3,476
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Fourier transform infrared spectroscopy and multivariate analysis of milk from different goat breeds

, , , , &
Pages 1673-1683 | Received 08 May 2019, Accepted 13 Sep 2019, Published online: 30 Sep 2019

References

  • FAOSTAT. FAO Statistical Yearbook 2013. http://faostat.fao.org/site/291/default.aspx ( accessed 2013).
  • Devendra, C.; Haenlein, G. F. W. Animals that Produce Dairy Foods: Goat Breeds. In Encyclopedia of Dairy Science, 2nd ed.; Fuquay, J. W., Fox, P. F., Mcsweeney, P. L. H., Eds.; Academic Press: San Diego, CA, 2011; Vol. 1, pp 310–324.
  • FAO. Livestock Keepers-guardians of Biodiversity. Animal Production and Health Paper; Rome: Italy, 2009.
  • Aziz, A. J. Wealth Creation through Livestock Production. Proceedings of 19th Veterinary Association Malaysia Congress, VAM, Malaysia, 2007; pp 1–3.
  • Shahudin, M. S.; Ghani, A. A. A.; Zamri-Saad, M.; Zuki, A. B.; Abdullah, F. F. J.; Wahid, H.; Hassim, H. A. The Necessity of a Herd Health Management Programme for Dairy Goat Farms in Malaysia. Trop. Agric. Sci. 2018, 41, 1, 1–18.
  • Medhammar, E.; Wijesinha-Bettoni, R.; Stadlmayr, B.; Nilsson, E.; Charrondiere, U. R.; Burlingame, B. Composition of Milk from Minor Dairy Animals and Buffalo Breeds: A Biodiversity Perspective. J. Sci. Food Agri. 2012, 92, 445–474. DOI: 10.1002/jsfa.4690.
  • Le, A.; Barton, L. D.; Sanders, J. T.; Zhang, Q. Exploration of Bovine Milk Proteome in Colostral and Mature Whey Using an Ion-exchange Approach. J. Proteome Res. 2011, 10, 692–704. DOI: 10.1021/pr100884z.
  • Ramunno, L.; Pauciullo, A.; Mancusi, A.; Cosenza, G.; Mariani, P.; Malacame, M. Influence of Genetic Polymorphism of the Calcium Sensitive Caseins on the Structural and Nutritional Characteristics and on the Dairy Aptitude and Hypoallergenic Properties of Goat Milk. Scienza E Tecnica Lattiero Casearia. 2007, 58, 257–271.
  • Wishart, D. S. Metabolomics: Application in Food Science and Nutrition Research. Trends Food Sci. Technol. 2008, 19, 482–493. DOI: 10.1016/j.tifs.2008.03.003.
  • Morand-Fehr, P.; Fedele, V.; Decandia, M.; Le Frileux, Y. Influence of Farming and Feeding Systems on Composition and Quality of Goat and Sheep Milk. Small Rumin. Res. 2007, 68, 20–34. DOI: 10.1016/j.smallrumres.2006.09.019.
  • Park, Y. W.; Haenlein, G. F. W. Handbook of Milk of Non-Bovine Mammals; Blackwell Publishing Asia: Australia, 2006.
  • Fevrier, C.; Mourot, J.; Jaquelin, Y.; Mounier, A.; Lebreton, Y. Comparative Digestive Utilization of UHT Goat’s and Cow’s Milks: Nutritional Effects of Gelation-use of a Swine Model. Lait. 1993, 73, 581–592.
  • Lopez-Aliaga, I.; Dı´az-Castro, J.; Alf-erez, M. J. M.; Barrionuevo, M.; Campos, M. S. A Review of the Nutritional and Health Aspects of Goat Milk in Cases of Intestinal Resection. Dairy Sci. Technol. 2010, 90, 611–622. DOI: 10.1051/dst/dst2010028.
  • Attaie, R.; Richtert, R. Size Distribution of Fat Globules in Goat Milk. J. Dairy Sci. 2000, 83, 940–944.15. DOI: 10.3168/jds.S0022-0302(00)74957-5.
  • Michaelidou, A. M. Factors Influencing Nutritional and Health Profile of Milk and Milk Products. Small Ruminant Res. 2008, 79, 42–50. DOI: 10.1016/j.smallrumres.2008.07.007.
  • Hedrich, C.; Duemler, C.; Considine, D. Best Management Practices for Dairy Goat Farmers; University of Wisconsin Emerging Agricultural Markets Team-The Wisconsin Dairy Goat Association: USA, 2008.
  • Rout, P. K.; Saxena, V. K.; Khan, B. U.; Roy, R.; Mandal, A.; Singh, S. K.; Singh, L. B. Characterization of Jamnapari Goats in Their Home Tract. Anim. Genet. Resour. Inf. 2004, 27, 43–52. DOI: 10.1017/S1014233900001280.
  • Nicolaou, N.; Goodacre, R. Rapid and Quantitative Detection of the Microbial Spoilage in Milk Using Fourier Transform Infrared Spectroscopy and Chemometrics. Analyst. 2008, 133, 1424–1431. DOI: 10.1039/b804439b.
  • Griffiths, P. R.; De Haseth, J. A. Fourier Transform Infrared Spectrometry; John Wiley & Sons, New York, 1986.
  • Luinge, H. J.; Hop, E.; Lutz, E. T. G.; van Hemert, J. A.; de Jong, E. A. M. Determination of the Fat, Protein and Lactose Content of the Milk Using Fourier Transform Infrared Spectrometry. Anal. Chim. Acta. 1993, 284, 419–433. DOI: 10.1016/0003-2670(93)85328-H.
  • Nicolaou, N.; Xu, Y.; Goodacre, R. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for the Detection and Quantification of Different Milk Species. J. Dairy Sci. 2010, 93, 5651–5660. DOI: 10.3168/jds.2010-3619.
  • Soyeurt, H.; Dardenne, P.; Dehareng, F.; Lognay, G.; Veselko, D.; Marlieer, M.; Bertozzi, C.; Mayeres, P.; Gengler, N. Estimating Fatty Acid Content in Cow Milk Using Mid-infrared Spectrometry. J. Dairy Sci. 2006, 89, 3690–3696. DOI: 10.3168/jds.S0022-0302(06)72409-2.
  • Afseth, N. K.; Matens, H.; Randby, A.; Gidskehaug, L.; Narum, B.; Jorgensen, K.; Lien, S.; Kohler, A. Predicting the Fatty Acid Composition of Milk: A Comparison of Two Fourier Transform Infrared Sampling Techniques. Appl. Spectrosc. 2010, 64, 700–707. DOI: 10.1366/000370210791666200.
  • Hewavitharana, A. K.; van Brakel, B. Fourier Transform Infrared Spectrometric Method Fot the Rapid Determination of Casein in Raw Milk. Analyst. 1997, 122, 701–704. DOI: 10.1039/a700953d.
  • Rutten, M. J.; Bovenhuis, H.; Heck, J. M. L.; van Arendonk, J. A. M. Predicting Bovine Milk Protein Composition Based on Fourier Transform Infrared Spectra. J. Dairy Sci. 2011, 94, 5683–5690. DOI: 10.3168/jds.2011-4520.
  • Bellamy, L. J. The Znfra-red Spectra of Complex Molecules; John Wiley & Sons: New York, 1958.
  • Dahlberg, D. B.; Lee, S. M.; Wenger, S. J.; Vargo, J. A. Classification of Vegetable Oils by FTIR. Appl. Spectrosc. 1997, 51, 1118–1124. DOI: 10.1366/0003702971941935.
  • Rohman, A.; Man, Y. B. C. Fourier Transform Infrared (FTIR) Spectroscopy for Analysis of Extra Virgin Olive Oil Adulterated with Palm Oil. Food Res. Int. 2010, 43, 886–892. DOI: 10.1016/j.foodres.2009.12.006.
  • Castro-Puyana, M.; Herrero, M. Metabolomics Approaches Based on Mass Spectrometry for Food Safety, Quality and Traceability. Trends Anal. Chem. 2013, 52, 74–87. DOI: 10.1016/j.trac.2013.05.016.
  • Javadi, N.; Abas, F.; Hamid, A. A.; Simoh, S.; Shaari, K.; Ismail, I. S.; Mediani, A.; Khatib, A. GC‐MS‐Based Metabolite Profiling of Cosmos Caudatus Leaves Possessing Alpha‐Glucosidase Inhibitory Activity. J. Food Sci. 2014, 79, 6, 1130–1136. DOI: 10.1111/1750-3841.12491.
  • Benincasa, C.; Lewis, J.; Sindona, G.; Tagarelli, A. The Use of Multi Element Profiling to Differentiate between Cow and Buffalo Milk. Food Chem. 2008, 110, 1, 257–262. DOI: 10.1016/j.foodchem.2008.01.049.
  • Shin, E. C.; Craft, B. D.; Pegg, R. B.; Phillips, R. D.; Eitenmiller, R. R. Chemometric Approach to Fatty Acid Profiles in Runner-type Peanut Cultivars by Principal Component Analysis (PCA). Food Chem. 2010, 119, 3, 1262–1270. DOI: 10.1016/j.foodchem.2009.07.058.
  • Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrometry- Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. DOI: 10.1002/mas.20108.
  • Ferrand-Calmels, M.; Palhière, I.; Brochard, M.; Leray, O.; Astruc, J. M.; Aurel, M. R.; Barbey, S.; Bouvier, F.; Brunschwig, P.; Caillat, H.; et al. Prediction of Fatty Acid Profiles in Cow, Ewe, and Goat Milk by Mid-infrared Spectrometry. J. Dairy Sci. 2014, 97, 1, 17–35. DOI: 10.3168/jds.2013-6648.
  • Silvano, M. F.; Varela, M. S.; Palacio, M. A.; Ruffinengo, S.; Yamul, D. K. Physicochemical Parameters and Sensory Properties of Honeys from Buenos Aires Region. Food Chem. 2014, 152, 500–507. DOI: 10.1016/j.foodchem.2013.12.011.
  • AOAC. Official Methods of Analysis of AOAC International; AOAC: Gaithersburg, MD, 2005. 17th Vol. II, 33: 934.01, 942.05, 991.20, 2000.18.
  • Elbassbasi, M.; Kzaiber, F.; Ragno, G.; Oussama, A. Classification of Raw Milk by Infrared Spectroscopy and Chemometric. J. Sci. Speculations Res. 2010, 1, 2, 28–33.
  • Sundekilde, U.; Larsen, L.; Bertram, H. NMR-based Milk Metabolomics. Metabolites. 2013, 3, 2, 204–222. DOI: 10.3390/metabo3020204.
  • Easmin, S.; Sarker, M. Z. I.; Ghafoor, K.; Ferdosh, S.; Jaffri, J.; Ali, M. E.; Mirhosseini, H.; Al-Juhaimi, F. Y.; Perumal, V.; Khatib, A. Rapid Investigation of α-glucosidase Inhibitory Activity of Phaleria Macrocarpa Extracts Using FTIR-ATR Based Fingerprinting. J. Food Drug Anal. 2017, 25, 2, 306–315. DOI: 10.1016/j.jfda.2016.09.007.
  • Inon, F. A.; Garrigues, S.; de la Guardia, M. Nutritional Parameters of Commercially Available Milk Samples by FTIR and Chemometric Techniques. Anal. Chim. Acta. 2004, 513, 2, 401–412. DOI: 10.1016/j.aca.2004.03.014.
  • Zaleska, H.; Tomasik, P.; Lii, C. Y. Formation of Carboxymethyl Cellulose-casein Complexes by Electrosynthesis. Food Hydrocolloids. 2002, 16, 215–224. DOI: 10.1016/S0268-005X(01)00085-6.
  • Anderson, S. K.; Hansen, P. W.; Andersen, H. V. Vibrational Spectroscopy in the Analysis of Dairy Products and Wine. In Handbook of Vibrational Spectroscopy; Chalmers, J. M., Griffiths, P. R., Eds.; John Wiley & Sons Ltd: West Sussex, UK, 2002; pp 3672–3681.
  • Chatjigakis, A. K.; Pappas, C.; Proxenia, N.; Kalantzi, O.; Rodis, P.; Polissiou, M. FT-IR Spectroscopic Determination of the Degree of Esterification of Cell Wall Pectins from Stored Peaches and Correlation to Textural Changes. Carbohydr. Polym. 1998, 37, 4, 395–408. DOI: 10.1016/S0144-8617(98)00057-5.
  • Dagnachew, B. S.; Kohler, A.; Adnoy, T. Genetic and Environmental Information in Goat Milk Fourier Transform Infrared Spectra. J. Dairy Sci. 2013, 96, 3973–3985. DOI: 10.3168/jds.2012-5972.
  • Yang, Y.; Zheng, N.; Zhao, X.; Zhang, Y.; Han, R.; Yang, J.; Wang, J. Metabolomic Biomarkers Identify Differences in Milk Produced by Holstein Cows and Other Minor Dairy Animals. J. Proteomics. 2016, 136, 174–182. DOI: 10.1016/j.jprot.2015.12.031.
  • Scano, P.; Murgia, A.; Pirisi, F. M.; Caboni, P. A Gas Chromatography-mass Spectrometry-based Metabolomic Approach for the Characterization of Goat Milk Compared with Cow Milk. J. Dairy Sci. 2014, 97, 10, 6057–6066. DOI: 10.3168/jds.2014-8247.
  • Gao, X.; Pujos-Guillot, E.; Martin, J. F.; Galan, P.; Juste, C.; Jia, W.; Sebedio, J. L. Metabolite Analysis of Human Fecal Water by Gas Chromatography Mass Spectrometry with Ethyl Chloroformate Derivatization. Anal. Biochem. 2009, 393, 2, 163–175. DOI: 10.1016/j.ab.2009.06.036.
  • Kim, J. Y.; Park, J. Y.; Kim, O. Y.; Ham, B. M.; Kim, H. J.; Kwon, D. Y.; Jang, Y.; Lee, J. H. Metabolic Profiling of Plasma in Overweight/obese and Lean Men Using Ultra Performance Liquid Chromatography and Q-TOF Mass Spectrometry (UPLC− Q-TOF MS). J. Proteome Res. 2010, 9, 9, 4368–4375. DOI: 10.1021/pr100101p.
  • Murugesu, S.; Ibrahim, Z.; Ahmed, Q. U.; Nik Yusoff, N. I.; Uzir, B. F.; Perumal, V.; Abas, F.; Saari, K.; El-Seedi, H.; Khatib, A. Characterization of α-Glucosidase Inhibitors from Clinacanthus Nutans Lindau Leaves by Gas Chromatography-Mass Spectrometry-Based Metabolomics and Molecular Docking Simulation. Molecules. 2018, 23, 9, 2402. DOI: 10.3390/molecules23092402.
  • Trivedi, D. K.; Iles, R. K. The Application of SIMCA P+ in Shotgun Metabolomics Analysis of ZIC® HILIC-MS Spectra of Human Urine-experience with the Shimadzu IT-TOF and Profiling Solutions Data Extraction Software. J. Chromatogr. Sep. Tech. 2012, 3, 1–5. DOI: 10.4172/2157-7064.1000145.
  • Raynal-Ljutovac, K.; Lagriffoul, G.; Paccard, P.; Guillet, I.; Chilliard, Y. Composition of Goat and Sheep Milk Products: An Update. Small Ruminant Res. 2008, 79, 1, 57–72. DOI: 10.1016/j.smallrumres.2008.07.009.
  • Trancoso, I. M.; Trancoso, M. A.; Martins, A. P.; Roseiro, L. B. Chemical Composition and Mineral Content of Goat Milk from Four Indigenous Portuguese Breeds in Relation to One Foreign Breed. Int. J. Dairy Technol. 2010, 63, 4, 516–522. DOI: 10.1111/j.1471-0307.2010.00625.x.
  • Alyaqoubi, S.; Abdullah, A.; Yasir, M. S.; Abdullah Sani, N.; Addai, Z. R.; Al-ghazali, M. Physicochemical Properties and Antioxidant Activity of Milk Samples Collected from Five Goat Breeds in Malaysia. Adv. J. Food Sci. Technol. 2015, 7(4), 235–241. DOI: 10.19026/ajfst.7.1301.
  • Park, Y. W.; Juarez, M.; Ramos, M.; Haenlein, G. F. W. Physico-chemical Characteristics of Goat and Sheep Milk. Small Ruminant Res. 2007, 68, 88–113. DOI: 10.1016/j.smallrumres.2006.09.013.
  • Iqbal, A.; Khan, B. B.; Tariq, M.; Mirza, M. A. Goat-A Potential Dairy Animal: Present and Future Prospects. J. Agri. Sci. 2008, 45, 2, 227–230.
  • Uqasha, A. A.; Al Jiboory, H. L. Chemical and Microbiological Quality of Goat Milk Produced in Al – Shatti Region. Arab Univ. J. Agri. Sci. 2002, 10, 1, 21–29.
  • Agnihotri, M. K.; Rajkumar, V. Effect of Breed, Parity and Stage of Lactation on Milk Composition of Western Region Goats of India. Int. J. Dairy Sci. 2007, 2, 2, 172–177. DOI: 10.3923/ijds.2007.172.177.
  • Goetsch, A. L.; Zeng, S. S.; Gipson, T. A. Factors Affecting Goat Milk Production and Quality. Small Ruminant Res. 2011, 101, 1–3, 55–63. DOI: 10.1016/j.smallrumres.2011.09.025.
  • Pal, U. K.; Agnihotri, M. K.; Singh, D. Influence of Goat Breeds on the Composition of Milk and Paneer. J. Anim. Sci. 1997, 67, 175–176.
  • Mirzaei-Aghsaghali, A.; Fathi, H. Lactose in Ruminants Feeding: A Review. Ann. Biol. Res. 2012, 3, 645–650.
  • Strzalkowska, N.; Jozwik, A.; Bagnicka, E.; Krzyzewski, J.; Horbanczuk, K.; Pyzel, B.; Horbanczuk, J. O. Chemical Composition, Physical Traits and Fatty Acid Profile of Goat Milk as Related to the Stage of Lactation. Anim. Sci. Papers Rep. 2009, 27, 4, 311–320.
  • Pambu, R. G. Effects of Goat Phenotype Score on Milk Characteristics and Blood Parameters of Indigenous and Improved Dairy Goats in South Africa. Doctoral dissertation, University of Pretoria, South Africa, 2011.
  • Alibaba. Live Breeding Goats for Sale. http://www.alibaba.com/products-directory/recommended-live-breeding-goats-for-sale ( accessed Feb4, 2014).