2,348
Views
27
CrossRef citations to date
0
Altmetric
Original Article

Rapid detection and visualization of slight bruise on apples using hyperspectral imaging

ORCID Icon &
Pages 1709-1719 | Received 24 Jul 2019, Accepted 13 Sep 2019, Published online: 08 Oct 2019

References

  • Leemans, V.; Magein, H.; Destain, M. F. On-line Fruit Grading according to Their External Quality Using Machine Vision. Biosyst. Eng. 2002, 83, 397–404.
  • Dong, J.; Guo, W. Nondestructive Determination of Apple Internal Qualities Using Near-Infrared Hyperspectral Reflectance Imaging. Food Anal. Method. 2015, 8, 2635–2646.
  • Cox, M.; Zhang, M. I.; Willison, J. H. Apple Bruise Assessment through Electrical Impedance Measurements. J. Hortic. Sci.. 1993, 68, 393–398.
  • Kotwaliwale, N.; Weckler, P. R.; Brusewitz, G. H.; Kranzler, G. A.; Maness, N. O. Non-destructive Quality Determination of Pecans Using Soft X-rays. Postharvest Biol. Technol. 2007, 45, 372–380.
  • Baranowski, P.; Mazurek, W.; Wozniak, J.; Majewska, U. Detection of Early Bruises in Apples Using Hyperspectral Data and Thermal Imaging. J. Food Eng. 2012, 110, 345–355.
  • Zwiggelaar, R.; Yang, Q.; Garcia-Pardo, E.; Bull, C. R. R. Use of Spectral Information and Machine Vision for Bruise Detection on Peaches and Apricots. J. Agric. Eng. Res. 1996, 63, 323–331.
  • Mehl, P. M.; Chen, Y.; Kim, M. S.; Chan, D. E. Development of Hyperspectral Imaging Technique for the Detection of Apple Surface Defects and Contaminations. J. Food Eng. 2004, 61, 67–81.
  • Ferrari, C.; Foca, G.; Calvini, R.; Ulrici, A. Fast Exploration and Classification of Large Hyperspectral Image Datasets for Early Bruise Detection on Apples. Chemom. Intell. Lab. 2015, 146, 108–119.
  • Baranowski, P.; Mazurek, W.; Pastuszka-Woźniak, J. Supervised Classification of Bruised Apples with respect to the Time after Bruising on the Basis of Hyperspectral Imaging Data. Postharvest Biol. Technol. 2013, 86, 249–258.
  • ElMasry, G.; Wang, N.; Vigneault, C.; Qiao, J.; ElSayed, A. Early Detection of Apple Bruises on Different Background Colors Using Hyperspectral Imaging. LWT - Food Sci. Technol. 2008, 41, 337–345.
  • Gowen, A. A.; O’Donnell, C. P.; Taghizadeh, M.; Cullen, P. J.; Frias, J. M.; Downey, G. Hyperspectral Imaging Combined with Principal Component Analysis for Bruise Damage Detection on White Mushrooms (agaricus Bisporus). J. Chemom. 2008, 22, 259–267.
  • Su, W.; Sun, D. Potential of Hyperspectral Imaging for Visual Authentication of Sliced Organic Potatoes from Potato and Sweet Potato Tubers and Rapid Grading of the Tubers according to Moisture Proportion. Comput. Electron. Agric. 2016, 125, 113–124.
  • Siedliska, A.; Baranowski, P.; Zubik, M.; Mazurek, W.; Sosnowska, B. Detection of Fungal Infections in Strawberry Fruit by Vnir/swir Hyperspectral Imaging. Postharvest Biol. Technol. 2018, 139, 115–126.
  • Jiang, H.; Zhang, C.; He, Y.; Chen, X.; Liu, F.; Liu, Y. Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging. Appl. Sci. 2016, 6(12), 450–458(9).
  • Zhang, B.; Li, J.; Fan, S.; Huang, W.; Zhao, C.; Liu, C.; Huang, D. Hyperspectral Imaging Combined with Multivariate Analysis and Band Math for Detection of Common Defects on Peaches (Prunus persica). Comput. Electron. Agric. 2015, 114, 14–24.
  • Barnes, R. J.; Dhanoa, M. S.; Lister, S. J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777.
  • Rivera, N. V.; Gómez-Sanchis, J.; Chanona-Pérez, J.; Carrasco, J. J.; Millán-Giraldo, M.; Lorente, L.; Cubero, S.; Blasco, J. Early Detection of Mechanical Damage in Mango Using Nir Hyperspectral Images and Machine Learning. Biosyst. Eng. 2014, 122, 91–98.
  • Yu, K. Q.; Zhao, Y. R.; Liu, Z. Y.; Li, X. L.; Liu, F.; He, Y. Application of Visible and Near-infrared Hyperspectral Imaging for Detection of Defective Features in Loquat. Food Bioprocess. Technol. 2014, 7(11), 3077–3087.
  • Fan, S.; Huang, W.; Guo, Z.; Zhang, B.; Zhao, C. Prediction of Soluble Solids Content and Firmness of Pears Using Hyperspectral Reflectance Imaging. Food Anal. Methods. 2015, 8, 1936–1946.
  • Pu, Y. Y.; Feng, Y. Z.; Sun, D. W. Recent Progress of Hyperspectral Imaging on Quality and Safety Inspection of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2015a, 14(2), 176–188.
  • Wu, B.; Chen, C.; Kechadi, T. M.; Sun, L. A Comparative Evaluation of Filter-based Feature Selection Methods for Hyper-spectral Band Selection. Int. J. Remote Sens. 2013, 34, 7974–7990.
  • Peng, H.; Long, F.; Ding, C. Feature Selection Based on Mutual Information: Criteria of Max-dependency, Max-relevance, and Min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8), 1226–1238.
  • Cen, H.; Lu, R.; Ariana, D. P.; Mendoza, F. Hyperspectral Imaging-Based Classification and Wavebands Selection for Internal Defect Detection of Pickling Cucumbers. Food Bioprocess. Tech. 2014, 7, 1689–1700.
  • Huang, G.; Zhu, Q.; Siew, C. Extreme Learning Machine: Theory and Applications. Neurocomputing. 2006, 70, 489–501.
  • Li, W.; Chen, C.; Su, H.; Du, Q. Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote 2015, 53, 3681–3693.
  • Rozenstein, O.; Paz-Kagan, T.; Salbach, C.; Karnieli, A. Comparing the Effect of Preprocessing Transformations on Methods of Land-Use Classification Derived from Spectral Soil Measurements. IEEE J.-STARS 2015, 8, 2393–2404.
  • Dadon, A.; Ben-Dor, E.; Karnieli, A. Use of Derivative Calculations and Minimum Noise Fraction Transform for Detecting and Correcting the Spectral Curvature Effect (smile) in Hyperion Images. IEEE Trans. Geosci. Remote 2010, 48, 2603–2612.
  • Zheng, Y.; Lai, X.; Bruun, S. W.; Ipsen, H.; Larsen, J. N.; Løwenstein, H.; Søndergaard, I.; Jacobsen, S. Determination of Moisture Content of Lyophilized Allergen Vaccines by NIR Spectroscopy. J. Pharm. Biomed. 2008, 46, 592–596.
  • Che, W.; Sun, L.; Zhang, Q.; Tan, W.; Ye, D.; Zhang, D.; Liu, Y. Pixel Based Bruise Region Extraction of Apple Using Vis-NIR Hyperspectral Imaging. Comput. Electron. Agric. 2018, 146, 12–21.
  • Zhang, B.; Fan, S.; Li, J.; Huang, W.; Zhao, C.; Qian, M.; Zheng, L. Detection of Early Rottenness on Apples by Using Hyperspectral Imaging Combined with Spectral Analysis and Image Processing. Food Anal. Method. 2015, 8, 2075–2086.
  • Zhang, B.; Huang, W.; Li, J.; Zhao, C.; Liu, C.; Huang, D. Detecting of Early Rottenness in Apples Using Hyperspectral Machine Vision with Effective Wavebands. Sens. Lett.. 2014, 12(3), 932-937(6). DOI: 10.1166/sl.2014.3135.