3,991
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Nutritional and medicinal aspects of Rumex hastatus D. Don along with in vitro anti-diabetic activity

, , ORCID Icon, , &
Pages 1733-1748 | Received 28 Mar 2019, Accepted 06 Sep 2019, Published online: 15 Oct 2019

References

  • Hafer, C. L.; Begue, L. Experimental Research on Just-world Theory: Problems, Developments, and Future Challenges. Psychol. Bull. 2005, 131(1), 128. DOI: 10.1037/0033-2909.131.1.128.
  • Sadiq, A.; Mahmood, F.; Ullah, F.; Ayaz, M.; Ahmad, S.; Haq, F. U.; Khan, G.; Jan, M. S. Synthesis, Anticholinesterase and Antioxidant Potentials of Ketoesters Derivatives of Succinimides: A Possible Role in the Management of Alzheimer’s. Chem. Cent. J. 2015, 9(1), 31. DOI: 10.1186/s13065-015-0107-2.
  • Holick, M. F.; Chen, T. C. Vitamin D Deficiency: A Worldwide Problem with Health Consequences. Am. J. Clin. Nutr. 2008, 87(4), 1080S–1086S. DOI: 10.1093/ajcn/87.4.1080S.
  • Magdoff, F. The World Food Crisis: Sources and Solutions. Mon. Rev. New York. 2008, 60(1), 1. DOI: 10.14452/MR-060-01-2008-05.
  • Qureshi, R.; Bhatti, G. R.; Memon, R. A. Ethnomedicinal Uses of Herbs from Northern Part of Nara Desert, Pakistan. Pak. J. Bot. 2010, 42(2), 839–851.
  • Croteau, R.; Kutchan, T. M.; Lewis, N. G. Natural Products (secondary Metabolites). Biochem. Mol. Biol. Plants. 2000, 24, 1250–1319.
  • Gershenzon, J.; Dudareva, N. The Function of Terpene Natural Products in the Natural World. Nat. Chem. Biol. 2007, 3(7), 408–414. DOI: 10.1038/nchembio.2007.5.
  • Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Khan, M. A.; Ahmad, W.; Shah, M. R.; Imran, M.; Ahmad, S. Comparative Chemical Profiling, Cholinesterase Inhibitions and Anti-radicals Properties of Essential Oils from Polygonum Hydropiper L: A Preliminary anti-Alzheimer’s Study. Lipids Health Dis. 2015, 14(1), 141. DOI: 10.1186/s12944-015-0145-8.
  • Ayaz, M.; Junaid, M.; Subhan, F.; Ullah, F.; Sadiq, A.; Ahmad, S.; Imran, M.; Kamal, Z.; Hussain, S.; Shah, S. M. Heavy Metals Analysis, Phytochemical, Phytotoxic and Anthelmintic Investigations of Crude Methanolic Extract, Subsequent Fractions and Crude Saponins from Polygonum Hydropiper L. BMC Complementary Altern. Med. 2014, 14(1), 465. DOI: 10.1186/1472-6882-14-465.
  • Ayaz, M.; Junaid, M.; Ahmed, J.; Ullah, F.; Sadiq, A.; Ahmad, S.; Imran, M. Phenolic Contents, Antioxidant and Anticholinesterase Potentials of Crude Extract, Subsequent Fractions and Crude Saponins from Polygonum Hydropiper L. BMC Complementary Altern. Med. 2014, 14(1), 145. DOI: 10.1186/1472-6882-14-145.
  • Shah, S.; Shah, S. M. M.; Ahmad, Z.; Yaseen, M.; Shah, R.; Sadiq, A.; Khan, S.; Khan, B. Phytochemicals, in Vitro Antioxidant, Total Phenolic Contents and Phytotoxic Activity of Cornus Macrophylla Wall Bark Collected from the North-West of Pakistan. Pak. J. Pharm. Sci. 2015, 28(1), 23–28.
  • Shah, S. M. M.; Sadiq, A.; Shah, S. M. H.; Khan, S. Extraction of Saponins and Toxicological Profile of Teucrium Stocksianum Boiss Extracts Collected from District Swat, Pakistan. Biol. Res. 2014, 47(1), 65. DOI: 10.1186/0717-6287-47-65.
  • Wiedenfeld, H.; Edgar, J. Toxicity of Pyrrolizidine Alkaloids to Humans and Ruminants. Phytochem. Rev. 2011, 10(1), 137–151. DOI: 10.1007/s11101-010-9174-0.
  • Wiedenfeld, H. Plants Containing Pyrrolizidine Alkaloids: Toxicity and Problems. Food Addit. Contam. 2011, 28(3), 282–292. DOI: 10.1080/19440049.2010.541288.
  • Jaafar, R. A.; Ahmad Ridhwan, A.; Zaini, N.; Vasudevan, R. Proximate Analysis of Dragon Fruit (hylecereus Polyhizus). Am. J. Appl. Sci. 2009, 6(7), 1341–1346. DOI: 10.3844/ajassp.2009.1341.1346.
  • Guevara-Figueroa, T.; Jiménez-Islas, H.; Reyes-Escogido, M. L.; Mortensen, A. G.; Laursen, B. B.; Lin, L.-W.; De León-Rodríguez, A.; Fomsgaard, I. S., De La Rosa A.P.B. Proximate Composition, Phenolic Acids, and Flavonoids Characterization of Commercial and Wild Nopal (opuntia Spp.). J. Food Compost. Anal. 2010, 23(6), 525–532. DOI: 10.1016/j.jfca.2009.12.003.
  • Mellitus, D. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2005, 28, S37. DOI: 10.2337/diacare.28.suppl_1.S37.
  • Ha, B. G.; Yonezawa, T.; Son, M. J.; Woo, J. T.; Ohba, S.; Chung, U. I.; Yagasaki, K. Antidiabetic Effect of Nepodin, a Component of Rumex Roots, and Its Modes of Action in Vitro and in Vivo. BioFactors. 2014, 40(4), 436–447. DOI: 10.1002/biof.1165.
  • Yasmin, G.; Khan, M. A.; Shaheen, N. Pollen Morphology of Selected Polygonum L. Species (polygonaceae) from Pakistan and Its Taxonomic Significance. Pak. J. Bot. 2010, 42(6), 3693–3703.
  • Jimoh, F.; Adedapo, A.; Aliero, A.; Afolayan, A. Polyphenolic Contents and Biological Activities of Rumex Ecklonianus. Pharm. Biol. 2008, 46(5), 333–340. DOI: 10.1080/13880200801887765.
  • Rouf, A.; Islam, M.; Rahman, M. Evaluation of Antidiarrhoeal Activity Rumex Maritimus Root. J. Ethnopharmacol. 2003, 84(2), 307–310. DOI: 10.1016/s0378-8741(02)00326-4.
  • Liu, S.; Sporer, F.; Wink, M.; Jourdane, J.; Henning, R.; Li, Y.; Ruppel, A. Anthraquinones in Rheum Palmatum and Rumex Dentatus (polygonaceae), and Phorbol Esters in Jatropha Curcas (euphorbiaceae) with Molluscicidal Activity against the Schistosome Vector Snails Oncomelania, Biomphalaria, and Bulinus. Trop. Med. Int. Health. 1997, 2(2), 179–188. DOI: 10.1046/j.1365-3156.1997.d01-242.x.
  • Kerem, Z.; Bilkis, I.; Flaishman, M. A.; Sivan, L. Antioxidant Activity and Inhibition of α-Glucosidase by trans-Resveratrol, Piceid, and a Novel trans-Stilbene from the Roots of Israeli Rumex Bucephalophorus L. J. Agric. Food Chem. 2006, 54(4), 1243–1247. DOI: 10.1021/jf052436+.
  • Getie, M.; Gebre-Mariam, T.; Rietz, R.; Höhne, C.; Huschka, C.; Schmidtke, M.; Abate, A.; Neubert, R. Evaluation of the Anti-microbial and Anti-inflammatory Activities of the Medicinal Plants Dodonaea Viscosa, Rumex Nervosus and Rumex Abyssinicus. Fitoterapia. 2003, 74(1), 139–143.
  • Baluchnejadmojarad, T.; Roghani, M. Chronic Rumex Patientia Seed Feeding Improves Passive Avoidance Learning and Memory in Streptozotocin-Diabetic Rats. Basic Clin. Neurosci. 2010, 1(4), 53–56.
  • Alfawaz, M. A. Chemical Composition of Hummayd (rumex Vesicarius) Grown in Saudi Arabia. J. Food Compost. Anal. 2006, 19(6), 552–555. DOI: 10.1016/j.jfca.2004.09.004.
  • Yildirim, A.; Mavi, A.; Kara, A. A. Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. Extracts. J. Agric. Food Chem. 2001, 49(8), 4083–4089. DOI: 10.1021/jf0103572.
  • Pilipenko, L.; Kolesnik, A. Lipids of the Leaf Vegetables Spinacea Oleracea, Latuca Sativa, and Rumex Acetosa. Chem. Nat. Compd. 1993, 29(2), 160–166. DOI: 10.1007/BF00630106.
  • Jursik, M.; Holec, J.; Zatoriova, B. Biology and Control of Another Important Weeds of the Czech Republic: Broad-leaved Dock (rumex Obtusifolius) and Curled Dock (rumex Crispus). Listy Cukrovarnicke Reparske. 2008, 124(7–8), 215–219.
  • Bhatt, V.; Negi, G. Ethnomedicinal Plant Resources of Jaunsari Tribe of Garhwal Himalaya, Uttaranchal. Indian J. Tradit. Knowl. 2006, 5(3), 331–335.
  • Ali, H.; Qaiser, M. The Ethnobotany of Chitral Valley, Pakistan with Particular Reference to Medicinal Plants. Pak. J. Bot. 2009, 41(4), 2009–2041.
  • Rokaya, M. B.; Münzbergová, Z.; Timsina, B. Ethnobotanical Study of Medicinal Plants from the Humla District of Western Nepal. J. Ethnopharmacol. 2010, 130(3), 485–504. DOI: 10.1016/j.jep.2010.05.036.
  • Manan, Z.; Razzaq, A.; Islam, M. Diversity of Medicinal Plants in Wari Subdivision District Upper Dir, Pakistan. Pak. J. Plant Sci. (Pakistan). 2007
  • Taylor, R.; Hudson, J.; Manandhar, N.; Towers, G. Antiviral Activities of Medicinal Plants of Southern Nepal. J. Ethnopharmacol. 1996, 53(2), 105–110. DOI: 10.1016/0378-8741(96)01435-3.
  • Ullah, A.; Rashid, A.; Parveen, S. N. Medicinal Plants Used in the Isolated Region of Bumburet, Kalash Valley, District Chitral, Pakistan. Pak. J. Weed Sci. Res. 2014, 20(3), 359–373.
  • Zul, K.; Ullah, M.; Sajjad, A.; Farhat, U.; Abdul, S.; Muhammad, A.; Anwar, Z.; Muhammad, I. Ex-vivo Antibacterial, Phytotoxic and Cytotoxic, Potential in the Crude Natural Phytoconstituents of Rumex Hastatus D. Don. Pak. J. Bot. 2015, 47(SI):293–299.
  • Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic Effects of Quercetin in Streptozocin-induced Diabetic Rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003, 135(3), 357–364.
  • Bansal, P.; Paul, P.; Mudgal, J.; Nayak, P. G.; Pannakal, S. T.; Priyadarsini, K.; Unnikrishnan, M. Antidiabetic, Antihyperlipidemic and Antioxidant Effects of the Flavonoid Rich Fraction of Pilea Microphylla (L.) In High Fat Diet/streptozotocin-induced Diabetes in Mice. Exp. Toxicol. Pathol. 2012, 64(6), 651–658. DOI: 10.1016/j.etp.2010.12.009.
  • Li, H.; Song, F.; Xing, J.; Tsao, R.; Liu, Z.; Liu, S. Screening and Structural Characterization of α-glucosidase Inhibitors from Hawthorn Leaf Flavonoids Extract by Ultrafiltration LC-DAD-MS N and SORI-CID FTICR MS. J. Am. Soc. Mass Spectrom. 2009, 20(8), 1496–1503. DOI: 10.1016/j.jasms.2009.04.003.
  • Ahmad, S.; Ullah, F.; Ayaz, M.; Sadiq, A.; Imran, M. Antioxidant and Anticholinesterase Investigations of Rumex Hastatus D. Don: Potential Effectiveness in Oxidative Stress and Neurological Disorders. Biol. Res. 2015, 48, 20. DOI: 10.1186/s40659-015-0010-2.
  • Abbasi, A. M.; Khan, M. A.; Shah, M. H.; Shah, M. M.; Pervez, A.; Ahmad, M. Ethnobotanical Appraisal and Cultural Values of Medicinally Important Wild Edible Vegetables of Lesser Himalayas-Pakistan. J. Ethnobiol. Ethnomed. 2013, 9, 84. DOI: 10.1186/1746-4269-9-84.
  • Nisar, M.; Shah, S. M. M.; Khan, I.; Sheema, S. A.; Khan, S.; Shah, S. M. H. Larvicidal, Insecticidal, Brine Shrimp Cytotoxicity and Anti-oxidant Activities of Diospyros Kaki (L.) Reported from Pakistan. Pak. J. Pharm. Sci. 2015, 28, 1239–1243.
  • Stein, S.; Mirokhin, D.; Tchekhovskoi, D.; Mallard, W. G. The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectra Library; Standard Reference Data Program of the National Institute of Standards and Technology; US Department of Commerce: Gaithersburg, MD, 2002.
  • Adams, R. Identification of Essential Oil Components by Gas Chromatography/mass Spectrometry; Allured Publishing: Carol Stream, IL, 2007; pp 804.
  • Muhammad, N.; Saeed, M.; Khan, H.; Hassan, S.; Gul, F. Evaluation of Viola Betonicifolia for Its Nutrition Value. Pak. J. Pharm. Sci. 2012, 25(3), 639–644.
  • Harborne, A. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis; Springer: Netherlands, 1998.
  • Taiga, A.; Suleiman, M.; Aina, D.; Sule, W.; Alege, G. Proximate Analysis of Some Dry Season Vegetables in Anyigba, Kogi State, Nigeria. Afr. J. Biotechnol. 2008, 7(10), 1588–1590.
  • Kumkrai, P.; Weeranantanapan, O.; Chudapongse, N. Antioxidant, Alpha-glucosidase Inhibitory Activity and Sub-chronic Toxicity of Derris Reticulata Extract: Its Antidiabetic Potential. BMC Complement. Altern. Med. 2015, 15, 35. DOI: 10.1186/s12906-015-0552-4.
  • Bu, T.; Liu, M.; Zheng, L.; Guo, Y.; Lin, X. α‐glucosidase Inhibition and the in Vivo Hypoglycemic Effect of Butyl‐isobutyl‐phthalate Derived from the Laminaria Japonica Rhizoid. Phytotherapy Res. 2010, 24(11), 1588–1591. DOI: 10.1002/ptr.3139.
  • Elmazar, M. M.; El-Abhar, H. S.; Schaalan, M. F.; Farag, N. A. Phytol/Phytanic Acid and Insulin Resistance: Potential Role of Phytanic Acid Proven by Docking Simulation and Modulation of Biochemical Alterations. PloS One. 2013, 8(1), e45638. DOI: 10.1371/journal.pone.0045638.
  • Perla, V.; Jayanty, S. S. Biguanide Related Compounds in Traditional Antidiabetic Functional Foods. Food Chem. 2013, 138(2–3), 1574–1580. DOI: 10.1016/j.foodchem.2012.09.125.
  • Green, B. D.; Gault, V. A.; O’Harte, F. P.; Flatt, P. R. Structurally Modified Analogues of Glucagon-like Peptide-1 (GLP-1) and Glucose-dependent Insulinotropic Polypeptide (GIP) as Future Antidiabetic Agents. Curr. Pharm. Des. 2004, 10(29), 3651–3662. DOI: 10.2174/1381612043382774.
  • Singh, R.; Lather, V.; Pandita, D.; Judge, V. N Arumugam K., Singh Grewal A. Synthesis, Docking and Antidiabetic Activity of Some Newer Benzamide Derivatives as Potential Glucokinase Activators. Lett. Drug Des. Discovery. 2017, 14(5), 540–553. DOI: 10.2174/1570180813666160819125342.
  • Rayanil, K.-O.; Sutassanawichanna, W.; Suntornwat, O.; Tuntiwachwuttikul, P. A New Dihydrobenzofuran Lignan and Potential α-glucosidase Inhibitory Activity of Isolated Compounds from Mitrephora Teysmannii. Nat. Prod. Res. 2016, 30(23), 2675–2681. DOI: 10.1080/14786419.2016.1143830.
  • Manoharan, D.; Kulanthai, K.; Sadhasivam, G.; Raji, V.; Thayumanavan, P. Synthesis, Characterization and Evaluation of Antidiabetic Activity of Novel Indoline Derivatives. Bangladesh J. Pharmacol. 2017, 12(2), 167–172. DOI: 10.3329/bjp.v12i2.30872.
  • Ahmad, Z.; Zamhuri, K. F.; Yaacob, A.; Siong, C. H.; Selvarajah, M.; Ismail, A.; Hakim, M. N. In Vitro Anti-diabetic Activities and Chemical Analysis of Polypeptide-k and Oil Isolated from Seeds of Momordica Charantia (bitter Gourd). Molecules. 2012, 17(8), 9631–9640. DOI: 10.3390/molecules17089631.
  • Itoh, Y.; Hinuma, S. GPR40, a Free Fatty Acid Receptor on Pancreatic β Cells, Regulates Insulin Secretion. Hepatol. Res. 2005, 33(2), 171–173. DOI: 10.1016/j.hepres.2005.09.028.
  • Basha, R. H.; Sankaranarayanan, C. β-Caryophyllene, a Natural Sesquiterpene, Modulates Carbohydrate Metabolism in Streptozotocin-induced Diabetic Rats. Acta Histochem. 2014, 116(8), 1469–1479. DOI: 10.1016/j.acthis.2014.10.001.
  • Lim, C. C.; Ferguson, L. R.; Tannock, G. W. Dietary Fibres as “prebiotics”: Implications for Colorectal Cancer. Mol. Nutr. Food Res. 2005, 49(6), 609–619. DOI: 10.1002/mnfr.200500015.
  • Weickert, M. O.; Pfeiffer, A. F. Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes. J. Nutr. 2008, 138(3), 439–442. DOI: 10.1093/jn/138.3.439.
  • Liu, S.; Willett, W. C.; Manson, J. E.; Hu, F. B.; Rosner, B.; Colditz, G. Relation between Changes in Intakes of Dietary Fiber and Grain Products and Changes in Weight and Development of Obesity among Middle-aged Women. Am. J. Clin. Nutr. 2003, 78(5), 920–927. DOI: 10.1093/ajcn/78.5.920.
  • Anderson, J. W.; Baird, P.; Davis, R. H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C. L. Health Benefits of Dietary Fiber. Nutr. Rev. 2009, 67(4), 188–205. DOI: 10.1111/j.1753-4887.2009.00189.x.
  • Guggisberg, D.; Cuthbert-Steven, J.; Piccinali, P.; Bütikofer, U.; Eberhard, P. Rheological, Microstructural and Sensory Characterization of Low-fat and Whole Milk Set Yoghurt as Influenced by Inulin Addition. Int. Dairy J. 2009, 19(2), 107–115. DOI: 10.1016/j.idairyj.2008.07.009.
  • Chen, C.-L.; Tetri, L. H.; Neuschwander-Tetri, B. A.; Huang, S. S.; San Huang, J. A Mechanism by Which Dietary Trans Fats Cause Atherosclerosis. J. Nutr. Biochem. 2011, 22(7), 649–655. DOI: 10.1016/j.jnutbio.2010.05.004.
  • Winocur, G.; Greenwood, C. E. Studies of the Effects of High Fat Diets on Cognitive Function in a Rat Model. Neurobiol. Aging. 2005, 26(1), 46–49. DOI: 10.1016/j.neurobiolaging.2005.09.003.
  • Ferdinandusse, S.; Denis, S.; Mooyer, P. A.; Dekker, C.; Duran, M.; Soorani‐Lunsing, R. J.; Boltshauser, E.; Macaya, A.; Gärtner, J.; Majoie, C. B. Clinical and Biochemical Spectrum of D‐bifunctional Protein Deficiency. Ann. Neurol. 2006, 59(1), 92–104. DOI: 10.1002/ana.20702.
  • Den Boer, M. E.; Dionisi-Vici, C.; Chakrapani, A.; van Thuijl, A. O.; Wanders, R. J.; Wijburg, F. A. Mitochondrial Trifunctional Protein Deficiency: A Severe Fatty Acid Oxidation Disorder with Cardiac and Neurologic Involvement. J. Pediatr. 2003, 142(6), 684–689. DOI: 10.1067/mpd.2003.231.
  • Mohaghegh, P.; Hickson, I. D. DNA Helicase Deficiencies Associated with Cancer Predisposition and Premature Ageing Disorders. Hum. Mol. Genet. 2001, 10(7), 741–746. DOI: 10.1093/hmg/10.7.741.
  • Olaitan, P. B.; Adeleke, O. E.; Iyabo, O. Honey: A Reservoir for Microorganisms and an Inhibitory Agent for Microbes. Afr. Health Sci. 2007, 7(3), 159–165
  • Ren, G.; Chen, F. Degradation of Ginsenosides in American Ginseng (panax Quinquefolium) Extracts during Microwave and Conventional Heating. J. Agric. Food Chem. 1999, 47(4), 1501–1505. DOI: 10.1021/jf980678m.
  • Tarade, K. M.; Singhal, R. S.; Jayram, R. V.; Pandit, A. B. Kinetics of Degradation of Saponins in Soybean Flour (glycine Max.) During Food Processing. J. Food Eng. 2006, 76(3), 440–445. DOI: 10.1016/j.jfoodeng.2005.05.044.
  • Casal, S.; Oliveira, M. B.; Ferreira, M. A. HPLC/diode-array Applied to the Thermal Degradation of Trigonelline, Nicotinic Acid and Caffeine in Coffee. Food Chem. 2000, 68(4), 481–485. DOI: 10.1016/S0308-8146(99)00228-9.
  • Zul, K.; Farhat, U.; Muhammad, A.; Abdul, S.; Sajjad, A.; Anwar, Z.; Abid, H.; Muhammad, I. Anticholinesterse and Antioxidant Investigations of Crude Extracts, Subsequent Fractions, Saponins and Flavonoids of Atriplex Laciniata L.: Potential Effectiveness in Alzheimer’s and Other Neurological Disorders. Biol. Res. 2015, 48, 21. DOI: 10.1186/s40659-015-0011-1.
  • Zeb, A.; Sadiq, A.; Ullah, F.; Ahmad, S.; Ayaz, M. Phytochemical and Toxicological Investigations of Crude Methanolic Extracts, Subsequent Fractions and Crude Saponins of Isodon Rugosus. Biol. Res. 2014, 47(1), 57. DOI: 10.1186/0717-6287-47-57.
  • Zeb, A.; Sadiq, A.; Ullah, F.; Ahmad, S.; Ayaz, M. Investigations of Anticholinestrase and Antioxidant Potentials of Methanolic Extract, Subsequent Fractions, Crude Saponins and Flavonoids Isolated from Isodon Rugosus. Biol. Res. 2014, 47(1), 1–10. DOI: 10.1186/0717-6287-47-1.
  • Ullah, F.; Ayaz, M.; Sadiq, A.; Hussain, A.; Ahmad, S.; Imran, M.; Zeb, A. Phenolic, Flavonoid Contents, Anticholinesterase and Antioxidant Evaluation of Iris Germanica Var; Florentina. Nat. Prod. Res. 2016, 30(12), 1440–1444. DOI: 10.1080/14786419.2015.1057585.
  • Zgórka, G.; Kawka, S. Application of Conventional UV, Photodiode Array (PDA) and Fluorescence (FL) Detection to Analysis of Phenolic Acids in Plant Material and Pharmaceutical Preparations. J. Pharm. Biomed. Anal. 2001, 24(5–6), 1065–1072. DOI: 10.1016/s0731-7085(00)00541-0.