1,647
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Cacao quality index for cacao agroecosystems in Bahia, Brazil

, , , , &
Pages 1799-1814 | Received 11 May 2019, Accepted 27 Sep 2019, Published online: 25 Oct 2019

References

  • FAO, FAOSTAT. Food and Agriculture Data. Production quantities of Cocoa, beans by country. Average 1994–2014. 2017. http://www.fao.org/faostat/en/#data/QC/visualize.
  • Afoakwa, E. O. Cocoa Production and Processing Technology; CRC Press, Taylor & Francis Group: Boca Raton, FL, 2014.
  • ICCO. Cocoa Year 2016/2017. Q. Bull. Cocoa Stat, 2017, p. XLIII.
  • Saltini, R.; Akkerman, R.; Frosch, S. Optimizing Chocolate Production through Traceability: A Review of the Influence of Farming Practices on Cocoa Bean Quality. Food Control. 2013, 29, 167–187. DOI: 10.1016/j.foodcont.2012.05.054.
  • Acierno, V.; Alewijn, M.; Zomer, P.; van Ruth, S. M. Making Cocoa Origin Traceable: Fingerprints of Chocolates Using Flow Infusion - Electro Spray Ionization - Mass Spectrometry. Food Control. 2018, 85, 245–252. DOI: 10.1016/j.foodcont.2017.10.002.
  • Liu, M.; Liu, J.; He, C.; Liu, Y.; Zhang, Y.; Wang, Y.; Guo, J.; Yang, H.; Su, X. Characterization and Comparison of Key Aroma-active Compounds of Cocoa Liquors from Five Different Areas. Int. J. Food Prop. 2017, 20(10), 2396–2408. DOI: 10.1080/10942912.2016.1238929.
  • Oracz, J.; Nebesny, E. Antioxidant Properties of Cocoa Beans (Theobroma cacao L.): Influence of Cultivar and Roasting Conditions. Int. J. Food Prop. 2016, 19(6), 1242–1258. DOI: 10.1080/10942912.2015.1071840.
  • Qin, X.-W.; Lai, J.-X.; Tan, L.-H.; Hao, C.-Y.; Li, F.-P.; He, S.-Z.; Song, Y.-H. Characterization of Volatile Compounds in Criollo, Forastero, and Trinitario Cocoa Seeds (Theobroma cacao L.) In China. Int. J. Food Prop. 2017, 20(10), 2261–2275. DOI: 10.1080/10942912.2016.1236270.
  • de Araujo, Q. R.; Baligar, V. C.; de A. Loureiro, G. A. H.; de Souza Júnior, J. O.; Comerford, N. B. Impact of Soils and Cropping Systems on Mineral Composition of Dry Cacao Beans. J. Soil Sci. Plant Nutr. 2017, 17(2), 410–428. DOI: 10.4067/S0718-95162017005000030.
  • de Araujo, Q. R.; de A.Loureiro, G. A. H.; Rohsius, C.; Baligar, V. C. Impact of Soils and Cropping Systems on Biochemical Attributes of Dry Cacao Beans. Agrotrópica. 2018, 30(3), 175–194. DOI: 10.21757/0103-3816.2018v30n3p175-194.
  • Loureiro, G. A. H. A.; Araujo, Q. R.; Sodré, G. A.; Valle, R. R.; Souza, J. O., Jr.; Ramos, E. M. L. S.; Comerford, N. B.; Grierson, P. F. Cacao Quality: Highlighting Selected Attributes. Food Rev. Int. 2017, 33(4), 382–405. DOI: 10.1080/87559129.2016.1175011.
  • Araujo, Q. R.; Fernandes, C. A. F.; Ribeiro, D. O.; Efraim, P.; Steinmacher, D.; Lieberei, R.; Bastide, P.; Araujo, T. G. Cocoa Quality Index - A Proposal. Food Control. 2014, 46, 49–54. DOI: 10.1016/j.foodcont.2014.05.003.
  • dos Santos, H. G.; Jacomine, P. K. T.; Dos Anjos, L. H. C.; de Oliveira, V. Á.; Lumbreras, J. F.; Coelho, M. R.; de Almeida, J. A.; Cunha, T. J. F.; de Oliveira, J. B. Sistema Brasileiro de Classificação de Solos, 3rd ed.; Embrapa: Brasilia, DF, 2013.
  • Soil Survey Staff. Keys to Soil Taxonomy; US Department of Agriculture-Natural Resources Conservation Service: Washington, DC, USA, 2006.
  • Lobão, D. É.; Setenta, W. C.; de Lobão, É. S. P.; Curvelo, K.; Valle, R. R. Cacau Cabruca - Sistema Agrossilvicultural Tropical. In Ciência, tecnologia e manejo do cacaueiro; Valle, R. R., Ed.; MAPA: Brasilia, DF, 2012; pp 467–506.
  • de A. Loureiro, G. A. H.; de Araujo, Q. R.; Valle, R. R.; Sodré, G. A.; Santos Filho, L. P.; Oliveira, S. J. R.; Dantas, P. A. S.; Couto, L. R.; Lopes, M. R. Influence of Environmental Factors on Cacao Biometric Attributes. Agrotrópica. 2016, 28(2), 123–140. DOI: 10.21757/0103-3816.2016v28n2p123-140.
  • de A. Loureiro, G. A. H.; de Araujo, Q. R.; Valle, R. R.; Sodré, G. A.; Souza, S. M. M. Influencia de factores agroambientales sobre la calidad del clon de cacao (Theobroma cacao L.) PH-16 en la región cacaotera de Bahia, Brasil. Ecosist. Recur. Agropec. 2017, 4(12), 579–587. DOI: 10.19136/era.a4n12.1274.
  • Wymore, A. W. Model-based Systems Engineering. An Introduction to the Mathematical Theory of Discrete Systems and to Tricotyledon Theory of System Design; CRC Press Inc.: Boca Raton, Florida, 1993.
  • Karlen, D. L.; Stott, D. E. A Framework for Evaluating Physical and Chemical Indicators of Soil Quality. In Defining Soil Quality for a Sustainable Environment; Doran, J. W., Coleman, D. C., Bezdicek, D. F., Stewart, B. A., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, 1994; pp 53–72.
  • Biehl, B.; Meyer, B.; Crone, G.; Pollmann, L.; Said, M. B. Chemical and Physical Changes in the Pulp during Ripening and Post-harvest Storage of Cocoa Pods. J. Sci. Food Agric. 1989, 48(2), 189–208. DOI: 10.1002/jsfa.2740480207.
  • Biehl, B.; Brunner, E.; Passern, D.; Quesnel, V. C.; Adomako, D. Acidification, Proteolysis and Flavour in Fermenting Cocoa Beans. J. Sci. Food Agric. 1985, 36(7), 583–598. DOI: 10.1002/jsfa.2740360710.
  • Biehl, B.; Voigt, J. Biochemical Approach to Raw Cocoa Quality Improvement: Comparison of Seed Proteins and Proteases in Their Ability to Produce Cocoa Aroma Precursors. Malaysian International Cocoa Conference. Kuala Lumpur, Malaysia, Oct 20–21, 1994. .
  • Lopez, S. A. F.; Passos, F. M. L. Factors Influencing Cacao Bean Acidity-fermentation, Drying and the Microflora. IX International Cocoa Research Conference. Lagos, Nigeria, Cocoa Producer’s Alliance, 1984, 701–704.
  • Bonvehí, J. S.; Coll, F. V. Parameters Affecting the Quality of Processed Cocoa Powder: Acidity Fraction. Z Leb. Unters Forsch A. 1997, 204(4), 287–292. DOI: 10.1007/s002170050079.
  • Holm, C. S.; Aston, J. W.; Douglas, K. The Effects of the Organic Acids in Cocoa on the Flavour of Chocolate. J. Sci. Food Agric. 1993, 61(1), 65–71. DOI: 10.1002/(ISSN)1097-0010.
  • Jinap, S.; Dimick, P. S. Acidic Characteristics of Fermented and Dried Cocoa Beans from Different Countries of Origin. J. Food Sci. 1990, 55(2), 547–550. DOI: 10.1111/j.1365-2621.1990.tb06806.x.
  • Reineccius, G. A.; Andersen, D. A.; Kavanagh, T. E.; Keeney, P. G. Identification and Quantification of the Free Sugars in Cocoa Beans. J. Agric. Food Chem. 1972, 20(2), 199–202. DOI: 10.1021/jf60180a033.
  • de Brito, E. S.; Pezoa García, N. H.; Gallão, M. I.; Cortelazzo, A. L.; Fevereiro, P. S.; Braga, M. R. Structural and Chemical Changes in Cocoa (Theobroma cacao L) during Fermentation, Drying and Roasting. J. Sci. Food Agric. 2001, 81(2), 281–288. DOI: 10.1002/1097-0010%2820010115%2981%3A2<281%3A%3AAID-JSFA808>3.0.CO%3B2-B.
  • de A. Loureiro, G. A. H. Atributos qualitativos de solo e amêndoas de cacau comum: revisão, análises e interpretação de relações. Monography; Department of Agricultural and Environmental Sciences, State University of Santa Cruz: Ilhéus, Brazil, 2012.
  • Biehl, B.; Passern, U.; Passern, D. Subcellular Structures in Fermenting Cocoa Beans. Effect of Aeration and Temperature during Seed and Fragment Incubation. J. Sci. Food Agric. 1977, 28(1), 41–52. DOI: 10.1002/jsfa.2740280107.
  • Ávila, M. G.; Dias, J. C. Características de qualidade do cacau comercial da Amazônia brasileira; CEPLAC/SUPOR: Belém, Pará, 1993.
  • Figueira, A., Lambert, S., Carpenter, D., Pires, J. L., Cascardo, J. C. M., & Romanczyk, L. The similarity of cocoa flavour of fermented seeds from fingerprinted genotypes of Theobroma cacao L. from Brazil and Malaysia. Trop. Agric., 1997, 74, 132–139.
  • Beckett, S. T. Industrial Chocolate Manufacture and Use; London: Chapman and Hall, 2009.
  • Beckett, S. T. The Science of Chocolate; Royal Society of Chemistry: London, 2008.
  • Cruz, J. F. M. Caracterização das sementes de variedade de cacau Theobroma cacao L. resistentes à vassoura de bruxa durante a fermentação e após a secagem. Masters dissertation, Faculty of Pharmacy, Federal University of Bahia: Salvador, Brazil, 2012. .
  • Lopes, A. S.; Pezoa-García, N. H.; Vasconcelos, M. A. M. avaliação das condições de torração após a fermentação de amêndoas de cupuaçu (Theobroma grandiflorum Schum) e cacau (Theobroma cacao L.). Braz. J. Food Technol. 2003, 62(2), 309–316.
  • Rohsius, C.; Matissek, R.; Lieberei, R. Free Amino Acid Amounts in Raw Cocoas from Different Origins. Eur. Food Res. Technol. 2006, 222(3–4), 432–438. DOI: 10.1007/s00217-005-0130-y.
  • Yusep, I.; Jinap, S.; Jamilah, B.; Nazamid, S. Influence of Carboxypeptidases on Free Amino Acid, Peptide and Methylpyrazine Contents of Under-fermented Cocoa Beans. J. Sci. Food Agric. 2002, 82(13), 1584–1592. DOI: 10.1002/jsfa.1232.
  • Schwan, R. F.; Fleet, G. H. Cocoa and Coffee Fermentations; CRC Press, Taylor & Francis Group: Boca Raton, FL, 2015.
  • Ramli, N.; Yatim, A. M.; Said, M.; Hok, H. C. HPLC Determination of Methylxanthines and Polyphenols Levels in Cocoa and Chocolate Products. Malaysian J. Anal. Sci. 2001, 7(2), 377–386.
  • Cruz, J. F. M.; Leite, P. B.; Soares, S. E.; Bispo, E. D. S. Bioactive Compounds in Different Cocoa (Theobroma cacao L.) Cultivars during Fermentation. Food Sci. Technol. 2015, 35, 279–284. DOI: 10.1590/1678-457X.6541.
  • Cruz, J. F. M.; Leite., P. B.; Soares, S. E.; da S. Bispo, E. Assessment of the Fermentative Process from Different Cocoa Cultivars Produced in Southern Bahia, Brazil. African J. Biotechnol. 2013, 12(33), 5218–5225. DOI: 10.5897/AJB2013.12122.
  • Oliveira, M. A.; Extração de polifenóis da semente de cacau (Theobroma cacao). Masters dissertation, Technological Center, Federal University of Santa Catarina: Florianópolis, Brazil, 2005.
  • Santana, M. B. M.; Cabala Rosand, P.; de Santana, C. J. L. Exigências nutricionais do cacaueiro. In Exigências nutricionais e uso de fertilizantes em sistemas de produção de cacao; CEPEC/CEPLAC: Ilhéus, Brazil, 1984.
  • Malavolta, E.; Malavolta, M.; Cabral, C. Nota sobre as exigências minerais do cacaueiro. An. da Esc. Super. Agric. “Luiz Queiroz”. 1984, 41, 243–255. DOI: 10.1590/S0071-12761984000100014.
  • Muniz, M. R. A.; de A. Silveira, R. L. V.; dos Santos, P. S. R.; Malta, A.; Sorice, L. S. D. Exportação de nutrientes pelos frutos de cacau de diferentes clones cultivados nas Fazendas Reunidas Vale do Juliana. Addubare RR Agroflorest. 2013, 24, 5–9.
  • FNB, IOM. Manganese. Dietary Reference Intakes for Vitamin A, Vitamin K, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, 2001.
  • Linus Pauling Institute. Micronutrient Information Center. Manganese, Oregon State University. 2014. http://lpi.oregonstate.edu/mic/minerals/manganese.
  • Keen, C.; Zidenberg-Cherr, S. Manganese Toxicity in Humans and Experimental Animals. In Manganese in Health and Disease; Klimis-Zacas, D., Ed.; CRC Press: Boca Raton, FL, 1994; pp 193–205.
  • FAO, WHO. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; WHO: Geneva, 2005.
  • Stoltzfus, R. J. Defining Iron-deficiency Anemia in Public Health Terms: A Time for Reflection. J. Nutr. 2001, 131, 565S–567S. DOI: 10.1093/jn/131.2.565S.
  • FNB, IOM. Iron. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, 2001.
  • Aggett, P. J. Iron. In Present Knowledge in Nutrition, 10th ed.; Erdman, J. W., Macdonald, I. A., Zeisel, S. H., Eds.; Wiley-Blackwell: Washington, DC, 2012; pp 506–520.
  • Manoguerra, A. S.; Erdman, A. R.; Booze, L. L.; Christianson, G.; Wax, P. M.; Scharman, E. J.; Woolf, A. D.; Chyka, P. A.; Keyes, D. C.; Olson, K. R.; et al. Iron Ingestion: An Evidence-based Consensus Guideline for Out-of-hospital Management. Clin. Toxicol. 2005, 43(6), 553–570. DOI: 10.1081/CLT-200068842.
  • Chang, T. P.-Y.; Rangan, C. Iron Poisoning. Pediatr. Emergency Care. 2011, 27(10), 978–985. DOI: 10.1097/PEC.0b013e3182302604.
  • Prasad, A. S. Discovery of Human Zinc Deficiency: 50 Years Later. J. Trace Elem. Med. Biol. 2012, 26(2–3), 66–69. DOI: 10.1016/j.jtemb.2012.04.004.
  • ul Islam, E.; Yang, X.-E.; He, Z.-L.; Mahmood, Q. Assessing Potential Dietary Toxicity of Heavy Metals in Selected Vegetables and Food Crops. J. Zhejiang Univ. Sci. B. 2007, 8(1), 1–13. DOI: 10.1631/jzus.2007.B0001.
  • EU. Comission Regulation (EU) No 1275/2013 of 6 December 2013 Amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as Regards Maximum Levels for Arsenic, Cadmium, Lead, Nitrites, Volatile Mustard Oil and Harmful Botanical Imp. Off. J. Eur. Union. 2013, 328, 86–92.
  • FNB, IOM. Copper. Dietary Reference Intakes for Vitamin A, Vitamin K, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, 2001.
  • Linus Pauling Institute. Micronutrient Information Center. Copper, Oregon State University, 2014. http://lpi.oregonstate.edu/mic/minerals/copper.
  • EU. Comission Regulation (EU) No 488/2014 of 12 May 2014 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Foodstuffs. Off. J. Eur. Union. 2014, 138, 75–79.
  • EFSA. Cadmium Dietary Exposure in the European Population. Efsa J. 2012, 10, 2551. DOI: 10.2903/j.efsa.2012.2551.
  • WHO. Barium and Barium Compounds. Concise International Chemical Assessment Document 33; WHO: Geneva, Switzerland, 2001.
  • EU. Commission Regulation No. 1881/2006 (19 December 2006) Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union.. 2006, 364, 5–24.
  • ATSDR. Toxicological Profile for Lead; U.S. Department of Health and Human Services, Public Health Service, ATSDR: U.S., 2007.
  • LEAD. Health Impacts of Lead Poisoning. A Preliminary Listing of the Health Effects & Symptoms of Lead Poisoning; The LEAD Group Inc: Australia, 2011.
  • R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. https://www.r-project.org/.
  • Valle, R. R. M. Ciência, Tecnologia E Manejo Do Cacaueiro; MAPA: Brasília, DF, 2012.