4,174
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Protein structure and sulfhydryl group changes affected by protein gel properties: process of thermal-induced gel formation of myofibrillar protein

, , , , , , , , & show all
Pages 1834-1847 | Received 29 Apr 2019, Accepted 08 Aug 2019, Published online: 29 Oct 2019

References

  • Pisula, A.; Tyburcy, A. Hot Processing of Meat. Meat Sci. 1996, 43, 125–134.
  • Tornberg, E. Effects of Heat on Meat proteins–Implications on Structure and Quality of Meat Products. Meat Sci. 2005, 70, 493–508.
  • Sanchez-Gonzalez, I.; Carmona, P.; Moreno, P.; Borderias, J.; Sanchez-Alonso, I.; Rodriguez-Casado, A.; Careche, M. Protein and Water Structural Changes in Fish Surimi during Gelation as Revealed by Isotopic H/D Exchange and Raman Spectroscopy. Food Chem. 2008, 106, 56–64.
  • Ferry, J. D. Protein Gels. Adv. Protein Chem. 1948, 4, 1–78.
  • Montero, P.; Gomez-Guillen, C. Thermal Aggregation of Sardine Muscle Proteins during Processing. J. Agric. Food Chem. 1996, 44, 3625–3630.
  • Perez-Mateos, M.; Lourenco, H.; Montero, P.; Borderias, A. J. Rheological and Biochemical Characteristics of High-pressure-and Heat-induced Gels from Blue Whiting (micromesistius Poutassou) Muscle Proteins. J. Agric. Food Chem. 1997, 45, 44–49.
  • Yang, H.; Zhang, W.; Li., T.; Zheng., H.; Khan., M. A.; Xu, X.; Sun, J.; Zhou, G. H. Effect of Protein Structure on Water and Fat Distribution during Meat Gelling. Food Chem. 2016, 204, 239–245.
  • Fritz, J. D.; Swartz, D. R.; Greaser, M. L. Factors Affecting Polyacrylamide Gel Electrophoresis and Electroblotting of High-molecular-weight Myofibrillar Proteins. Anal. Biochem. 1989, 180, 205–210.
  • Wedemeyer, W. J.; Welker, E.; Mahesh Narayan, A.; Scheraga, H. A. Disulfide Bonds and Protein Folding†. Biochemistry. 2000, 39, 4207–4216.
  • Hoffmann, M. A. M.; Mil, P. J. J. M. V. Heat-Induced Aggregation of β-Lactoglobulin: Role of the Free Thiol Group and Disulfide Bonds. J. Agric. Food Chem. 1997, 45, 2942–2948.
  • Wu, M.; Xiong, Y. L.; Chen, J.; Tang, X.; Zhou, G. Rheological and Microstructural Properties of Porcine Myofibrillar Protein–Lipid Emulsion Composite Gels. J. Food Sci. 2009, 74, E207–E217.
  • Xiong, Y. L.; Brekke, C. J. Gelation Properties of Chicken Myofibrils Treated with Calcium and Magnesium Chlorides1. J. Muscle Foods. 2007, 2, 21–36.
  • Montejano, J. G.; Hamann, D. D.; Lanier, T. C. Comparison of Two Instrumental Methods with Sensory Texture of Protein Gels. J. Texture Stud. 1985, 16, 403–424.
  • Tang, C. H.; Wang, X. Y.; Yang, X. Q.; Lin, L. Formation of Soluble Aggregates from Insoluble Commercial Soy Protein Isolate by Means of Ultrasonic Treatment and Their Gelling Properties. J. Food Eng. 2009, 92, 432–437.
  • Yongsawatdigul, J.; Park, J. W. Thermal Denaturation and Aggregation of Threadfin Bream Actomyosin. Food Chem. 2003, 83, 409–416.
  • Ellman, G. L. Tissue Sulfhydryl Groups. Arch Biochem Biophys. 1959, 82, 70–77.
  • Ramirez-Suarez, J. C.; Addo, K.; Xiong, Y. L. Gelation of Mixed Myofibrillar/wheat Gluten Proteins Treated with Microbial Transglutaminase. Food Res. Int. 2005, 38, 1143–1149.
  • Liu, R.; Zhao, S. M.; Xie, B. J.; Xiong, S. B. Contribution of Protein Conformation and Intermolecular Bonds to Fish and Pork Gelation Properties. Food Hydrocoll. 2011, 25, 898–906.
  • Palka, K.; Daun, H. Changes in Texture, Cooking Losses, and Myofibrillar Structure of Bovine M. Semitendinosus during Heating. Meat Sci. 1999, 51, 237–243.
  • Ko, W. C.; Yu, C. C.; Hsu, K. C. Changes in Conformation and Sulfhydryl Groups of Tilapia Actomyosin by Thermal Treatment. LWT - Food Sci. Technol. 2007, 40, 1316–1320.
  • Huff-Lonergan, E.; Lonergan, S. M. Mechanisms of Water-holding Capacity of Meat: The Role of Postmortem Biochemical and Structural Changes. Meat Sci. 2005, 71, 194–204.
  • Sharp, A.; Offer, G. The Mechanism of Formation of Gels from Myosin Molecules. J. Sci. Food Agr. 1992, 58, 63–73.
  • Foegeding, E. A. Functional Properties of Turkey Salt-Soluble Proteins. J. Food Sci. 1987, 52, 1495–1499.
  • Herrero, A. M. Raman Spectroscopy for Monitoring Protein Structure in Muscle Food Systems. Crit. Rev. Food Sci. 2008, 48(6), 512–523.
  • Tu, A. T. Raman Spectroscopy in Biology: Principles and Applications, first ed.; Wiley: New York, 1982.
  • Ramazan, K.; Joseph, I. Applications of Raman Spectroscopy for Food Quality Measurement. In Nondestructive Testing of Food Quality; Irudayaraj, I., Reh, C., Eds.; Blackwell Publ: Hoboken, 2008; pp pp. 143–163.
  • Li-Chan, E.; Nakai, S.; Hirotsuka, M. Raman Spectroscopy as a Probe of Protein Structure in Food Systems. In Protein Structure-function Relationships in Foods; Yada, R. Y., Jackman, R. L., Smith, J. L., Eds.; Blackie Academic & Professional: London, 1994; pp 163–197.
  • Ngarize, S.; Herman, H.; Adams, A.; Howell, N. Comparison of Changes in the Secondary Structure of Unheated, Heated, and High-pressure-treated Beta-lactoglobulin and Ovalbumin Proteins Using Fourier Transform Raman Spectroscopy and Self-deconvolution. J. Agric. Food Chem. 2004, 52, 6470–6477.
  • Li-Chan, E. C. Y. The Applications of Raman Spectroscopy in Food Science. Trends Food Sci. Technol. 1996, 7, 361–370.
  • Ogawa, M.; Nakamura, S.; Horimoto, Y.; An, H.; Tsuchiya, T.; Nakai, S. Raman Spectroscopic Study of Changes in Fish Actomyosin during Setting. J. Agric. Food Chem. 1999, 47, 3309–3318.
  • Byler, D. M.; Susi, H.; Farrell, H. M., Jr. Laser-Raman Spectra, Sulfhydryl Groups, and Conformation of the Cystine Linkages of Beta-lactoglobulin. Biopolymers. 1983, 22, 2507–2511.
  • Brondum, J.; Munck, L.; Henckel, P.; Karlsson, A.; Tornberg, E.; Engelsen, S. B. Prediction of Water-holding Capacity and Composition of Porcine Meat by Comparative Spectroscopy. Meat Sci. 2000, 55, 177–185.
  • Bellocq, A. M.; Lord, R. C.; Mendelsohn, R. Laser-excited Raman Spectroscopy of Biomolecules. 3. Native Bovine Serum Albumin and Beta-lactoglobulin. Biochim. Biophys. Acta. 1972, 257, 280–287.
  • Bouraoui, M.; Nakai, S.; Li-Chan, E. In Situ Investigation of Protein Structure in Pacific Whiting Surimi and Gels Using Raman Spectroscopy. Food Res. Int. 1997, 30, 65–72.
  • Linlaud, N.; Ferrer, E.; Puppo, M. C.; Ferrero, C. Hydrocolloid Interaction with Water, Protein, and Starch in Wheat Dough. J. Agr. Food Chem. 2011, 59, 713–719.
  • Badii, F.; Howell, N. K. Fish Gelatin: Structure, Gelling Properties and Interaction with Egg Albumen Proteins. Food Hydrocolloid. 2006, 20, 630–640.
  • Zhang, Z.; Yang, Y.; Tang, X.; Chen, Y.; You, Y. Chemical Forces and Water Holding Capacity Study of Heat-induced Myofibrillar Protein Gel as Affected by High Pressure. Food Chem. 2015, 188, 111–118.
  • TU, T. A. Peptide Backbone Conformation and Microenvironment of Protein Side Chains. In Advances in Infrared & Raman Spectroscopy; Clark, R. J. H., Hester, R. E., Eds.; Wiley: Chichester, 1986; pp 47–112.
  • Cheng, H. W.; Damodaran, S. Thermal Gelation of Globular Proteins: Influence of Protein Conformation on Gel Strength. J. Agric. Food Chem. 1991, 39, 999–1006.
  • Ikeda, S.; Li-Chan, E. C. Y. Raman Spectroscopy of Heat-induced Fine-stranded and Particulate β-lactoglobulin Gels. Food Hydrocoll. 2004, 18, 489–498.
  • Herrero, A. M.; Cambero, M. I.; Ordóez, J. A.; Hoz, L. D. L.; Carmona, P. Raman Spectroscopy Study of the Structural Effect of Microbial Transglutaminase on Meat Systems and Its Relationship with Textural Characteristics. Food Chem. 2008, 109, 25–32.
  • Liu, R.; Zhao, S. M.; Xiong, S. B.; Xie, B. J.; Qin, L. H. Role of Secondary Structures in the Gelation of Porcine Myosin at Different pH Values. Meat Sci. 2008, 80, 632–639.