 41(9 part 1), 3658–3662.
  • Tamme, T.; Reinik, M.; Püssa, T.; Roasto, M.; Meremäe, K.; Kiis, A.; Van Ree, R.; Giuffrida, M. G.; Conti, A.; Martelli, A. Dynamics of Nitrate and Nitrite Content during Storage of Home-made and Small-scale Industrially Produced Raw Vegetable Juices and Their Dietary Intake. Food Addit. Contam. 2010, 27(4), 487–495. DOI: 10.1080/02652030903225799.
  • Phillips, W. E. J.;. Changes in the Nitrate and Nitrite Contents of Fresh and Processed Spinach during Storage. J. Agric. Food Chem. 1968, 16(1), 88–91. DOI: 10.1021/jf60155a012.
  • Chamizo-Ampudia, A.; Sanz-Luque, E.; Llamas, A.; Galvan, A.; Fernandez, E. Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis. Trends Plant Sci. 2017, 22(2), 163–174. DOI: 10.1016/j.tplants.2016.12.001.
  • Forde, B. G.;. Local and Long-range Signaling Pathways Regulating Plant Responses to Nitrate. Annu. Rev. Plant Biol. 2002, 53(1), 203–224. DOI: 10.1146/annurev.arplant.53.100301.135256.
  • Solomonson, L. P.; Barber, M. J. Assimilatory Nitrate Reductase-functional Properties and Regulation. Annu. Rev. Plant Biol. 1990, 41(1), 225–253. DOI: 10.1146/annurev.pp.41.060190.001301.
  • Guilherme, E. A.; Carvalho, F. E. L.; Daloso, D. M.; Silveira, J. A. G. Increase in Assimilatory Nitrate Reduction and Photorespiration Enhances CO2 Assimilation under High Light-induced Photoinhibition in Cotton. Environ. Exp. Bot. 2019, 159, 66–74. DOI: 10.1016/j.envexpbot.2018.12.012.
  • Li, C.; Gong, T.; Bian, B.; Liao, W. Roles of Hydrogen Gas in Plants: A Review. Funct. Plant Biol. 2018, 45(8), 783–792. DOI: 10.1071/FP17301.
  • Chen, M.; Cui, W.; Zhu, K.; Xie, Y.; Zhang, C.; Shen, W. Hydrogen-rich Water Alleviates Aluminum-induced Inhibition of Root Elongation in Alfalfa via Decreasing Nitric Oxide Production. J. Hazard. Mater. 2014, 267, 40–47. DOI: 10.1016/j.jhazmat.2013.12.029.
  • Jin, Q.; Zhu, K.; Cui, W.; Xie, Y.; Han, B.; Shen, W. Hydrogen Gas Acts as a Novel Bioactive Molecule in Enhancing Plant Tolerance to Paraquat-induced Oxidative Stress via the Modulation of Heme Oxygenase-1 Signalling System. Plant Cell Environ. 2013, 36(5), 956–969. DOI: 10.1111/pce.12029.
  • Xie, Y.; Mao, Y.; Zhang, W.; Lai, D.; Wang, Q.; Shen, W. Reactive Oxygen Species-dependent Nitric Oxide Production Contributes to Hydrogen-promoted Stomatal Closure in Arabidopsis. Plant Physiol. 2014, 165(2), 759–773. DOI: 10.1104/pp.114.237925.
  • Cao, Z.; Duan, X.; Yao, P.; Cui, W.; Cheng, D.; Zhang, J.; Jin, Q.; Chen, J.; Dai, T.; Shen, W. Hydrogen Gas Is Involved in Auxin-induced Lateral Root Formation by Modulating Nitric Oxide Synthesis. Int. J. Mol. Sci. 2017, 18(10), 2084. DOI: 10.3390/ijms18102084.
  • Hu, H.; Li, P.; Wang, Y.; Gu, R. Hydrogen-rich Water Delays Postharvest Ripening and Senescence of Kiwifruit. Food Chem. 2014, 156, 100–109. DOI: 10.1016/j.foodchem.2014.01.067.
  • Hu, H.; Zhao, S.; Li, P.; Shen, W. Hydrogen Gas Prolongs the Shelf Life of Kiwifruit by Decreasing Ethylene Biosynthesis. Postharvest. Biol. Technol. 2018, 135, 123–130. DOI: 10.1016/j.postharvbio.2017.09.008.
  • Su, J.; Nie, Y.; Zhao, G.; Cheng, D.; Wang, R.; Chen, J.; Zhang, S.; Shen, W. Endogenous Hydrogen Gas Delays Petal Senescence and Extends the Vase Life of Lisianthus Cut Flowers. Postharvest. Biol. Technol. 2019, 147, 148–155. DOI: 10.1016/j.postharvbio.2018.09.018.
  • Florin, L.; Tsokoglou, A.; Happe, T. A Novel Type of Iron Hydrogenase in the Green Alga Scenedesmus Obliquus Is Linked to the Photosynthetic Electron Transport Chain. J. Biol. Chem. 2001, 276(9), 6125–6132. DOI: 10.1074/jbc.M008470200.
  • Zhao, M. G.; Chen, L.; Zhang, L. L.; Zhang, W. H. Nitric Reductase-dependent Nitric Oxide Production Is Involved in Cold Acclimation and Freezing Tolerance in Arabidopsis. Plant Physiol. 2009, 151(2), 755–767. DOI: 10.1104/pp.109.146589.
  • Debouba, M.; Maâroufi-Dghimi, H.; Suzuki, A.; Ghorbel, M. H.; Gouia, H. Changes in Growth and Activity of Enzymes Involved in Nitrate Reduction and Ammonium Assimilation in Tomato Seedlings in Response to NaCl Stress. Ann. Bot. 2007, 99(6), 1143–1151. DOI: 10.1093/aob/mcm050.
  • Livak, K. J.; Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001, 25(4), 402–408. DOI: 10.1006/meth.2001.1262.
  • Georgé, S.; Tourniaire, F.; Gautier, H.; Goupy, P.; Rock, E.; Caris-Veyrat, C. Changes in the Contents of Carotenoids, Phenolic Compounds and Vitamin C during Technical Processing and Lyophilisation of Red and Yellow Tomatoes. Food Chem. 2011, 124(4), 1603–1611. DOI: 10.1016/j.foodchem.2010.08.024.
  • In, B. C.; Ha, S. T. T.; Lee, Y. S.; Lim, J. H. Relationships between the Longevity, Water Relations, Ethylene Sensitivity, and Gene Expression of Cut Roses. Postharvest. Biol. Technol. 2017, 131, 74–83. DOI: 10.1016/j.postharvbio.2017.05.003.
  • Nicholas, J. C.; Harper, J. E.; Hageman, R. H. Nitrate Reductase Activity in Soybeans (glycine Max [L.] Merr.) I. Effects of Light and Temperature. Plant Physiol. 1976, 58(6), 731–735. DOI: 10.1104/pp.58.6.731.
  • Cui, W.; Fang, P.; Zhu, K.; Mao, Y.; Gao, C.; Xie, Y.; Wang, J.; Shen, W. Hydrogen-rich Water Confers Plant Tolerance to Mercury Toxicity in Alfalfa Seedlings. Ecotoxicol. Environ. Saf. 2014, 105, 103–111. DOI: 10.1016/j.ecoenv.2014.04.009.
  • O’connor, H. J.; Schorah, C. J.; Habibzedah, N.; Axon, A. T.; Cockel, R. Vitamin C in the Human Stomach: Relation to Gastric pH, Gastroduodenal Disease, and Possible Sources. Gut. 1989, 30, 436–442. DOI: 10.1136/gut.30.4.436.
  • Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.-I.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen Acts as a Therapeutic Antioxidant by Selectively Reducing Cytotoxic Oxygen Radicals. Nat. Med. 2007, 13(6), 688–694. DOI: 10.1038/nm1577.
  • Davey, M. W.; Van Montagu, M.; Inzé, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I. J.; Strain, J. J.; Favell, D.; Fletcher, J. Plant L-ascorbic Acid: Chemistry, Function, Metabolism, Bioavailability and Effects of Processing. J. Sci. Food Agric. 2000, 80(7), 825–860. DOI: 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6.
  • Woodin, S. J.; Lee, J. A. The Effects of Nitrate, Ammonium and Temperature on Nitrate Reductase Activity in Sphagnum Species. New Phytol. 1987, 105(1), 103–115. DOI: 10.1111/nph.1987.105.issue-1.