2,039
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Untargeted metabolomics based on GC-TOF-MS reveals the optimal pre-fermentation time for black glutinous rice wine

ORCID Icon, , , , &
Pages 2033-2046 | Received 18 Aug 2019, Accepted 06 Dec 2019, Published online: 19 Dec 2019

References

  • Cai, H. Y.; Zhang, Q.; Shen, L. Z.; Luo, J.; Zhu, R.; Mao, J.; Zhao, M.; Cai, C. Phenolic Profile and Antioxidant Activity of Chinese Rice Wine Fermented with Different Rice Materials and Starters. LWT–Food Sci. Technol. 2019, 111, 226–234. DOI: 10.1016/j.lwt.2019.05.003.
  • Rao, S.; Yang, Z.; Gao, L.; Song, Y.; Fang, W. M. Effect of Rice Varieties on Antioxidant Activity of Chinese Rice Wine. China Brewing. 2014, 33(8), 75–79.
  • Su, W.; Qi, Q.; Zhao, X.; MU, Y. C.; Qiu, S. Y.; Bai, W. D. Variation and Biological Activity of Polyphenols during Brewing Process of Black Glutinous Rice Wine. Guizhou Agric. Sci. 2017, 45(08), 112–117.
  • Qi, Q.; Li, J. W.; Mu, Y. C.; Su, W. Experimental Study on the Effect of Black Glutinous Rice Health Wine on Tonifying Kidney in Mice. J. Biobased Mater. Bioenergy. 2018, 12(1), 148–152. DOI: 10.1166/jbmb.2018.1752.
  • Kim, J. Y.; Seo, W. D.; Park, D. S.; Jang, K. C.; Choi, K. J.; Kim, S. Y.; Oh, S. H.; Ra, J. E.; Yi, G.; Park, S. K.; et al. Comparative Studies on Major Nutritional Components of Black Waxy Rice with Giant Embryos and Its Rice Bran. Food Sci. Biotechnol. 2013, 22(1), 121–128. DOI: 10.1007/s10068-013-0057-1.
  • Phonsakhan, W.; Kong-Ngern, K. A Comparative Proteomic Study of White and Black Glutinous Rice Leaves. Electron. J. Biotechnol. 2015, 18(1), 29–34. DOI: 10.1016/j.ejbt.2014.11.005.
  • Yawadio, R.; Tanimori, S.; Morita, N. Identification of Phenolic Compounds Isolated from Pigmented Rices and Their Aldose Reductase Inhibitory Activities. Food Chem. 2007, 101(4), 1616–1625. DOI: 10.1016/j.foodchem.2006.04.016.
  • Yao, S. L.; Xu, Y.; Zhang, Y. Y.; Lu, Y. H.; Rice, B. Anthocyanins Induce Inhibition of Cholesterol Absorption in Vitro. Food Funct. 2013, 4(11), 1602–1608. DOI: 10.1039/C3FO60196J.
  • Phetpornpaisan, P.; Tippayawat, P.; Jay, M.; Sutthanut, K. A Local Thai Cultivar Glutinous Black Rice Bran: A Source of Functional Compounds in Immunomodulation, Cell Viability and Collagen Synthesis, and Matrix Metalloproteinase-2 and −9 Inhibition. J. Funct. Foods. 2014, 7, 650–661. DOI: 10.1016/j.jff.2013.12.020.
  • Ahmed, I. A. M.; Al-Juhaimi, F. Y.; Bekhit, E. D. A. Fermentation of Grains[M]. Ref. Module Food Sci. 2018. DOI: 10.1016/B978-0-08-100596-5.21657-0.
  • Wood, B. J. B.;. Fermentation: Origins and Applications. Encycl. Food Grains. 2016, 176–182. DOI: 10.1016/b978-0-12-394437-5.00135-2.
  • Cai, H.; Zhang, T.; Zhang, Q.; Luo, J.; Cai, C.; Mao, J. Microbial Diversity and Chemical Analysis of the Starters Used in Traditional Chinese Sweet Rice Wine. Food Microbiol. 2018, 73, 319–326. DOI: 10.1016/j.fm.2018.02.002.
  • Zhu, Y. B.; Zhang, J. H.; Shi, Z. P.; Mao, Z. G. Optimization of Operating Conditions in Rice Heat Blast Process for Chinese Rice Wine Production by Combinational Utilization of Neural Network and Genetic Algorithms. J. Inst. Brew. 2004, 110(2), 117–123. DOI: 10.1002/j.2050-0416.2004.tb00190.x.
  • Suganuma, T.; Fujita, K.; Kitahara, K. Some Distinguishable Properties between Acid-Stable and Neutral Types of α-Amylases from Acid-Producing Koji. J. Biosci. Bioeng. 2007, 104(5), 353–362. DOI: 10.1263/jbb.104.353.
  • Ferdouse, J.; Yamamoto, Y.; Taguchi, S.; Yoshizaki, Y.; Takamine, K.; Kitagaki, H. Glycosylceramide Modifies the Flavor and Metabolic Characteristics of Sake Yeast. Peer J. 2018, 6(9), 4768–4784. DOI: 10.7717/peerj.4768.
  • Wu, Z.; Mao, Y.; Zhang, X.; Weng, P. Symbolic Metabolite Analysis of Pickled Wax Gourd in Eastern China by 1H-NMR Spectroscopy and Multivariate Data. Int. J. Food Prop. 2015, 19(9), 2052–2062. DOI: 10.1080/10942912.2015.1099044.
  • Park, S. E.; Yoo, S. A.; Seo, S. H.; Lee, K. I.; Na, C. S.; Son, H. S. GC-MS Based Metabolomics Approach of Kimchi for the Understanding of Lactobacillus Plantarum Fermentation Characteristics. LWT–Food Sci. Technol. 2016, 68, 313–321. DOI: 10.1016/j.lwt.2015.12.046.
  • Alañón, M. E.; Pérez-Coello, M. S.; Marina, M. L. Wine Science in the Metabolomics Era. TrAC, Trends Anal. Chem. 2015, 74, 1–20. DOI: 10.1016/j.trac.2015.05.006.
  • More, T.; Roychoudhury, S.; Gollapalli, K.; Patel, S. K.; Gowda, H.; Chaudhury, K.; Rapole, S. Metabolomics and Its Integration with Systems Biology: PSI 2014 Conference Panel Discussion Report. J. Proteomics. 2015, 127, 73–79. DOI: 10.1016/j.jprot.2015.04.024.
  • Scano, P.; Murgia, A.; Pirisi, F. M.; Caboni, P. A Gas Chromatography-mass Spectrometry-based Metabolomic Approach for the Characterization of Goat Milk Compared with Cow Milk. J. Dairy Sci. 2014, 97(10), 6057–6066. DOI: 10.3168/jds.2014-8247.
  • Seo, S. H.; Park, S. E.; Yoo, S. A.; Lee, K. I.; Na, C. S.; Son, H. S. Metabolite Profiling of Makgeolli for the Understanding of Yeast Fermentation Characteristics during Fermentation and Aging. Process Biochem. 2016, 51(10), 1363–1373. DOI: 10.1016/j.procbio.2016.08.005.
  • Lee, D. E.; Lee, S.; Singh, D.; Jang, E. S.; Shin, H. W.; Moon, B. S.; Lee, C. H. Time-resolved Comparative Metabolomes For, Koji, Fermentation with Brown-, White-, and Giant Embryo-rice. Food Chem. 2017, 231, 258–266. DOI: 10.1016/j.foodchem.2017.03.119.
  • Seo, H. S.; Lee, S.; Singh, D.; Shin, H. W.; Cho, S. A.; Lee, C. H. Untargeted Metabolite Profiling for Koji-fermentative Bioprocess Unravels the Effects of Varying Substrate Types and Microbial Inoculation. Food Chem. 2018, 266, 161–169. DOI: 10.1016/j.foodchem.2018.05.048.
  • Lin, W.; Song, J.; Hu, W.; Miao, J.; Gao, X. Relationship between Extracellular Cellulase, Pectinase and Xylanase Activity of Isolated\r, Aspergillus Oryzae\r, Strains Grown on Koji and the Umami-Tasting Amino Acid Content of Soy Sauce. Food Biotechnol. 2016, 30(4), 278–291. DOI: 10.1080/08905436.2016.1244768.
  • Kind, T.; Wohlgemuth, G.; Lee, D. Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; FiehnLib:, F. O.; Spectral, M. And Retention Index Libraries for Metabolomics Based on Quadrupole and Time-of-flight Gas Chromatography/Mass Spectrometry. Anal. Chem. 2009, 81(24), 10038–10048. DOI: 10.1021/ac9019522.
  • Dunn, W. B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Goodacre, R. Procedures for Large-scale Metabolic Profiling of Serum and Plasma Using Gas Chromatography and Liquid Chromatography Coupled to Mass Spectrometry. Nat. Protoc. 2011, 6(7), 1060–1083. DOI: 10.1038/nprot.2011.335.
  • Shen, F.; Niu, X.; Yang, D.; Ying, Y.; Li, B.; Zhu, G.; Wu, J. Determination of Amino Acids in Chinese Rice Wine by Fourier Transform Near-infrared Spectroscopy. J. Agric. Food Chem. 2010, 58, 9809–9816. DOI: 10.1021/jf1017912.
  • Saharan, P.; Sadh, P. K.; Singh Duhan, J. Comparative Assessment of Effect of Fermentation on Phenolics, Flavanoids and Free Radical Scavenging Activity of Commonly Used Cereals. Biocatal. Agric. Biotechnol. 2017, 12, 236–240. DOI: 10.1016/j.bcab.2017.10.013.
  • Wang, J.; Cao, F.; Su, E.; Wu, C.; Zhao, C.; Ying, R. Improving Flavonoid Extraction from Ginkgo Biloba Leaves by Pre-fermentation Processing. J. Agric. Food Chem. 2013, 61(24), 5783–5791. DOI: 10.1021/jf400712n.
  • Lee, S.; Lee, D. E.; Singh, D.; Lee, C. H. Metabolomics Reveal Optimal Grain Preprocessing (Milling) toward Rice Koji Fermentation. J. Agric. Food Chem. 2018, 66(11), 2694–2703. DOI: 10.1021/acs.jafc.7b05131.
  • Lee, D.; Lee, S.; Jang, E.; Shin, H.; Moon, B.; Lee, C. Metabolomic Profiles of Aspergillus Oryzae and Bacillus Amyloliquefaciens during Rice Koji Fermentation. Molecules. 2016, 21(6), 773–787. DOI: 10.3390/molecules21060773.
  • Zhang, Y. C.; Lee, J. H.; Vodovotz, Y.; Schwartz, S. J. Changes in Distribution of Isoflavones and β-Glucosidase Activity during Soy Bread Proofing and Baking. Cereal. Chem. 2004, 81, 741–745. DOI: 10.1094/CCHEM.2004.81.6.741.
  • Bayer, E. A.; Lamed, R. The Cellulose Paradox: Pollutant Par Excellence And/or a Reclaimable Natural Resource? Biodegradation. 1992, 3(2–3), 171–188. DOI: 10.1007/BF00129082.
  • Reese, E. T.; Siu, R. G. H.; Levinson, H. S. The Biological Degradation of Soluble Cellulose Derivatives and Its Relationship to the Mechanism of Cellulose Hydrolysis. J. Bacteriol. 1950, 59(4), 485–497. DOI: 10.1016/0021-9169(50)90025-0.
  • Castilho, L. R.; Medronho, R. A.; Alves, T. L. M. Production and Extraction of Pectinases Obtained by Solid State Fermentation of Agroindustrial Residues with Aspergillus Niger. Bioresour. Technol. 2000, 71(1), 45–50. DOI: 10.1016/S0960-8524(99)00058-9.
  • Szeto, S. S.; Reinke, S. N.; Sykes, B. D.; Lemire, B. D. Mutations in the Saccharomyces Cerevisiae Succinate Dehydrogenase Result in Distinct Metabolic Phenotypes Revealed through 1H NMR-based Metabolic Footprinting. J. Proteome Res. 2010, 9(12), 6729–6739. DOI: 10.1021/pr100880y.
  • Sun, X. M.; Yu, X. P.; Liu, Y.; Xu, L.; Di, D. L.; Bootstrap, C. Uninformative Variable Elimination: Chemometric Identification of Metabonomic Biomarkers by Nonparametric Analysis of Discriminant Partial Least Squares. Chemom. Intell. Lab. Syst. 2012, 115, 37–43. DOI: 10.1016/j.chemolab.2012.04.006.
  • Hao, R. J.; Du, X. D.; Yang, C. Y.; Deng, Y. W.; Zheng, Z.; Wang, Q. H. Integrated Application of Transcriptomics and Metabolomics Provides Insights into Unsynchronized Growth in Pearl Oyster Pinctada Fucata Martensii. Sci. Total Environ. 2019, 666, 46–56. DOI: 10.1016/j.scitotenv.2019.02.221.
  • Gänzle Michael, G.;. Enzymatic and Bacterial Conversions during Sourdough Fermentation. Food Microbiol. 2014, 37, 2–10. DOI: 10.1016/j.fm.2013.04.007.
  • Son, E. Y.; Lee, S. M.; Kim, M.; Seo, J. A.; Kim, Y. S. Comparison of Volatile and Non-volatile Metabolites in Rice Wine Fermented by Koji Inoculated with Saccharomycopsis Fibuligera and Aspergillus Oryzae. Food Res. Int. 2018, 109, 596–605. DOI: 10.1016/j.foodres.2018.05.008.
  • Godswill, A. C.;. Sugar Alcohols: Chemistry, Production, Health Concerns and Nutritional Importance of Mannitol, Sorbitol, Xylitol, and Erythritol. Int. J. Adv. Res. 2017, 3, 31–66.
  • Fernandes, S.; Murray, P. G. Metabolic Engineering for Improved Microbial Pentose Fermentation. Bioeng. Bugs. 2010, 1, 424–428. DOI: 10.4161/bbug.1.6.12724.
  • Zhang, X. K.; Lan, Y. B.; Zhu, B. Q.; Xiang, X. F.; Duan, C. Q.; Shi, Y. Changes in Monosaccharides, Organic Acids and Amino Acids during Cabernet Sauvignon Wine Ageing Based on a Simultaneous Analysis Using Gas Chromatography-Mass Spectrometry. J. Sci. Food Agric. 2017, 98(1), 104–112. DOI: 10.1002/jsfa.8444.
  • Arikawa, Y.; Kuroyanagi, T.; Shimosaka, M.; Muratsubaki, H.; Enomoto, K.; Kodaira, R.; Okazaki, M. Effect of Gene Disruptions of the TCA Cycle on Production of Succinic Acid in Saccharomyces Cerevisiae. J. Biosci. Bioeng. 1999, 87(1), 28–36. DOI: 10.1016/s1389-1723(99)80004-8.
  • Zhang, J.; Yi, Y.; Pan, D. D.; Zhou, G. H.; Wang, Y.; Dang, Y. L.; Cao, J. X. 1 H NMR-based Metabolomics Profiling and Taste of Boneless Dry-cured Hams during Processing. Food Res. Int. 2019, 122, 114–122. DOI: 10.1016/j.foodres.2019.04.005.
  • Liu, T.; Zhou, Y.; Zhu, Y.; Song, M.; Li, B. B.; Shi, Y.; Gong, J. Study of the Rapid Detection of γ-Aminobutyric Acid in Rice Wine Based on Chemometrics Using near Infrared Spectroscopy. J. Food Sci. Technol. 2015, 52, 5347–5351. DOI: 10.1007/s13197-014-1576-3.
  • Gibbs, M. E.; Bowser, D. N. Astrocytes and Interneurons in Memory Processing in the Chick Hippocampus: Roles for G-Coupled Protein Receptors, GABA(B) and mGluR1. Neurochem. Res. 2009, 34(10), 1712–1720. DOI: 10.1007/s11064-009-9980-1.
  • Gong, J.; Huang, J.; Xiao, G.; You, Y.; Yuan, H.; Chen, F.; Li, B. Determination of γ-Aminobutyric Acid in Chinese Rice Wines and Its Evolution during Fermentation. J. Inst. Brew. 2017, 123(3), 417–422. DOI: 10.1002/jib.431.
  • Pfeiffer, P.; König, H. Pyroglutamic Acid: A Novel Compound in Wines. In Biology of Microorganisms on Grapes, in Must and in Wine, Springer-Verlag Berlin Heidelberg. 2009; pp 233–240. DOI: 10.1007/978-3-540-85463-0_12.
  • Chen, L.; Liu, S.; Tang, Y.; Han, X.; Zhou, Z.; Zou, H.; Mao, J. Changes in Flavor Components during Fermentation Process of Mechanically Produced Shaoxing Rice Wine. Food Sci. 2018, 39(14), 221–228. DOI: 10.7506/spkx1002-6630-201814033.
  • Lee, D. E.; Shin, G. R.; Lee, S.; Jang, E. S.; Shin, H. W.; Moon, B. S.; Lee, C. H. Metabolomics Reveal that Amino Acids are the Main Contributors to Antioxidant Activity in Wheat and Rice Gochujangs (Korean Fermented Red Pepper Paste). Food Res. Int. 2016, 87, 10–17. DOI: 10.1016/j.foodres.2016.06.015.
  • Lee, S. Y.; Lee, S.; Lee, S.; Oh, J. Y.; Jeon, E. J.; Ryu, H. S.; Lee, C. H. Primary and Secondary Metabolite Profiling of Doenjang, a Fermented Soybean Paste during Industrial Processing. Food Chem. 2017, 165, 157–166. DOI: 10.1016/j.foodchem.2014.05.089.
  • Que, F.; Mao, L.; Pan, X. Antioxidant Activities of Five Chinese Rice Wines and the Involvement of Phenolic Compounds. Food Res. Int. 2006, 39(5), 0–587. DOI: 10.1016/j.foodres.2005.12.001.
  • Zhou, W. Y.; Fang, R. S.; Chen, Q. H. Effect of Gallic and Protocatechuic Acids on the Metabolism of Ethyl Carbamate in Chinese Yellow Rice Wine Brewing. Food Chem. 2017, 233, 174–181. DOI: 10.1016/j.foodchem.2017.04.113.
  • Cao, Y.; Xie, G.; Wu, C.; Lu, J. A Study on Characteristic Flavor Compounds in Traditional Chinese Rice Wine-Guyue Longshan Rice Wine. J. Inst. Brew. 2010, 116(2), 182–189. DOI: 10.1002/j.2050-0416.2010.tb00416.x.
  • Xiao, Z.; Xin, D.; Zhu, J.; Yu, H. Classification of Chinese Rice Wine according to Geographic Origin and Wine Age Based on Chemometric Methods and SBSE-TD-GC-MS Analysis of Volatile Compounds. Food Sci. Technol. Res. 2015, 21(3), 371–380. DOI: 10.3136/fstr.21.371.
  • Innis, S. M.;. Palmitic Acid in Early Human Development. Crit. Rev. Food Sci. Nutr. 2015, 56(12), 1952–1959. DOI: 10.1080/10408398.2015.1018045.
  • Kang, B. S.; Lee, J. E.; Park, H. J. Electronic Tongue-Based Discrimination of Korean Rice Wines (Makgeolli) Including Prediction of Sensory Evaluation and Instrumental Measurements. Food Chem. 2014, 151, 317–323. DOI: 10.1016/j.foodchem.2013.11.084.
  • Chi, Z.; Chi, Z.; Liu, G.; Zhang, T. Saccharomycopsis Fibuligera and Its Applications in Biotechnology. Biotechnol. Adv. 2009, 27(4), 423–431. DOI: 10.1016/j.biotechadv.2009.03.003.
  • Futagami, T.; Mori, K.; Yamashita, A.; Wada, S.; Kajiwara, Y.; Takashita, H.; Omori, T.; Takegawa, K.; Tashiro, K.; Kuhara, S.; et al. Genome Sequence of the White Koji Mold Aspergillus Kawachii IFO 4308, Used for Brewing the Japanese Distilled Spirit Shochu. Eukaryotic Cell. 2011, 10(11), 1586–1587. DOI: 10.1128/EC.05224-11.
  • Jackson, R. S.;. Chemical Constituents of Grapes and Wine. In Wine Science; Taylor, S. L., Ed.; Academic Press: San Diego, 2000; pp 232–271.